The Regional Municipality of York

Municipal Class Environmental Assessment Study – Langstaff Road from Weston Road to Highway 7

Drainage and Stormwater Management Report

December 13, 2021 FINAL REV. 1

Municipal Class Environmental Assessment Study – Langstaff Road from Weston Road to Highway 7

Drainage and Stormwater Management Report

The Regional Municipality of York

FINAL Rev. 1

Project No.: 16M-01457-01 Date: December 13, 2021

WSP 610 CHARTWELL ROAD SUITE 300 OAKVILLE, ON, CANADA L6J 4A5

T: +1 905-823-8500 F: +1 905-823-8503 wsp.comwsp.com

Revision History

FIRST ISSUE

FIRST ISSUE	
12 Nov 2020	Draft for review
Prepared by	Reviewed and Approved by
Hadi Abbasi, Project Engineer	Madhav Baral, Senior Project Manager
REVISION 1	
April 14, 2021	Revision on Draft
Prepared by	Reviewed and Approved by
Hadi Abbasi, Project Engineer	Madhav Baral, Senior Project Manager
REVISION 2	
Aug 3, 2021	Final
Prepared by	Reviewed and Approved by
Hadi Abbasi, Project Engineer Ray Zhao, Designer	Madhav Baral, Senior Project Manager
REVISION 3	Final Rev. 1
Prepared by	Reviewed and Approved by
Hadi Abbasi,	Bryan Orendorff, Manager

Signatures Prepared by Hadi Abbasi, P.Eng. Date Project Engineer, Water Resources Approved by (must be reviewed for technical accuracy prior to approval) Madhav Baral, M.A.Sc., P.Eng. Date

WSP prepared this report solely for the use of the intended recipient, The Regional Municipality of York, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

Senior Project Manager, Water Resources

¹ Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

Contributors

Client

Project Manager, York Region Colin Wong

WSP

Manager Bryan Orendorff

Project Engineer Hadi Abbasi

Senior Project Manager, Municipal Dwayne West

Proof (non-technical) / Format Melinda Nowak

Subconsultants

GeoMorphix Ltd. Paul Villard

CIMA+ Katherine Jim

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Project Description and Purpose	1
1.2	Study Purpose – Drainage and Stormwater Management	3
1.3	Scope of Work	3
1.4	Background Information	4
1.5	Site Investigation	5
2	DESIGN CRITERIA AND STANDARD	6
2.1	Design Criteria - Crossing Structure	6
2.2	Design Criteria - Stormwater Management (SWM	8(
2.3	Design Storm	9
3	HYDROLOGICAL ANALYSES	.11
3.1	Existing Drainage Condition	11
3.1.1	West Don River (West Branch of Don River)	11
3.1.2	Westminster Creek	11
3.1.3	Black Creek	11
3.1.4	Existing Drainage along Langstaff Road	12
3.1.5	Surface Soil and Land Use	13
3.1.6	Existing Conditions Hydrologic Modelling	14
3.2	Proposed Drainage Condition	17
3.2.1	Proposed Drainage Along Langstaff Road	18
3.2.2	Proposed Conditions Hydrologic Modelling	21
4	HYDRAULIC ANALYSIS	.28
4.1	Black Creek Crossing	28
4.2	West Don River Crossing	29
4.2.1	Flow Update on Hydraulic Model	30
4.2.2	Existing Conditions Hydraulic Analysis of Bowes Bridge	.31
4.2.3	Proposed Conditions Hydraulic Analysis of Bowes Bridge	32
4.2.4	Regional Flood Line Map of West Don River	36
4.3	Westminster Creek Crossing	36
4.4	West Don Tributary Culvert (LC1) Crossing	38

5	FLUVIAL GEOMORPHOLOGY41
6	STORMWATER MANAGEMENT42
6.1	Overview42
6.2	Impact of the Proposed Roadway42
6.3	Proposed SWM Strategy44
6.3.1	Proposed SWM Facilities46
6.3.2	Oil and Grit Separators52
6.4	Water Balance and Low Impact Development Measures53
7	SEDIMENT AND EROSION CONTROL57
8	CONCLUSIONS AND RECOMMENDATIONS59
TABLES	
Table 2-1:	MTO Drainage Design Standards for Culverts and Bridge7
Table 2-2:	Rainfall Depths Comparison10
Table 3-1:	Existing Conditions Flows for Roadway Area within Humber River Watershed14
Table 3-2:	Existing Conditions Flows for Roadway Area within West Don River Watershed15
Table 3-3:	Proposed Conditions Flows for Culvert LC1 25
Table 3-4:	Proposed Conditions Flows for Roadway Area within Humber River Watershed23
Table 3-5:	Proposed Conditions Flows for the Roadway Area within West Don River Watershed23
Table 3-6:	Comparison of Pre- and Post-Development Flows within the Humber River Watershed 25
Table 3-7:	Comparison of Pre- and Post-Development Flows within the Don River Watershed
Table 4-1:	Flow for Black Creek Culvert at Langstaff Road28
Table 4-2:	Hydraulic Performance Analysis of Existing Black Creek Culvert at Langstaff Road29
Table 4-3:	Summary of Flows for the West Don River HEC-RAS Model30
Table 4-4:	Hydraulic Performance Analysis of Existing Bowes Bridge32
Table 4-5:	Comparison of Hydraulic Modelling Results 33

Table 4-6:	Hydraulic Performance Analysis of Proposed Bowes Bridge
Table 4-7 :	Summary of Flows for the HEC-RAS Model at Westminster Creek Tributary
Table 4-8:	Hydraulic Performance Analysis of Existing Westminster Creek Culvert
Table 4-9:	Hydraulic Performance Evaluation of Proposed Culvert within the West Don River Watershed 40
Table 6-1:	Impervious Area Comparison43
Table 6-2:	SWM Strategy for the Roadway Runoff 44
Table 6-3:	SWM Strategy for the Roadway Runoff55
FIGURES	
Figure 1:	Study Area2

EXHIBITS (At the End of the Report)

Exhibits 3.1 to 3.10: Existing Drainage Mosaics
Exhibits 3.11 to 3.20: Proposed Drainage Mosaics
Exhibit 4.1: GA of West Don River Bridge

Exhibits 4.2 to 4.3: Flood Line Map and HEC-RAS Section

Location

Exhibit 4.4: GA of GO Transit Barrie Line Bridge

APPENDICES

Α	Site Investigation Photographs
В	Hydrologic Assessments
С	Hydraulic Assessments
D	Fluvial Geomorphology Report
E	Stormwater Management

1 INTRODUCTION

1.1 Project Description and Purpose

The Regional Municipality of York (hereafter referred to as "York Region") retained WSP to undertake the Municipal Class Environmental Assessment (EA) Study of Langstaff Road from the west of Weston Road to Highway 7 in the City of Vaughan. The proposed works involve widening of Langstaff Road from two / four lanes to six lanes between Weston Road and Dufferin Street. The study limits are bounded by Weston Road to the west and Highway 7 to the east. The Don River West Branch, Westminster Creek and Black Creek are the most prominent natural features within the study limits. The study area is shown in **Figure 1**.

The proposed improvements on Langstaff Road include:

- Widening of Langstaff Road up to six lanes from Weston Road to Dufferin Street
- A connection across the CN MacMillan Rail Yard from Creditstone Road to Keele Street
- Construction of a grade separation at Metrolinx GO Transit Barrie Line
- Implementation of intersection improvements
- Improvement of pedestrian and cycling facilities, and provision for transit amenities

Between Weston Road and Highway 7, Langstaff Road is an east-west arterial road under the jurisdiction of York Region. The existing road is a four-lane urban arterial road to the west of the CN MacMillan Rail Yard and a two-lane rural arterial to the east of the (CN) MacMillan Rail Classification Yard with a posted speed of 60 km/hr. Land uses adjacent to the Langstaff Road corridor are mostly light industrial and commercial areas, with some residential, as well as parks and open areas. Residential areas are largely located near the westerly and easterly study limits. Most of the area is heavily urbanized, including large areas of industrial and commercial buildings with flat roofs surrounded by paved areas for parking and driveways.

Three watercourses were identified within the study area along Langstaff Road. The watercourses include Black Creek (a tributary to Humber River), West Don River (a west branch of Don River) and Westminster Creek (a tributary to West Don River).

While the EA Study initially considered potential improvements to the interchange at Highway 400 and Langstaff Road, following extensive consultation with MTO, it was concluded that the planning of the improvements to the interchange will be subject to a future corridor study due to the extended scope of work along the Highway 400 corridor. As such, this drainage report considers Langstaff Road at Highway 400 (i.e. overpass) as 4-lanes under the proposed condition assessments and does not include any assessment related to Highway 400 access ramps. Drainage assessment associated with the Highway 400 interchange will be developed as part of the future corridor study.

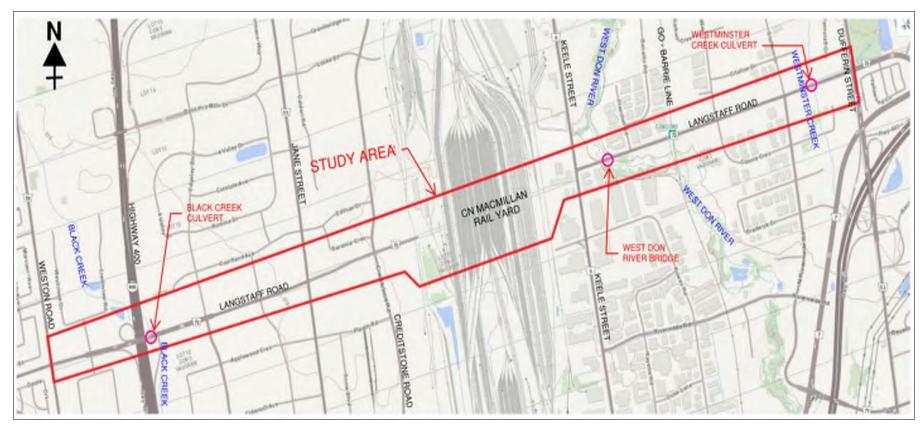


Figure 1: Study Area

Based on the prevailing policy framework, the following broad design objectives have been established to minimize the potential impacts of the proposed roadway improvements on the surrounding environment:

- Provide an effective / efficient drainage system
- Minimize risk to public safety
- Maintain flow paths for upstream lands
- Maintain or enhance the quality of storm runoff
- Maintain or reduce flood risk for lands within and surrounding the transportation corridor
- Minimize future maintenance requirements
- Promote stormwater management measures on lands available in the transportation corridor.

1.2 Study Purpose – Drainage and Stormwater Management

The purpose of the Drainage and Stormwater Management (SWM) Report is to provide a clear and traceable decision making process with respect to the proposed watercourse crossing design and stormwater management design concept to support seeking 'approval in principle' for various aspects of the design from the relevant regulatory agencies such as the Toronto and Region Conservation Authority (TRCA) and Ontario Ministry of Natural Resources and Forestry (MNRF), for watercourse crossing structures and stormwater management associated with the preliminary design.

This Drainage and Stormwater Management Report documents the hydrologic and hydraulic analyses undertaken, addresses the existing drainage characteristics, identifies issues related to drainage and stormwater management conditions, determines acceptable opening sizes of major crossing structures and proposes a feasible stormwater management strategy for the proposed roadways.

1.3 Scope of Work

The scope of work entails the following:

- Understand thoroughly the characteristics of the existing drainage system, its flow pattern, constraints and design requirements based on the latest standards and policies.
- Hydraulic analyses of the watercourse crossings to assess the impacts of proposed works and culvert replacements.
- Hydrologic assessments of road corridor to determine the increase in flow due to proposed improvements.

- Design of stormwater quality treatment facilities to achieve an enhanced Level of water quality treatment for the roadway runoff.
- Design of quantity control measures to control the post-development flows to existing conditions flows as required by the reviewing agency.
- Provide erosion and sediment control recommendations as required.
- The constraints and recommendations related to the watercourse crossings provided in the preliminary design will be incorporated in the assessment and design of the proposed drainage system.

1.4 Background Information

WSP obtained relevant drainage information and mapping from TRCA and York Region. The following reports were reviewed for the background and used in the assessments and analyses of this study:

 Don River Hydrology Update, PCSWMM Model and Report, TRCA, prepared by AECOM, December 2018.

This report was prepared by AECOM for TRCA and provides an update on Don River hydrology using the PCSWMM platform using the latest available land use and cover, topographic and soil information. The hydrology update model has defined flows for Regional Storm (Hurricane Hazel) and design storm flows for both existing and future land use conditions at each subwatershed or node points.

The original model of the Don River was updated in the 1990s using the HYMO hydrologic model. This model was further updated in 2004 by Marshall Macklin Monaghan by using Visual OTTHYMO model.

- Hydrology Update, Toronto and Region Conservation Authority, prepared by Marshall Macklin Monaghan, 2004
- Don River Watershed Plan Surface Water Hydrology / Hydraulics and Stormwater Management, Report on Current Conditions, TRCA, 2009
- Don River Watershed Plan Baseflow and Water Use Assessment, Report on Current Conditions, TRCA, 2009
- Don River Watershed Plan Fluvial Geomorphology Report on Current Conditions, TRCA, 2009
- Humber River Hydrology Update, Final Report, TRCA, Prepared by CIVICA, June 2015.
- West Don River HEC-RAS models (Basin 5) and related Floodplain maps received from TRCA
- TRCA Stormwater Management Criteria, 2012

- Municipal Structure Inspection Report of Bowes Bridge (West Don River Bridge at Langstaff Road, Structure # 72-20 B0150 and Westminster Creek Culvert, Structure # 72-20 C1670, completed by AECOM, Nov 2014
- GO Transit Barrie Line Hydraulic Analysis Memo (2015) prepared by MMM Group for Metrolinx
- As built drawings of Langstaff Road received from York Region

1.5 Site Investigation

A field investigation of the study area and existing drainage features was conducted by WSP in April 2018. There are two watercourse crossing culverts and one bridge structure within the study area along Langstaff Road. The bridge structure is located over West Don River. In addition to two watercourse crossing culverts, there are three drainage culverts conveying roadway runoff across Langstaff Road.

Recently in June 2021, WSP Team visited the site to investigate the drainage features in the vicinity of Langstaff Road immediately west of CN MacMillan Rail Yard and to understand the drainage conditions of the area thoroughly. Immediately west of CN MacMillan Rail Yard, an outlet of a 1650 mm dimeter storm sewer exists on the southside of Langstaff Road and the storm sewer outlets to a ditch which drains to one of the City of Vaughan's stormwater management pond located south-west of CN MacMillan Rail Yard. This SWM Pond is refereed in this report as SWM Pond C and shown in **Exhibits 3-10** and **3-20**.

Regarding two watercourse crossing culverts and bridge, a review of relevant background information was conducted before proceeding with the hydraulic analysis of these structures.

Photographic inventory of the site investigation is provided in **Appendix A**.

2 DESIGN CRITERIA AND STANDARD

Stormwater management and hydraulic structure criteria were selected on the nature of the proposed works. Guidelines and criteria from all regulatory bodies were considered. Relevant criteria were selected based on the location of structures within the study limits.

2.1 Design Criteria - Crossing Structure

The design and hydraulic performance criteria adopted in this study that relates to the crossing structure design includes design flows, minimum freeboard, vertical clearance, allowable overtopping frequency, and flow depth at culvert inlets. Langstaff Road, after the improvement, will be considered as an Urban Arterial. The following criteria were extracted from the Ontario Ministry of Transportation (MTO) Highway Drainage Design Standards (2008):

- WC-1 Design Flows (Bridges and Culverts): This standard identifies the minimum design flows for the sizing of structures for flow conveyance on regulated and non-regulated watercourses.
 - On an Urban Arterial road, a watercourse crossing with a span of less than or equal to 6.0 m should be designed to convey the flow generated during a 50-year design storm. For structures with spans greater than 6.0 m a 100-year flow shall be used.
 - On Regulated Watercourses the Regulatory Flow (Regional Flow) shall be calculated in all cases where floodline mapping is available, where there is a potential risk to public safety, or where there is potential damage to adjacent properties. For these watercourses, the Regulatory Flows are determined with the Hurricane Hazel storm event.
- WC-2 Freeboard and Clearance at Bridge Crossings: This standard identifies the soffit clearance and freeboard for bridges over water bodies. For the roadway, the soffit clearance and freeboard for the design flow should be 1.0 m or higher.
 - A <u>Desirable Freeboard</u> is measured vertically from the Energy Grade Line elevation for the design flow to the edge of the travelled lane at the low point. This freeboard is a recommended value although it is recognized that, due to site-specific considerations, it is not always feasible to provide this amount.
 - A <u>Minimum Freeboard</u> of 1.0 m is measured vertically from the high-water level for the design flow to the edge of the travelled lane at the low point.
- WC-7 Culvert Crossings on a Watercourse: This standard identifies the minimum freeboard, minimum clearance and the maximum flood depth at culvert crossings.

- Overtopping Criterion: There should be no overtopping of the road during the 100-year storm event at the lowest point on the road profile of all culvert crossings. If possible, the overtopping in the Regional Storm Event will also be avoided.
- Flood Depth at Culverts: The standard recommends a maximum flood depth (or head water elevation) at the upstream face of the culvert of 1.5 times the diameter or rise of the culvert (HW/D) for a culvert with a diameter or rise less than 3 metres. For a culvert with a rise between 3.0 metres and 4.5 metres, the flood depth at the upstream face must be equal to or less than 4.5 times the diameter or rise of the culvert. This standard applies to closed-footing culverts and open-footing culverts with non-erodible bottoms.
- SD-1 Design Flow for Surface Drainage Systems: This standard identifies the minimum design flows that shall be used for the sizing of road surface drainage systems (minor and major drainage systems such as piped and surface systems). For an arterial road, and collector road the minor system shall be designed for the 10-year design flow and the major system shall be designed for the 100-year design flow.

Table 2-1 provides a summary of the MTO Drainage Design Standards applied to this assessment.

Table 2-1: MTO Drainage Design Standards for Culverts and Bridge

Item	Design Standard	Description	Standard	Section
1	Design Flow Storm	50-Year (for existing structure with total spans ≤ 6 m)	WC-1	1.1.1
		100-Year (for spans > 6 m)		
2	Top of Road Freeboard (Min.)	>1.0 m (Top of Road Elevation at Low Point - Design Flow Water Surface Elevation)	WC-7	3.1.2
3	Top of Road Freeboard (Desired)	>1.0 m (Top of Road Elevation at Low Point - Design Flow Energy Grade Line Elevation)	WC-7	3.1.1
4	Relief Flow (Max. Depth over roadway)	Max. depth over roadway should not exceed 0.3 m for Regulatory Storm	WC-13	3.2.1
5	Relief Flow (Velocity x Depth)	Velocity x Depth should not exceed 0.8 m ² /s for Regulatory Storm	WC-13	3.2.2
6	Flood Depth (Culvert)	HW/D <= 1.5	WC-7	3.5
6	Clearance (Bridge)	Design Flow Water Surface Elevation – Soffit Elevation ≥1.0 m	WC-2	3.2.2

2.2 Design Criteria - Stormwater Management (SWM)

Based on the standards and criteria provided by the Regulatory agencies, general stormwater management objectives and practices have been identified to minimize the impacts of the proposed Langstaff Road Improvements. The identified objectives are to maintain, where feasible, the existing drainage pattern, minimize peak flow increases and potential roadway overtopping and provide quantity and quality control of runoff for all new pavement areas.

The MTO *Drainage Management Manual* (1997), TRCA SWM Criteria (2012), Ministry of the Environment (MOE) *Stormwater Management Planning and Design Manual* (2003) (note: MOE is now Ministry of the Environment, Conservation and Parks) and York Region Design Guidelines (2020) provided the guidelines and policies for the selection and design of the stormwater management measures required to mitigate the impacts of the proposed works.

Based on TRCA SWM Criteria (2012), the followings are requirements relevant to the Langstaff Road EA Study:

Don River Watershed:

- The Don River Watershed includes the West Don River and Westminster Creek within the project area.
- Control post-development peak flows to pre-development levels for all storms up to and including the 100-year storm (i.e. 2, 5, 10, 25, 50, and 100-year storms).
- Unit flow rates have been established and should be used for all sites located north of Steeles Avenue that are greater than 5 ha.

Humber River Watershed:

- Includes Black Creek within the project area.
- Control post-development peak flows to pre-development levels for all storms up to and including the 100-year storm (i.e., 2, 5, 10, 25, 50, and 100-year storms) except for the main branches of the Lower, Main, East, Upper and West Humber where no quantity control is required.
- Unit flow relationships have been established and should be used for all other sites located in the Humber River Watershed not discharging to the main channels listed above.

The unit flow control requirements (Quantity Control Release Rate) of the Don River and Humber River is provided in **Appendix B.**

The following stormwater management criteria were considered in the preliminary design:

 Water Quality Control Criterion: Ideally, a target of a long-term removal of 80% of total suspended solids (TSS) on an average annual basis will be implemented as

- city streets are a major contributor of water quality contaminants. However, the linear nature of city streets and the configuration of existing infrastructure may inhibit the ability to retrofit Langstaff Road to provide this level of TSS treatment.
- SWM Quantity Control Criterion: Any localized increase in flows due to the proposed project should be controlled to the unit flow rate for both the Humber and Don River watersheds.
- Water Balance: Based on TRCA SWM Criteria (2012), Figure C 10: Recharge Area Classification within TRCA Area, Langstaff Road and its surrounding area falls under the category Low Volume Recharge Area (LGRA). The project area does not fall under Wellhead Protection Areas (WHPA). A 5 mm storm event would be held on-site and discharged through infiltration, evapotranspiration or potentially, rainwater reuse.
- Erosion Control: Based on TRCA SWM Criteria (2012, Section 4.2), on-site retention of 5 mm is required for erosion control.

The Wet Weather Flow Management Guideline has also indicated that for small sites (site area <2 ha) the on-site minimum runoff retention from a small design rainfall event (typically 5 mm) considered under the Water Balance Criteria will be sufficient, as the on-site retention reduces the erosive energy of the flow.

2.3 Design Storm

The rainfall Intensity-Duration-Frequency (IDF) parameters and storm distributions used for the hydrologic analysis are summarized below. Detailed information is included in **Appendix B.**

For the Don River Watershed, the Soil Conservation Service (SCS) 12-hour storm distribution of York Region IDF was used in the analysis to generate the peak flows for the roadway drainage. The SCS 12-hour storm distribution is the governing storm event, as per "Stormwater Management Criteria" from TRCA dated August 2012.

For the Humber River Watershed, the Atmospheric Environmental Service (AES) 6-hour and 12-hour storm distributions are the governing storm event, as per "Stormwater Management Criteria" from TRCA dated August 2012. The AES 12-hour storm distribution was used to generate the pre-development flows for the 2-year to 100-year storm events to provide consistency across the study area.

Table 2-2 shows a comparison between rainfall depths between York Region IDF and AES storm files of the Humber River watershed.

The comparison shows that York Region IDF rainfall values are slightly higher for 12-hour; therefore, rainfall values from the York Region IDF, was carried forward in the analysis.

Table 2-2: Rainfall Depths Comparison

Rainfall Depth (mm)									
Distribution / IDF Source 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr									
12-hour TRCA	42.0	54.4	62.7	73.1	80.8	88.5			
12-hour York Region IDF	40.9	53.0	63.2	73.7	81.5	89.4			
6-hour TRCA	36.0	47.8	55.7	65.6	73.0	80.3			
6-hour York Region IDF	36.2	46.9	56.2	65.1	72.2	79.2			

Note: 12-hour and 6-hour AES Storm files were obtained from the Humber River Hydrology Update. Rainfall depths were extracted from the storm files.

3 HYDROLOGICAL ANALYSES

This section discusses the existing soil, land use, drainage, and hydrological assessments for pre- and post-development conditions.

The study area straddles two watersheds. These are the Don River watershed and Humber River watershed.

For the Langstaff Road EA Study, a Visual OTTHYMO (VO5) hydrologic model was used to estimate localized runoff generated from the roadway and to calculate storage requirements to control flows from widened road sections to the required levels as per unit flow rates. This is to ensure that there will be no impact to the overall watershed hydrology for both Humber River and West Don River watersheds.

Unit flow rate details of the West Don River watershed and Humber River watershed are included in **Appendix B**.

3.1 Existing Drainage Condition

The study area lies within the watersheds of the Humber River (Black Creek tributary) and West Don River. There are three watercourses that cross Langstaff Road, which are Black Creek (tributary of Humber River), West Don River (tributary of Don River) and Westminster Creek (tributary of West Don River). **Figure 1** shows the extent of the study area and location of the existing crossing structures.

3.1.1 West Don River (West Branch of Don River)

The West Don River flows in a south-southeasterly direction towards Lake Ontario and crosses Langstaff Road approximately 250 meters east of Keele Street. The West Don River valley is classified as a Greenbelt Urban River Valley, as per the Ontario Provincial Greenbelt Act. The West Don River has its headwaters atop the Oak Ridges Moraine, specifically, the Maple Spur, approximately eight kilometres northwest of the study area.

3.1.2 Westminster Creek

A small and mainly channelized warm water creek which flows north to south and crosses Langstaff Road approximately 300 meters west of Dufferin Street. This creek originated from approximately 2.8 km north of Langstaff Road. Roadside ditches of Langstaff Road from both east and west sides drains to this creek. The Westminster Creek crosses Langstaff Road by a 2-cell (each 3.7 m span) concrete box culvert.

3.1.3 Black Creek

Black Creek, a tributary to the Humber River, flows through the western portion of the study area in the proximity of Highway 400, in a north to south direction. The headwaters of Black Creek are located northwest of the intersection of Rutherford Road

and Weston Road, which is now under residential development. Black Creek flows through a mainly channelized corridor south-southeast through the study area; however, certain reaches have been re-naturalized. Black Creek crosses Langstaff Road within the existing Highway 400 interchange by a 3-cell concrete box culvert, whereby the creek flows through a wide ditch with wetland vegetation beyond Langstaff Road ROW. Black Creek has been identified as a warm water creek within the Langstaff EA study area. The drainage divides between Black Creek (Humber River Watershed) and the Don River West (Don River Watershed) at Langstaff Road lies close to Jane Street.

3.1.4 Existing Drainage along Langstaff Road

The flows from the Langstaff Road area between Jane Street to the west study limits at Weston Road falls under the Humber River Watershed. The study area east of Jane Street falls under the West Don River Watershed. **Exhibits 3-1** to **3-10** illustrate existing conditions drainage mosaic of Langstaff Road corridor. All exhibits are included at the end of the report before appendices.

The minor system runoff from the roadway area west of Highway 400, Catchments 105 (drainage area of 1.63 ha) and 110 (drainage area of 1.49 ha), will be collected via storm sewers and directed to the existing storm sewer that runs southerly along Silmar Drive and Jevlan Drive, and ultimately discharges to the existing SWM Pond. The major storm runoff drains overland and ultimately drains by existing storm sewer.

Between Millway Avenue and Highway 400, the existing Langstaff Road (Catchments 115, 120, 125 and 130) drains toward Edgeley Boulevard and are collected by an existing 1200 mm diameter storm sewer. The storm sewer runs westerly from the south side of the road and outlets to Black Creek just south of Langstaff Road. The runoff from Jane Street and Millway Avenue is collected in an existing storm sewer that runs North to South side of Langstaff Road along Millway Avenue.

Runoff from Catchments 135 and 140 is conveyed by storm sewers and connected to the Storm Sewer C at Creditstone Road which runs southerly. This storm sewer discharges to SWM Pond C and drains to one of the tributaries of West Don River on the westside of the CN MacMillan Rail Yard.

Runoff from external Catchments 300 and 305 is conveyed by Storm Sewer D which outlets to the south-east of Langstaff Road and CN MacMillan Rail Yard Access Road. The outflow from this storm sewer discharges to SWM Pond C. More detailed discussion of external drainage is provided in **Section 3.2.1.**

Catchments 145 and 150 mostly include the area of the CN MacMillan Rail Yard. Overland flow from these catchments drain to a tributary of West Don River.

East of Keele Street, runoff from Catchments 155 and 160 will be conveyed by storm sewer which outlets to the West Don River on the downstream of the bridge from the west side.

Between Planchet Road and Connie Crescent, Langstaff Road has a rural road cross section (i.e. shoulders and ditches). Roadway area drains to roadside ditches on both the north and south side. Runoff from Catchment 190 and 180 drains the northside ditch

which convey the flow westerly up to Station 6+335. The existing 500 mm diameter culvert located at this station conveys the north side ditch flow to the southside ditch. The southside ditch starts from Catchment 195 and drains westerly collecting runoff from Catchment 185 and flows from the existing culvert. The ditch further drains westerly up to Station 6+220 and then it is conveyed by a storm sewer towards the West Don River. This storm sewer also collects runoff from Catchments 165 and 170 and ultimately outlets to the West Don River on the downstream of the bridge from the existing outlet located on the east bank of the river. There is no runoff quality and quantity control measures under existing conditions.

An existing storm sewer along Spinnaker Way that runs from the north side of Langstaff Road turns east on Langstaff Road and approximately 240 m east of Spinnaker Way (Station 7+140), this storm sewer (1050 mm diameter) runs southerly to Connie Crescent. This storm sewer turns east on Connie Crescent and then again run south along North Rivermede Road discharging ultimately to Westminster Creek. Between Connie Crescent and North Rivermede Road, Langstaff Road has a rural road cross section and drainage from the roadway is conveyed by ditches. The flow from the north side ditch of Catchment 205 is directed to the south side ditch via a twin 900 mm dimeter CSP culvert. The southside ditch drains easterly up to station approximately 7+140 which is then directed to a 1050 mm dimeter (42 inch) storm sewer (as per constructed drawing of December 12, 1979, Drawing# 77-104-8, 77-104-9, Sheet 3 of 5) which runs southerly.

Runoff from Catchments 215 and 220 drains by north and south side ditches, respectively and discharges into Westminster Creek from the west side.

Runoff from Catchment 225 is conveyed by the north side ditch and discharges into Westminster Creek. Two existing storm sewers (1650 mm dimeter and 750 mm diameter) from Dufferin Street outlets to northside ditch at north-west corner of Langstaff road and Dufferin Street. One of the storm sewers is the storm outlet of the SWM facility located north-east of Dufferin Street and Langstaff Road intersection. Runoff from Catchment 230 is conveyed by the southside ditch to Westminster Creek.

3.1.5 Surface Soil and Land Use

Land use along the study area is highly urbanized consisting of a dense mix of commercial and industrial businesses, with only a small percentage of green areas (less than 10%) remaining in a relatively natural state. East of Dufferin Street and west of Weston Road, land use transitions to residential with some recreational / parkland east of Dufferin Street.

Land use features are summarized below:

- Lands adjacent to Langstaff Road between Weston Road and Dufferin Street are designated for employment
- Lands east of Dufferin Street are designated residential
- Core features of the Natural Heritage System are identified in three locations:
 within the Highway 400 / Langstaff Road Interchange; along the valley crossing

just east of Keele Street; and at the woodland located in the northeast quadrant of Langstaff Road and Dufferin Street.

Based on the Soil Survey Report No. 19 (Soils Survey of York County) of the Ontario Soil Survey, the predominant soils within the study area are Silt loam, interspersed with Clay with sand spots.

According to the Ontario Soil Mapping, these soils were classified as hydrologic soil groups (HSG) "BC" and "C", which represents soils with moderate to low runoff potential.

3.1.6 Existing Conditions Hydrologic Modelling

The hydrologic analysis is carried out by using Visual OTTHYMO (VO5) model which is a single event hydrologic model used to simulate hydrographs by modelling rainfall, infiltration, runoff and routing through a watershed. This model uses the Soil Conservation Service Curve Number (CN) Method of estimating runoff characteristics in combination with instantaneous unit hydrograph routines to produce storm hydrographs.

The hydrologic response for drainage areas with a directly connected impervious land use greater than 20 percent was obtained using the STANDHYD instantaneous unit hydrograph and NASH instantaneous unit hydrograph (NASHYD) is considered for impervious land use less than 20 percent.

The existing conditions hydrological parameters including the Curve Number (CN), Initial Abstraction (I_a), and the Time to Peak (T_p) are provided in **Appendix B**. In this preliminary design an initial abstraction (I_a) value of 2 mm is used for the hydrological analysis. As TRCA requires 1 mm of initial abstraction for impervious area, it is recommended to use 1 mm value of I_a during the detailed design phase.

Table 3-1 shows the results of the hydrologic simulation for the roadway area within the Humber River Watershed using AES 12-hour storm distribution. The Visual OTTHYMO schematics and summary of output files for existing conditions are included in **Appendix B**.

Table 3-1: Existing Conditions Flows for Roadway Area within Humber River Watershed

Nodes /	Peak Flow Rate (m³/s)						
Catchments	2-year	5-year	10-year	25-year	50-year	100-year	
105	0.065	0.090	0.107	0.129	0.145	0.162	
110	0.060	0.084	0.100	0.121	0.136	0.153	
400 (105+110)	0.125	0.174	0.207	0.249	0.281	0.315	
115	0.035	0.049	0.060	0.073	0.083	0.093	
120	0.048	0.066	0.079	0.096	0.108	0.120	
410 (115+120)	0.083	0.115	0.139	0.168	0.190	0.212	
125	0.081	0.112	0.136	0.165	0.187	0.209	
130	0.072	0.101	0.123	0.150	0.170	0.190	

405 (125+130)	0.153	0.214	0.259	0.315	0.357	0.399
420 (410+405)	0.236	0.329	0.399	0.483	0.547	0.611

As per the results shown in **Table 3-1**, Hydrograph 400 drains to the existing storm sewer that runs along Silmar Drive and Jevlan Drive, and ultimately outlets to the SWM facility located north -east of Chrislea Road and Jevlan Drive. Hydrograph 420, which is the sum of Catchments 115, 120, 125 and 130 drains to Black Creek via existing storm sewers.

Table 3-2 shows the results of hydrologic simulation for the roadway catchment areas within the West Don River Watershed. As mentioned above, the SCS 12-hour storm distribution is used for the analysis within the West Don River Watershed.

Table 3-2: Existing Conditions Flows for Roadway Area within West Don River Watershed

Nodes /	Peak Flow Rate (m³/s)						
Catchments	2-year	5-year	10-year	25-year	50-year	100-year	
135	0.078	0.116	0.141	0.174	0.198	0.234	
140	0.081	0.115	0.139	0.168	0.196	0.222	
420 (135+140)	0.158	0.231	0.280	0.342	0.394	0.456	
145	0.218	0.299	0.365	0.438	0.493	0.550	
425 (420+145)	0.377	0.530	0.645	0.780	0.887	1.006	
155	0.038	0.055	0.066	0.080	0.091	0.102	
160	0.034	0.047	0.057	0.068	0.078	0.087	
430 (155+160)	0.072	0.102	0.123	0.149	0.169	0.189	
150	0.397	0.515	0.601	0.699	0.774	0.849	
180	0.036	0.054	0.067	0.082	0.094	0.107	
185	0.030	0.041	0.051	0.062	0.070	0.079	
445	0.065	0.095	0.118	0.144	0.164	0.186	
165	0.036	0.054	0.065	0.080	0.091	0.103	
170	0.035	0.048	0.057	0.069	0.079	0.087	
450 (445+165+170)	0.136	0.197	0.240	0.293	0.334	0.376	
190	0.048	0.068	0.086	0.105	0.119	0.134	
195	0.048	0.071	0.086	0.105	0.120	0.135	
455	0.096	0.139	0.172	0.210	0.238	0.269	
458 (450+455)	0.232	0.335	0.412	0.503	0.573	0.645	

Nodes /	Peak Flow Rate (m³/s)						
Catchments	2-year	5-year	10-year	25-year	50-year	100-year	
205	0.062	0.089	0.114	0.140	0.160	0.181	
210	0.058	0.082	0.103	0.126	0.144	0.162	
460	0.120	0.171	0.217	0.266	0.305	0.344	
215	0.042	0.058	0.071	0.085	0.095	0.107	
220	0.042	0.061	0.074	0.09	0.102	0.115	
470	0.084	0.119	0.145	0.175	0.197	0.221	
225	0.062	0.086	0.106	0.128	0.145	0.162	
230	0.049	0.068	0.081	0.100	0.112	0.126	
475	0.111	0.154	0.187	0.228	0.257	0.287	
480 (470+475)	0.195	0.272	0.332	0.402	0.454	0.508	

3.2 Proposed Drainage Condition

Under the proposed (ultimate) conditions, Langstaff Road will be widened to 6-lane urban cross-section between Weston Road and Dufferin Street. However, as noted in Section 1, while the EA Study initially considered potential improvements to the interchange at Highway 400 and Langstaff Road, following extensive consultation with MTO, it was concluded that the planning of the improvements to the interchange will be subject to a future corridor study due to the extended scope of work along the Highway 400 corridor. For the purpose of this Class EA Study, Langstaff Road at Highway 400 (i.e. overpass) is assumed as 4-lanes for the proposed condition assessments and it also does not include any assessment related to Highway 400 access ramps. Drainage assessment associated with the Highway 400 interchange will be developed as part of the future corridor study.

The existing drainage pattern of the subwatershed will be maintained under the proposed improvement works.

Exhibits 3-11 to **3-20** (included at the end of the report) illustrate the proposed conditions drainage mosaics along the roadway which are prepared to estimate localized runoff generated from the roadway. Storage pipe (super pipe) and dry SWM pond facilities are provided at different locations to control the flows from the roadway to the pre-development conditions or unit flows, whichever is applicable, for the receiving storm sewers and watercourses.

The proposed drainage related works involve the following:

- A new culvert (LC1) at Station 4+390
- A dry SWM pond to control the peak flow based on the release rate of the Don River subwatershed unit flow

- A Wet SWM pond to control the peak flow based on the release rate of the Don River subwatershed unit flow and to provide enhanced level of water quality treatment
- Pipe storage pipe facilities for peak flow control
- Oil and grit separator units at the outlet of storage pipe facilities for runoff quality control
- Infiltration galleries for water balance as a LID measure
- Other Drainage improvements as required

3.2.1 Proposed Drainage Along Langstaff Road

The following is considered for the roadway drainage of Langstaff Road between Jane Street and the westerly study limit at Weston Road within the Humber River Watershed:

- The major and minor system runoff from the roadway area west of Highway 400, Catchments 105 and 110 will be collected via storm sewers. The runoff will be controlled to the existing condition 10-year flow through a pipe storage system (HSP-1A and HSP-1B) and the outflow from these storage pipes will be discharged to the existing storm sewer that runs from Silmar Drive / Jevlan Drive as in existing conditions and ultimately discharged to existing SWM Pond. Two OGS will be provided at the outlet of the pipe storage systems for additional quality measures.
- Between Highway 400 and Jane Street, both major and minor system runoff from the roadway Catchments 115 and 120, as well as Catchments 125 and 130 will be conveyed by storm sewers and will be controlled by a pipe storage system (HSP-2 and HSP-3). The runoff catchments on Langstaff Road between Millway Avenue and Jane Street are draining towards Millway Avenue and it is proposed to be diverted to the West towards Edgeley Blvd and a storage facility of HSP-3. Under existing conditions, a 1200 mm diameter storm sewer runs westerly from Edgeley Boulevard to Black Creek from the southside of Langstaff Road and discharges into Black Creek uncontrolled in term of both quality and quantity. Therefore, the proposed pipe storage system will control the flow from the post-development to the pre-development level to maintain the existing drainage pattern. An OGS will be provided downstream of the pipe storage system for the quality treatment of runoff.

The following is considered for the roadway drainage of Langstaff Road between Jane Street and Dufferin Street within the West Don River Watershed:

- The major and minor system runoff from the 2.70 ha roadway area east of Jane Street, Catchments 135 and 140, will be collected via storm sewers. The runoff will be controlled through a pipe storage (DSP-1) then discharged to a dry SWM facility (DDP-1).
- The major and minor system runoff from the 3.05 ha of Catchment 145 (including pond area) and outflow flows from pipe storage DSP-1 will be conveyed by storm sewers and will discharge to the dry SWM facility (DDP-1) located on the north-east corner, at approximate Sta. 4+200, of the proposed overpass of Langstaff Road

across CN MacMillan Rail Yard (on the west side of the yard). This SWM facility will provide quantity control of peak flow based on the unit flow release rate (Sub-basin 6) and the controlled outflow will be discharged to the upstream of proposed Culvert LC1, located just east of Creditstone Road. An OGS will be provided for quality control.

A detailed investigated has been carried out to confirm the drainage area draining to proposed Langstaff Culvert (LC1). For this purpose, drainage boundary prepared for the PCSWMM Hydrologic Model has been reviewed, conducted site visit to confirm the drainage condition and collected the storm sewer information from the York Region to determine the actual sewershed area since the area upstream of the Langstaff Road is all developed.

Based on the storm sewer information received from York Region, as well as from the information gathered from the site investigation in 14 June 2021, **Exhibit 3-20** has been prepared which illustrates the drainage pattern of the area. This exhibit illustrates the following:

- Catchment A does not completely drain to SWM Pond A. Only Area A1 drains to Pond A and remaining almost half of the area (Area A2) drains to Pond B via Storm Sewer E. Controlled flow from Pond A is conveyed by Storm Sewer A to the outlet point at West Don River as shown in **Exhibit 3-20**. Outflow from Pond B also discharges to the West Don River.
- Similarly, Catchment B is divided in three segments.
 - Area B1 is drained by Storm Sewer A and outlets to the West Don River.
 - Runoff from Area B2 is conveyed by Storm Sewer C which runs southerly along Creditstone Road and directed to SWM Pond C.
 - Runoff from Area B3 is conveyed by Storm Sewer D which runs southerly and discharged south of Langstaff Road and east of CN MacMillan Rail Yard Access Road by a 1650 mm diameter storm sewer. Therefore, Area B3, drainage area of 26.5 ha (Catchment 325) contributes to Culvert LC1.
- Catchment C is divided into two segments.
 - Runoff from Area C1 is conveyed by Storm Sewer C and directed to SWM Pond C.
 - Runoff from Area C2 is conveyed by Storm Sewer D which was continued from Area B3 and discharges just south of Langstaff Road as discussed above.
- Catchment D is divided into three segments.
 - Runoff from Area D1 is conveyed by Storm Sewer B and directed to SWM Pond B for runoff quality and quantity control.
 - Runoff from Area D2 together with Area C2, total drainage area 21.7
 ha (Catchment 300) contributes drainage to Culvert LC1.

 Runoff from Area D3 is conveyed by existing culverts and channel to Pond C as shown in Figure 2.

Therefore, as discussed above, Catchment 300 (drainage area 21.7 ha, Area C2 +Area D2) and Catchment 325 (drainage area 26.5 ha, Area B3) contribute runoff to Culvert LC1. The total drainage area draining to Culvert LC1 from the northside of Langstaff Road will be 48.2 ha. These areas are drained by a 1650 mm diameter sewer (Storm Sewer D) and discharged south of Langstaff Road and east of CN MacMillan Rail Yard Access Road. The outflow from this storm sewer ultimately drains to SWM Pond C for runoff quality and quantity control via existing ditch.

At Sta. 4+320, the new alignment of Langstaff Road crosses CN MacMillan Rail Yard Access Road by a bridge. Due to this bridge crossing, it will not be possible to convey the road runoff by a storm sewer from Sta. 4+670 westerly to Sta. 4+295. Road runoff will be drained overland in this stretch of the roadway and will be captured by catch basins just west of CN Access Road Bridge and will be directed to dry SWM facility DDP-1. Because of this constraint, it will not meet the minimum spread requirement. Therefore, during the detailed design phase, it is recommended to explore the possibility of utilizing the City of Vaughan SWM pond (SWM Pond C) located just south of the CNR overpass so that road runoff can be conveyed by a storm sewer and discharged into the SWM Pond C.

- A wet pond SWM pond facility (DWP-1) is proposed at the north-west corner of the proposed overpass of Langstaff Road across the CN MacMillan Rail Yard and Keele Street. This SWM facility will collect major and minor system runoff from Catchments 150 (drainage area of 3.81 ha) and controls flows based on the Don River unit flow release rate (Sub-basin 1). This wet SWM facility will provide an enhanced level of quality treatment. The controlled outflow will be conveyed by a storm sewer which will be connected to the existing storm sewer on the east side of Keele Street and outlets to West Don River via existing outlet. This facility will be overcontrolled to balance as much as possible the uncontrolled flow from Catchments 155 and 160. Runoff from Catchments 155 and 160 will be conveyed by storm sewer and discharged to the West Don River as in existing conditions.
- The major and minor system runoff from the new urbanized roadway including Catchments 165, 170, 180 and 185 will be conveyed by storm sewers to a pipe storage facility. This pipe storage facility (DSP-2) will control the flows based on the Don River unit flow release (Sub-basin 5) and the controlled outflows will be discharged to the downstream side of the bridge utilizing the existing outlet. Since no quantity control is proposed for runoff from Catchments 155 and 160 this pipe storage will also be over controlled to account for the uncontrolled flows. The quality treatment for the catchment will be provided by an OGS before discharging to the receiving watercourse.
- Due to the proposed overpass of GO Transit Barrie Line, runoff from Catchments
 190 and 195 can not be directed to the existing outlet location, i.e. downstream of

the West Don River Bridge. The major and minor system runoff from the roadway area between the GO Transit Barrie Line and North Rivermede Road, i.e. Catchments 190, 195, 205 and 210 will be discharged to two separate storage pipe system (DSP-3A and DSP-3B). The storage pipe will control the combined flow equivalent to the 10-year flow of Catchments 205 and 210 to maintain the existing flow conditions at the outlet. The controlled outflow from the storage pipe will be conveyed to the existing 1050 mm pipe that runs southerly between Connie Crescent and north Rivermede Road (approximate Sta. 7+140) and conveys the flow maintaining the existing drainage pattern.

- The major and minor system runoff from the new urbanized roadway of Catchment 215 and 220 will be conveyed by storm sewers and will discharge to a pipe storage (DSP-4) located on the east side of Staffern Drive. This SWM facility will provide quantity control of peak flow based on the unit flow release rate (Sub-basin 8A) and the controlled outflow will be discharged to the downstream side of Langstaff Road culvert at Westminster Creek. An OGS will be provided for runoff quality control.
- Similarly, runoff from Catchment 225 and 230 will be discharged to a pipe storage facility (DSP-5) located to the west of Dufferin Street which will provide peak flow control of the roadway runoff. This linear facility will control the flows based on the Don River unit flow release rate (Sub-basin 8A) and the controlled outflow will be discharged on the downstream of Langstaff Road culvert at Westminster Creek. An OGS will be provided for quality control.
- Under existing conditions, the north side ditch located between Westminster Creek and Dufferin Street used to convey the flow from the two existing storm sewers (1650 mm dimeter and 750 mm diameter) from Dufferin Street. During the interim 4-lane scenario, the existing ditch will be maintained. For the ultimate 6-lane scenario, to accommodate the widened road section, ditch section will be modified with retaining wall along the side of Langstaff Road; however, the existing capacity of the ditch will be maintained.

As per the survey information, the existing channel has a bottom width of 0.42 m, side slope 2.67H:1V and channel slope 0.67%. Within the maximum allowable depth of 1.0 m, the maximum capacity of the existing channel is 5.44 m³/s.

The proposed modification of the channel section includes 2.5H:1V side slope on the north side and vertical wall on the side of Langstaff Road, bottom width 1.75 m and channel slope 0.67% (existing). Within the maximum allowable depth of 1.0 m, the maximum capacity of the channel would be 5.46 m³/s.

The analysis of existing and proposed channel is provided in **Appendix E**.

3.2.2 Proposed Conditions Hydrologic Modelling

As noted in **Section 2.3**, the hydrologic assessments of the roadway corridor were carried out using the SCS 12-hour and AES 12-hour storm distributions.

For the proposed Langstaff Road Improvements preliminary design study, a Visual OTTHYMO hydrologic model is developed to estimate the localized runoff generated from the roadway and to calculate storage requirements to control flows from the widened road sections to the pre-development levels or unit flow release rate to ensure that there will be no impact to the overall watershed hydrology due to the road widening.

The hydrologic parameters for proposed conditions, VISUAL OTTHYMO schematics and output files for post-development conditions are included in **Appendix B**. In the preliminary design as part of the EA Study, an initial abstraction (l_a) value of 2 mm is used for the proposed conditions hydrological analysis. As TRCA requires 1 mm of initial abstraction for impervious area, it is recommended to use 1 mm value of l_a during the detailed design phase.

Table 3-3 summarizes the results of the proposed conditions hydrologic modelling for the road corridor located within the Humber River Watershed. The analysis is based on the AES 12-hour storm distribution.

Table 3-3: Proposed Conditions Flows for Roadway Area within Humber River Watershed

Nodes / Catchments	Peak Flow Rate (m³/s) (AES 12-hour)						
	2-year	5-year	10-year	25-year	50-year	100-year	
105	0.069	0.094	0.111	0.133	0.149	0.166	
520 (HSP-1A)	0.050	0.075	0.091	0.110	0.124	0.139	
110	0.067	0.091	0.108	0.129	0.144	0.161	
525 (HSP-1B)	0.048	0.073	0.087	0.106	0.120	0.135	
115	0.041	0.055	0.066	0.079	0.089	0.100	
120	0.055	0.074	0.087	0.104	0.116	0.129	
410 (115+120)	0.095	0.130	0.154	0.183	0.205	0.229	
510 (HSP-2)	0.056	0.067	0.074	0.081	0.084	0.087	
125	0.100	0.136	0.16	0.19	0.212	0.235	
130	0.096	0.129	0.151	0.178	0.199	0.219	
405 (125+130)	0.196	0.265	0.311	0.368	0.411	0.454	
505 (HSP-3)	0.171	0.227	0.261	0.288	0.306	0.325	
420 (510+505)	0.226	0.293	0.334	0.369	0.389	0.411	

Table 3-4 summarizes the results of the proposed conditions hydrologic modelling for the road corridor located within the West Don River Watershed. The analysis is based on the SCS 12-hour storm distribution.

Table 3-4: Proposed Conditions Flows for the Roadway Area within West Don River Watershed

Nodes /	Peak Flow Rate (m³/s) (SCS 12-hour)										
Catchments	2-year	5-year	10-year	25-year	50-year	100-year					
135	0.144	0.188	0.22	0.258	0.285	0.317					
140	0.121	0.160	0.188	0.220	0.246	0.274					
420 (135+140)	0.265	0.348	0.408	0.478	0.531	0.590					
530 (DSP-1)	0.012	0.028	0.039	0.044	0.048	0.052					
145	0.251	0.337	0.403	0.479	0.536	0.611					
425 (420+145)	0.261	0.348	0.415	0.498	0.565	0.653					
512 (DDP-1)	0.028	0.052	0.064	0.074	0.080	0.086					
155	0.057	0.075	0.087	0.102	0.113	0.124					
160	0.045	0.058	0.068	0.079	0.087	0.096					
430 (155+160)	0.102	0.133	0.155	0.181	0.200	0.220					

Nodes /	Peak Flow Rate (m³/s) (SCS 12-hour)									
Catchments	2-year	5-year	10-year	25-year	50-year	100-year				
150	0.399	0.517	0.603	0.700	0.776	0.851				
515 (DWP-1)	0.008	0.009	0.010	0.010	0.011	0.011				
440 (430+515)	0.108	0.140	0.163	0.189	0.209	0.229				
400	0.045	0.064	0.077	0.000	0.405	0.118				
180	0.045	0.064	0.077	0.093	0.105					
185	0.039	0.052	0.063	0.076	0.085	0.094				
445	0.084	0.116	0.141	0.169	0.190	0.212				
165	0.052	0.070	0.084	0.099	0.111	0.123				
170	0.045	0.059	0.068	0.080	0.088	0.097				
450	0.182	0.245	0.293	0.348	0.389	0.431				
520 (DSP-2)	0.016	0.019	0.020	0.021	0.022	0.022				
400	0.050	0.081	0.099	0.440	0.134	0.150				
190	0.059			0.119	0.134	0.162				
195	0.069	0.093	0.11	0.131						
455	0.128	0.174	0.209	0.250	0.280	0.312				
555 (DSP-3A)	0.026	0.055	0.080	0.112	0.135	0.158				
205	0.096	0.129	0.152	0.181	0.203	0.225				
210	0.084	0.112	0.133	0.157	0.177	0.196				
460	0.180	0.241	0.285	0.338	0.38	0.421				
525 (DSP-3B)	0.074	0.103	0.136	0.173	0.201	0.228				
465 (555+525)	0.010	0.156	0.216	0.285	0.336	0.386				
215	0.054	0.072	0.085	0.100	0.111	0.122				
220	0.052	0.073	0.086	0.104	0.117	0.130				
470	0.106	0.144	0.171	0.204	0.228	0.252				
535 (DSP-4)	0.010	0.011	0.012	0.015	0.017	0.020				
225	0.062	0.086	0.106	0.128	0.145	0.162				
230	0.054	0.073	0.087	0.106	0.119	0.134				
475	0.116	0.159	0.193	0.234	0.263	0.296				
540 (DSP-5)	0.022	0.026	0.028	0.032	0.037	0.041				
480 (535+540)	0.032	0.037	0.041	0.047	0.054	0.061				

As discussed in Section 3.2.1, Catchment 300 (drainage area 21.7 ha) and Catchment 325 (drainage area 26.5 ha) contribute runoff to Culvert LC1. In addition to this flow, runoff from Catchment 350 as well as outflow from Dry Pond DDP-1 also drain to this culvert. For the external area (Catchments 300, 325 and 350) PCSWMM hydrologic modelling is used to determine the flow in which the parameters are taken from the Don River PCSWMM model. The outflow from the dry pond is added to the flow from these catchments to generate the overall flow for Culvert LC1.

The proposed conditions peak flow for the new Culvert LC1, located just east of Creditstone Road, Station 4+390 is summarized in **Table 3-5**.

Table 3-5: Proposed Conditions Flows for Culvert LC1

Catchment	Flows (m ³ /s)								
Catchinent	2-year	5-year	10-year	25-year	50-year	100-year			
300, 325 and 350 (PCSWMM)	1.326	1.782	2.086	2.464	2.817	3.128			
Outflow from DDP-1 (HYD 512, (Table 3-4)	0.028	0.052	0.064	0.074	0.080	0.086			
Flow to Culvert LC1	1.351	1.834	2.150	2.538	2.897	3.214			

Table 3-6 provides a comparison of flows between existing and proposed conditions within the Humber River watershed with the SWM facility in-place.

Table 3-6: Comparison of Pre- and Post-Development Flows within the Humber River Watershed

Description	NHYD		12-h	s (m³/s)			
Description	טוחוו	2-year	5-year	10-year	25-year	50-year	100-year
Existing Conditions (Ex)	105	0.065	0.090	0.107	0.129	0.145	0.162
Proposed – Uncontrolled	105	0.069	0.094	0.111	0.133	0.149	0.166
Proposed with Pipe Storage HSP-1A (Pr)	520	0.050	0.075	0.091	0.110	0.124	0.139
Difference (Pr - Ex)		-0.015	-0.015	-0.016	-0.019	-0.021	-0.023
			1			·	1
Existing Conditions (Ex)	110	0.060	0.084	0.100	0.121	0.136	0.153
Proposed– Uncontrolled	110	0.067	0.091	0.108	0.129	0.144	0.161
Proposed with Pipe Storage HSP-1B (Pr)	525	0.048	0.073	0.087	0.106	0.120	0.135
Difference (Pr - Ex)		-0.13	-0.012	-0.011	-0.013	-0.015	-0.016
			T		ı	T	
Existing (Includes Catchments 115, 120, 125 and 130) (Ex)	420	0.236	0.329	0.399	0.483	0.547	0.611
Proposed – Uncontrolled (Includes Catchments 115, 120, 125 and 130)	420	0.291	0.393	0.463	0.550	0.614	0.680
Proposed with SWM FacilityPipe Storage HSP-2 and HSP-3 (Pr)	420	0.226	0.293	0.334	0.369	0.389	0.411
Difference (Pr - Ex)		-0.010	-0.036	-0.065	-0.114	-0.158	-0.200

Table 3-7 provides a comparison of flows between existing and proposed conditions within the Don River watershed with the SWM facility in-place.

Table 3-7: Comparison of Pre- and Post-Development Flows within the Don River Watershed

	NII IV/D	12-hour SCS Storm Flows (m ³ /s)							
Description	NHYD	2-year	5-year	10-year	25-year	50-year	100-year		
Existing Conditions (Includes Catchments 135, 140 and 145) (Ex)	425	0.377	0.530	0.645	0.780	0.887	1.006		
Proposed - Uncontrolled (Includes Catchments 135, 140 and 145)	425	0.516	0.685	0.811	0.957	1.067	1.202		
Proposed with SWM Facility Dry pond DDP-1 (Pr)	512	0.028	0.052	0.064	0.074	0.080	0.086		
Difference (Pr - Ex)		-0.349	-0.478	-0.581	-0.706	-0.807	-0.920		
Unit Flow Sub-basin 6		0.019	0.036	0.052	0.066	0.078	0.094		
Difference (Pr – Unit Flow)		0.009	0.016	0.012	0.006	0.002	-0.008		
Existing (Ex) (Includes Catchments 150)	150	0.397	0.515	0.601	0.699	0.774	0.849		
Proposed – Uncontrolled (Includes Catchments 150)	150	0.399	0.517	0.603	0.700	0.776	0.851		
Proposed with SWM Facility Pond DWP-1 (over controlled to account the uncontrolled flows of Catchments 155 and 160) (Pr)	515	0.008	0.009	0.010	0.010	0.011	0.011		
Difference (Pr - Ex)		-0.389	-0.506	-0.591	-0.689	-0.763	-0.838		
Unit Flow Sub-basin 1		0.013	0.020	0.026	0.031	0.044	0.055		
Difference (Pr – Unit Flow)		-0.005	-0.011	-0.016	-0.021	-0.033	-0.044		
Existing (Includes Catchments 165, 170, 180 and 185) (Ex)	450	0.136	0.197	0.240	0.293	0.334	0.376		
Proposed - Uncontrolled		0.266	0.361	0.434	0.517	0.579	0.643		
Proposed with Pipe Storage system DSP-2 (Pr)	520	0.016	0.019	0.020	0.021	0.022	0.022		
Difference (Pr - Ex)		-0.120	-0.178	-0.220	-0.272	-0.312	-0.354		
Unit Flow Sub-basin 1		0.008	0.016	0.022	0.028	0.034	0.04		
Difference (Pr – Unit Flow)		0.008	0.003	-0.002	-0.007	-0.012	-0.018		

		12-hour SCS Storm Flows (m ³ /s)							
Description	NHYD	2-year	5-year	10-year	25-year	50-year	100-year		
Existing (Includes Catchments 205 and 210) (Ex)	460	0.120	0.171	0.217	0.266	0.305	0.344		
Proposed – Uncontrolled (Includes Catchments 190, 195 and 205 and 210)	465	0.308	0.415	0.494	0.588	0.660	0.733		
Proposed with Pipe Storage systems DSP-3A and DSP-3B (Pr) (Control to 10-year flow)	465	0.010	0.156	0.216	0.285	0.336	0.386		
Difference (Pr - Ex)		-0.110	-0.015	-0.001	0.019	0.031	0.042		
Existing (Includes Catchments 215, 220, 225 and 230) (Ex)	480	0.195	0.272	0.332	0.402	0.454	0.508		
Proposed – Uncontrolled (Includes Catchments 215, 220, 225 and 230)	480	0.032	0.304	0.365	0.438	0.491	0.548		
Proposed with Pipe Storage system DSP-5 (Pr)	480	0.032	0.037	0.041	0.047	0.054	0.061		
Difference (Pr - Ex)		-0.163	-0.235	-0.291	-0.355	-0.400	-0.447		
Unit Flow Sub-basin 8A		0.013	0.025	0.035	0.045	0.054	0.065		
Difference (Pr – Unit Flow)		0.019	0.012	0.006	0.002	0.000	-0.004		

4 HYDRAULIC ANALYSIS

As noted in previous sections, the study area lies within the watersheds of the Humber River (Black Creek tributary) and Don River (West Don River and Westminster Creek). There are three watercourses that cross Langstaff Road within the study area at three locations: Black Creek (tributary of Humber River), West Don River (tributary of Don River) and Westminster Creek (tributary of West Don River).

The widening of Langstaff Road is not expected to have a direct impact to the Black Creek crossing and Westminster Creek crossing. Therefore, only the existing conditions water levels are provided for these crossings.

4.1 Black Creek Crossing

Black Creek, a tributary to the Humber River, flows through the western portion of the study area, in a north to south direction. Black Creek crosses Langstaff Road within the existing interchange with Highway 400 by a 3-cell concrete culvert, whereby the creek flows through a wide ditch with wetland vegetation.

The existing culvert at Langstaff Road consists of a 3-cell culvert, the size of each is 2.4 m span x 2.4 m rise x 60 m long. All three cells are of equal size.

A HEC-RAS model and the floodplain map (Sheet No. 13C) was received from the TRCA for this watercourse.

Table 4-1 provides the existing conditions flow for Black Creek Culvert at Langstaff Road which is extracted from the HEC-RAS model.

Table 4-1: Flow for Black Creek Culvert at Langstaff Road

Storm Event	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	Regional
Flow (m ³ /s)	3.07	4.07	4.85	5.93	6.83	7.62	47.8

Tables 4-2 illustrates the hydraulic performance assessment of the existing Black Creek Culvert at Langstaff Road.

Table 4-2: Hydraulic Performance Analysis of Existing Black Creek Culvert at Langstaff Road

Structure Description (Upstream Face, Section 46.392)	50-Year	100-Year	Regional
Clear Opening	3-cell, 2.4 m span each	3-cell, 2.4 m span each	3-cell, 2.4 m span each
Water Surface Elevation (m)	203.60	203.76	206.54
Energy Grade Line Elevation (m)	203.63	203.78	206.55
Top of Road Elevation at Low Point (m)	211.5	211.5	211.5
Upstream Invert Elevation (m)	202.5	202.5	202.5
Top of Road Freeboard (Minimum)	7.90	7.74	4.96
Top of Road Freeboard (Desired)	7.87	7.72	4.95
Soffit Elevation (Upstream)	204.90	204.90	204.90
Flood Depth ((H/D Ratio)	0.15	0.17	0.56

Results provided in **Table 4-2** show that the existing culvert meets all hydraulic requirements. The Regional Storm does not overtop Langstaff Road.

The road widening is not expected to directly impact this culvert; therefore, the proposed conditions hydraulic assessment is not carried out.

The existing conditions hydraulic analysis output for the Black Creek culvert is provided in **Appendix C.**

4.2 West Don River Crossing

The West Don River is the west branch of the Don River which flows in a south-southeasterly direction towards Lake Ontario and crosses Langstaff Road approximately 200 meters east of Keele Street. The location of the existing bridge on Langstaff Road is shown in **Figure 1**.

The existing West Don River bridge at Langstaff Road has a size of 11.4 m span x 2.25 m rise. This bridge is also identified as Bowes Bridge. Downstream of the Langstaff Road crossing, the river crosses through the newly constructed 3-span GO Transit Barrie Line bridge (total span length 32 m from center of the abutments).

It is identified that the proposed widening of Langstaff Road will require a replacement of the existing West Don River crossing.

A Technical Memorandum was submitted to the TRCA on May 28, 2020, which documented the hydraulic assessment undertaken to determine the need of the bridge replacement and the sizing of the replacement bridge to reduce the potential impacts to the West Don River water levels. TRCA has given consensus on the hydraulic assessment memorandum on June 15, 2020. All the details of the memorandum are included in this report.

WSP has reviewed HEC-RAS hydraulic modelling data (Basin 5) received from TRCA for the West Don River. The model does not include the new GO Transit Barrie Line crossing located downstream of Langstaff Road crossing, which was recently constructed. In consultation with TRCA, WSP has used the model prepared in 2015 for Metrolinx which included the newly constructed GO Transit Barrie Line crossing structure at the West Don River and the model is further updated for the Langstaff Road crossing.

4.2.1 Flow Update on Hydraulic Model

The Don River hydrology model has been updated by using the new PCSWMM hydrological model which was approved by TRCA in 2019. Based on this update, the flows in the HEC-RAS model of West Don River, Basin 5, is required to be updated. **Table 4-3** summarizes the flows at the node points related to the hydraulic model and also provides a comparison with the previous flows. As per the "read-me first" note provided with the model, the 2-year to the 100-year flows are based on the existing condition with controlled scenario; and the Regional Storm flow is based on future conditions with the uncontrolled scenario.

Table 4-3: Summary of Flows for the West Don River HEC-RAS Model

Flow	HEC-			Flow (m³/s)								
Node	RAS Section	Hydrology	2-year	5-year	10-year	25- year	50- year	100- year	Regional			
5.3	5.53	2019 Flows	5.89	7.83	9.04	10.55	12.69	15.60	198.16			
5.5	5.53	2004 Flows	9.47	13.86	17.75	28.48	36.72	44.26	110.88			
C346	5.44	2019 Flows	10.32	13.25	14.82	16.70	18.87	21.08	252.81			
C340	5.44	2004 Flows	12.15	17.04	22.50	33.16	42.22	50.26	252.39			
J584	5.43	2019 Flows	11.20	14.39	16.21	18.42	20.93	23.42	259.19			
J30 4	5.43	2004 Flows	12.15	17.04	22.50	33.16	42.22	50.26	252.39			
J272 /	5.21	2019 Flows	11.43	14.67	16.74	18.98	21.45	24.08	259.19			
J584	5.21	2004 Flows	14.51	20.81	26.91	36.81	47.82	62.78	282.53			

Flow	HEC-				F	low (m³	/s)		
Node	RAS Section	Hydrology	2-year	5-year	10-year	25- year	50- year	100- year	Regional
5.1	5.155	2019 Flows	14.49	18.33	20.78	23.55	26.60	30.07	293.08
5.1	5.155	2004 Flows	16.90	24.63	31.38	40.51	53.51	75.50	313.13
7.0	5.00	2019 Flows	20.37	26.16	30.41	35.81	40.95	46.62	365.39
7.2	5.00	2004 Flows	16.90	24.63	31.38	40.51	53.51	75.50	313.13
14.50	50.44	2019 Flows	0.89	1.18	1.37	1.61	1.84	2.34	27.60
J159	50.44	2004 Flows	1.92	2.87	3.49	6.22	8.99	14.26	20.17
1046	50.30	2019 Flows	1.67	2.27	2.66	3.16	3.69	4.42	36.24
J216	50.28	2004 Flows	3.00	4.48	5.47	9.73	14.06	22.31	31.55
J612	50.20	2019 Flows	2.63	3.07	3.34	3.80	4.56	5.22	62.64
3012	50.20	2004 Flows	4.75	7.10	8.67	15.42	17.05	35.36	50.02
0.1	50.10	2019 Flows	2.72	3.19	3.46	3.94	4.71	5.42	63.27
8.1	50.10	2004 Flows	5.25	7.85	9.58	17.05	17.91	39.10	55.30

As per **Table 4-3**, the 2019 frequency storm flows (2-year to 100-year) are lower than the 2004 flows; however, the 2019 Regional storm flow is higher in most cases.

At Node J272, the Regional Storm flow, as per the PCSWMM hydrological model, is 255.52 m³/s which is less then that of the upstream Node J584. Therefore, for HEC-RAS Section 5.21, the 2-year to the 100-year flows are based on Node J272 and the Regional storm flow is based on the Node J584 to get the conservative result.

4.2.2 Existing Conditions Hydraulic Analysis of Bowes Bridge

The HEC-RAS hydraulic model Basin 5 was obtained from TRCA. This model does not include the newly constructed bridge at GO Transit Barrie Line which is located just downstream of the Langstaff Road crossing. In consultation with TRCA, WSP used the model prepared in 2015 for Metrolinx which included the newly constructed GO Transit Barrie Line crossing structure and the model is further updated by adding additional cross-sections upstream of the Langstaff Road based on new survey information. The updated "Basin5_ExRev2_Apr2020" model is considered the existing conditions model for the hydraulic modelling of the Langstaff Road crossing.

The following updates are included for the existing conditions hydraulic modelling:

- Three sections 5.425, 5.43 and 5.435 are added on the upstream of Langstaff Road to properly reflect the topography.
- Existing road profile of Langstaff Road is updated in the model per available survey information.
- Section 5.39 on the downstream is removed as it appears to be too close to Section 5.40 and affecting the proposed conditions modelling.

The hydraulic performance summary of the existing bridge structure is provided in **Table 4-4**. The low point elevation of the existing road is 199.45 m and located approximately 50 m east of the existing bridge. The lowest point of the soffit of the existing bridge is 198.45 m.

Table 4-4: Hydraulic Performance Analysis of Existing Bowes Bridge

Structure Description (At Upstream Face, Section 5.41)	50-Year	100-Year	Regional
Clear opening (m)	11.40	11.40	11.40
Water Surface Elevation (m)	196.69	196.77	200.55
Energy Grade Line Elevation (m)	196.88	196.97	200.63
Top of Road Elevation at Low Point (m)	199.45	199.45	199.45
Top of Road Freeboard (Minimum) (m)	2.76	2.68	-1.10
Top of Road Freeboard (Desired) (m)	2.57	2.45	n/a
Soffit Elevation (Upstream) (m)	198.45	198.45	198.45
Soffit Clearance (m)	1.76	1.68	n/a

The results provided in **Table 4-4** show that the existing bridge meets the freeboard requirement for the 100-year storm event; however, the Regional Storm overtops Langstaff Road by 1.10 m. The existing bridge also meets the soffit clearance requirement of 1.0 m for the 100-year storm event.

4.2.3 Proposed Conditions Hydraulic Analysis of Bowes Bridge

Under proposed conditions, Langstaff Road will be widened to six lanes with a Multi-Use Path (MUP) on both sides of the bridge. To accommodate the widened road and to improve the flooding conditions upstream of Langstaff Road, the existing structure is proposed to be replaced by a new 30 m (clear perpendicular opening) single span bridge. For the proposed conditions model, the revised existing conditions model is further updated to reflect the proposed bridge. Two immediately upstream cross-sections 5.41 and 5.42 will be removed to accommodate the widened road. The updated "Basin5_Pr_Opt4_Apr2020" model is considered as the proposed conditions model for the hydraulic modelling of the Langstaff Road crossing. A comparison of

hydraulic modelling results between the existing conditions and proposed conditions is provided in **Table 4-5**.

The results in **Table 4-5** illustrates that:

- The proposed bridge has a positive impact to the upstream water levels. The water levels decreased for the 2-year to the 100-year flows and for the Regional Storm flow upstream of the structure. The 50-year water level, the 100-year design water level and the Regional Storm water level decreased by 0.24 m, 0.26 m and 0.31 m, respectively.
- The decrease in water level extends approximately 1.0 km upstream. The water levels are close to the existing conditions upstream of Section 5.45.
- At the downstream face of the structure, water levels are very close to existing conditions and further downstream, the proposed conditions water levels are the same as the existing conditions water levels.

Table 4-5: Comparison of Hydraulic Modelling Results

ر				sting ditions	Prop Cond		Comp	arison
River Station	Profile	Flow (m³/s)	W. S. Elev. (m)	Flow Velocity (m/s)	W. S Elev. (m)	Flow Velocity (m/s)	W. S. Elev. (m)	Flow Velocity (m/s)
	2.1		(A)	(B)	(C)	(D)	(C-A)	(D-B)
5.47	2 Year	5.89	198.23	1.52	198.22	1.53	-0.01	0.01
5.47	5 Year	7.83	198.33	1.66	198.33	1.67	0.00	0.01
5.47	10 Year	9.04	198.38	1.75	198.38	1.76	0.00	0.01
5.47	25 Year	10.55	198.42	1.93	198.42	1.92	0.00	-0.01
5.47	50 Year	12.69	198.50	2.03	198.49	2.06	-0.01	0.03
5.47	100 Year	15.60	198.58	2.16	198.57	2.19	-0.01	0.03
5.47	Regional	198.16	201.06	1.94	201.05	1.95	-0.01	0.01
5.46	2 Year	5.89	197.64	1.15	197.65	1.13	0.01	-0.02
5.46	5 Year	7.83	197.76	1.24	197.76	1.23	0.00	-0.01
5.46	10 Year	9.04	197.82	1.28	197.82	1.27	0.00	-0.01
5.46	25 Year	10.55	197.93	1.25	197.92	1.27	-0.01	0.02
5.46	50 Year	12.69	197.98	1.38	198.00	1.34	0.02	-0.04
5.46	100 Year	15.60	198.07	1.49	198.09	1.45	0.02	-0.04
5.46	Regional	198.16	200.90	2.31	200.88	2.32	-0.02	0.01
5.45	2 Year	5.89	196.92	1.58	196.90	1.63	-0.02	0.05
5.45	5 Year	7.83	197.04	1.66	197.02	1.72	-0.02	0.06
5.45	10 Year	9.04	197.10	1.73	197.08	1.80	-0.02	0.07
5.45	25 Year	10.55	197.18	1.72	197.15	1.86	-0.03	0.14
5.45	50 Year	12.69	197.27	1.70	197.23	1.84	-0.04	0.14
5.45	100 Year	15.60	197.34	1.79	197.29	1.96	-0.05	0.17
5.45	Regional	198.16	200.73	1.67	200.72	1.68	-0.01	0.01

_				sting ditions	Prop Cond		Comp	arison
River Station	Profile	Flow (m³/s)	W. S. Elev. (m) (A)	Flow Velocity (m/s) (B)	W. S Elev. (m) (C)	Flow Velocity (m/s) (D)	W. S. Elev. (m) (C-A)	Flow Velocity (m/s) (D-B)
F 44	0.1/	40.00	400.00	0.40	400.00	0.47	0.04	0.04
5.44	2 Year	10.32	196.90	0.46	196.89	0.47	-0.01	0.01
5.44	5 Year	13.25	197.03	0.53	197.01	0.54	-0.02	0.01
5.44	10 Year	14.82	197.09	0.56	197.06	0.57	-0.03	0.01
5.44	25 Year	16.70	197.15	0.59	197.13	0.60	-0.02	0.01
5.44	50 Year	18.87	197.23	0.62	197.19	0.64	-0.04	0.02
5.44	100 Year	21.08	197.30	0.65	197.26	0.68	-0.04	0.03
5.44	Regional	252.81	200.70	1.44	200.68	1.44	-0.02	0.00
5.435	2 Year	10.32	196.81	0.87	196.79	0.91	-0.02	0.04
5.435	5 Year	13.25	196.92	0.95	196.89	0.99	-0.03	0.04
5.435	10 Year	14.82	196.98	0.99	196.94	1.04	-0.04	0.05
5.435	25 Year	16.70	197.04	1.03	197.00	1.08	-0.04	0.05
5.435	50 Year	18.87	197.11	1.06	197.06	1.13	-0.05	0.07
5.435	100 Year	21.08	197.18	1.09	197.11	1.18	-0.07	0.09
5.435	Regional	252.81	200.65	1.47	200.63	1.48	-0.02	0.01
5.43	2 Year	11.20	196.70	0.62	196.65	0.70	-0.05	0.08
5.43	5 Year	14.39	196.83	0.64	196.76	0.71	-0.07	0.07
5.43	10 Year	16.21	196.89	0.65	196.82	0.73	-0.07	0.08
5.43	25 Year	18.42	196.96	0.67	196.89	0.74	-0.07	0.07
5.43	50 Year	20.93	197.04	0.68	196.95	0.76	-0.09	0.08
5.43	100 Year	23.42	197.12	0.69	197.02	0.78	-0.10	0.09
5.43	Regional	259.19	200.64	1.05	200.63	1.06	-0.01	0.01
5.425	2 Year	11.20	196.51	0.99	196.26	1.47	-0.25	0.48
5.425	5 Year	14.39	196.64	1.06	196.41	1.46	-0.23	0.40
5.425	10 Year	16.21	196.70	1.11	196.48	1.48	-0.22	0.37
5.425	25 Year	18.42	196.78	1.15	196.56	1.52	-0.22	0.37
5.425	50 Year	20.93	196.87	1.18	196.63	1.56	-0.24	0.38
5.425	100 Year	23.42	196.96	1.20	196.70	1.61	-0.26	0.41
5.425	Regional	259.19	200.60	1.45	200.29	2.54	-0.31	1.09
5.405	Langstaff	Road Bri	dge					
5.40	2 Year	11.20	196.18	1.15	196.18	1.02	0.00	-0.13
5.40	5 Year	14.39	196.34	1.25	196.35	1.08	0.01	-0.17
5.40	10 Year	16.21	196.42	1.32	196.43	1.12	0.01	-0.20
5.40	25 Year	18.42	196.49	1.41	196.50	1.18	0.01	-0.23
5.40	50 Year	20.93	196.55	1.52	196.57	1.26	0.02	-0.26

_	Profile			sting ditions	Prop Cond		Comp	arison
River Station		Flow (m³/s)	W. S. Elev. (m)	Flow Velocity (m/s)	W. S Elev. (m)	Flow Velocity (m/s)	W. S. Elev. (m)	Flow Velocity (m/s)
			(A)	(B)	(C)	(D)	(C-A)	(D-B)
5.40	100 Year	23.42	196.61	1.62	196.64	1.33	0.03	-0.29
5.40	Regional	259.19	199.89	2.85	199.89	2.81	0.00	-0.04
5.38	2 Year	11.20	195.99	1.32	195.99	1.32	0.00	0.00
5.38	5 Year	14.39	196.18	1.34	196.18	1.34	0.00	0.00
5.38	10 Year	16.21	196.26	1.37	196.26	1.37	0.00	0.00
5.38	25 Year	18.42	196.33	1.43	196.33	1.43	0.00	0.00
5.38	50 Year	20.93	196.40	1.50	196.40	1.50	0.00	0.00
5.38	100 Year	23.42	196.46	1.55	196.46	1.55	0.00	0.00
5.38	Regional	259.19	199.93	1.51	199.93	1.51	0.00	0.00

The hydraulic performance summary of the proposed bridge structure is provided in **Table 4-6**. The proposed road profile is raised in the proximity of the bridge to avoid flooding of Langstaff Road during the Regional Storm flow. The proposed road low point elevation after the improvement is 200.40 m. The lowest point of the soffit for the proposed bridge is 199.10 m.

Table 4-6: Hydraulic Performance Analysis of Proposed Bowes Bridge

Structure Description (At Upstream Face, Section 5.41)	50-Year	100-Year	Regional
Clear opening (m)	30.0	30.0	30.0
Water Surface Elevation (m)	196.63	196.70	200.29
Energy Grade Line Elevation (m)	196.76	196.83	200.56
Top of Road Elevation at Low Point (m)	200.40	200.40	200.40
Top of Road Freeboard (Minimum)	3.77	3.70	0.11
Top of Road Freeboard (Desired)	3.64	3.57	n/a
Soffit Elevation (Upstream) (m)	199.10	199.10	n/a
Soffit Clarence (m)	2.47	2.40	n/a

The results provided in **Table 4-6** show that the proposed replacement bridge meets the freeboard and soffit clearance requirements for the 100-year storm event. The road low point for the Langstaff Road profile will be raised to 200.40 m to avoid overtopping by the Regional Storm.

The results conclude that the proposed **30 m single span bridge** is hydraulically efficient and meets all the hydraulic performance requirements. The Regional Storm is not expected to overtop Langstaff Road. The proposed general arrangement drawing of the Langstaff Road Bridge at West Don River (Bowes Bridge) is shown in **Exhibit 4-1**, included at the end of the report before appendices.

The hydraulic analysis outputs for existing and proposed conditions for the West Don River Bridge and Langstaff Road (Bowes Bridge) are provided in **Appendix C**.

4.2.4 Regional Flood Line Map of West Don River

Regional Flood Line maps and HEC-RAS cross-section locations for the West Don River at Langstaff Road location are prepared as per the April 2020 hydraulic modelling update and included in **Exhibits 4-2** and **4.3**. The existing and proposed conditions flood line maps are based on the updated 2019 flows for Don River. The maps illustrate the following:

- The Existing Regional Flood Line is based on the updated existing conditions model with new sections at the Langstaff Road bridge location and the newly constructed GO Transit Barrie Line bridge.
- Future Regional Flood Line is based on the proposed 30 m span bridge at Langstaff Road and the proposed profile raise.
- The map also incorporates the Regional water levels based on the new bridge at GO Transit Barrie Line, located downstream of Bowes Bridge. The general arrangement drawing of West Don River Bridge at GO Transit Barrie Line is also included in this report.
- The map also shows the Regional Flood Line (Old), which is approximately drawn from the Floodplain Map provided by TRCA and represents the Regional Flood Line before the GO Transit Barrie Line construction in 2015 / 2016.

4.3 Westminster Creek Crossing

Westminster Creek is within the West Don River Watershed. It is a small and mainly channelized warm water creek which flows north to south and crosses Langstaff Road approximately 300 meters west of Dufferin Street. This creek originates approximately 2.8 km north of Langstaff Road. Roadside ditches of Langstaff Road from both east and west side drain to this creek. Westminster Creek crosses Langstaff Road by a 2-cell each 3.7 m span x 1.8 m rise concrete box culvert.

This is a tributary of the West Don River and this tributary confluence to the West Don River approximately 1.4 km south of Langstaff Road just north of Highway 7.

The HEC-RAS model for Basin 5 also includes Westminster Creek. The flows at Westminster Creek were also updated based on the updated Don River hydrology model by using the new PCSWMM hydrological model. Based on this update, the flows in the HEC-RAS model of Basin 5 for Westminster Creek tributary were updated.

The hydraulic analysis memo submitted to the TRCA on May 28, 2020 also includes flows and HEC-RAS cross-section locations where the flows are to be applied. It is relevant to include a portion of **Table 4-3**, which shows the updated flows for Westminster Creek, as shown in **Table 4.7** below.

Table 4-7: Summary of Flows for the HEC-RAS Model at Westminster Creek Tributary

Flow	HEC-			Flow (m³/s)								
Node	RAS Section	Hydrology	2-year	5-year	10- year	25- year	50- year	100- year	Regional			
J159	50.44	2019 Flows	0.89	1.18	1.37	1.61	1.84	2.34	27.60			
3139	50.44	2004 Flows	1.92	2.87	3.49	6.22	8.99	14.26	20.17			
J216	50.30	2019 Flows	1.67	2.27	2.66	3.16	3.69	4.42	36.24			
3210	50.28	2004 Flows	3.00	4.48	5.47	9.73	14.06	22.31	31.55			
J612	50.20	2019 Flows	2.63	3.07	3.34	3.80	4.56	5.22	62.64			
3012	50.20	2004 Flows	4.75	7.10	8.67	15.42	17.05	35.36	50.02			
8.1	50.10	2019 Flows	2.72	3.19	3.46	3.94	4.71	5.42	63.27			
0.1	50.10	2004 Flows	5.25	7.85	9.58	17.05	17.91	39.10	55.30			

The hydraulic performance summary of the existing culvert structure is provided in **Table 4-8**. The low point elevation of the existing road is 204.41 m and located approximately 25 m east of the existing culvert.

Table 4-8: Hydraulic Performance Analysis of Existing Westminster Creek
Culvert

Structure Description (At Upstream Face, Section 50.18)	50-Year	100-Year	Regional
Clear opening (m)	2-cell 3.7 m	2-cell 3.7 m	2-cell 3.7 m
Clear opening (III)	span	span	span
Water Surface Elevation (m)	200.44	200.50	204.60
Energy Grade Line Elevation (m)	200.49	200.56	204.66
Top of Road Elevation at Low Point (m)	204.41	204.41	204.41
Top of Road Freeboard (Minimum)	3.97	3.91	-0.19
Top of Road Freeboard (Desired)	3.92	3.85	n/a
Relief Flow Depth (Maximum Depth over roadway)	n/a	n/a	0.19
Top of Road Flow Velocity (m/s)	n/a	n/a	0.50
Relief Flow (Velocity x Depth)	n/a	n/a	0.09
Flood Depth (HW/D Ratio)	0.49	0.52	n/a

Note: The hydraulic model has considered twin 3.6 m span, which is likely to consider the opening area reduction due to the hunch of the culvert

The total span of the culvert is more than 6.0 m, therefore, the design flow for the culvert is 100-year.

The results provided in **Table 4-8** show that the existing culvert meets the freeboard and Headwater over Depth requirement for the 100-year storm event.

The Regional Storm overtops Langstaff Road by 0.190 m. However, it meets the relief flow depth (less than 0.30 m) and relief flow (less than 0.8 m²/s) requirements.

The proposed road widening is not expected to impact this culvert, therefore proposed conditions analysis is not carried out. The proposed road profile has also maintained the same low point elevation as the existing profile.

The existing conditions hydraulic analysis output for Westminster Creek culvert is provided in the **Appendix C**.

4.4 West Don Tributary Culvert (LC1) Crossing

The design standards for the hydraulic assessment of culverts are based on the MTO HDDS (February 2008), discussed in **Section 2.1**. The CulvertMaster hydraulic modelling tool was used to estimate the headwater depth and to assess the hydraulic capacity of the proposed Culvert LC1 at the proposed connection of Langstaff Road from Creditstone Road to Keele Street Station 4+390.

The CulvertMaster modelling software was selected because it has the following capabilities:

Evaluates inlet and outlet-controlled headwater depths

- Implements the procedures recommended by the MTO
- Simulates the hydraulic performance of culverts based on user-specified flows
- Considers variable tailwater depths based on either outlet channel geometry or user specified depth discharge rating curves

CulvertMaster requires the peak design flow, culvert shape and material (Manning's 'n'), the upstream and downstream culvert invert elevations, the inlet conditions (e.g. headwall, projecting), and the tailwater conditions. When this input is provided, CulvertMaster generates the water elevation at the inlet of the culvert (i.e. headwater).

In accordance with MTO Standard WC-1, the 50-year storm was used as the design storm and the 100-year storm was used as an additional check storm for all culverts. The CulvertMaster model input includes the design and check flows, which were calculated using the hydrological assessment in **Section 3.2.2**. The hydraulic analysis involves comparing the headwater elevation to the elevation at which water would spill onto the highway to determine if the existing culvert meets the applicable freeboard and flood depth criterion. **Table 4-9** summarizes hydraulic assessment result of Culvert LC1.

Currently, there is no survey information available in the vicinity of Culvert LC1 and CN MacMillan Rail Yard. The elevation of Langstaff Road near CN MacMillan Rail Yard Access Road is close to 108 m. Based on the revised flows, the proposed size for Culvert LC1 is 2.40 m span x 1.50 m rise, which will give HWL of 206.24 m and 206.30 m for the 50-year and 100-year storm events, respectively. Therefore, the flooding impact in the vicinity of the culvert is not expected; however, it is recommended to review the flooding impact with detailed survey in the vicinity of Culvert LC1 during the detailed design phase of the CN MacMillan Rail Yard overpass design, and if required, culvert size will be revised accordingly during the detailed design.

CulvertMaster output files for the existing culverts are included in Appendix C.

Table 4-9: Hydraulic Performance Evaluation of Proposed Culvert within the West Don River Watershed

Culvert	Culvert Chainage Culvert Size a		Culvert Parameters		Spili		Flow (m³/s)		Headwater Elevation, HGL (m)		Velocity (m/s)	
No. (m)	(m)	Туре	U/S Invert (m)	D/S Invert (m)	Length (m)	Elevation (m)	Design (50-yr)	Check (100-yr)	50-yr	100-yr	50-yr	100-yr
LC1	4+390	2.4 and Jevlan m span x 1.5 m rise Concrete Box	205.35	205.10	68	219.50	2.897	3.214	206.24	206.30	2.35	2.43

5 FLUVIAL GEOMORPHOLOGY

Fluvial geomorphological assessment for the Langstaff Road Municipal Class Environmental Assessment Study was carried out by GeoMorphix Ltd. The details of the geomorphological assessments are included in the Geomorphological Erosion and Meander Belt Width Assessment Report, which was submitted by GeoMorphix in June 2017. The report is included in **Appendix D**. The text below, which is extracted from the geomorphology report, provides some key recommendations for reference.

Culvert crossings are evaluated in the context of limiting or mitigating impact to creek form and function. Crossings should achieve the following:

- Address potential channel migration
- Maintain sediment transport processes for frequent storm events
- Provide a span that is respectful of potential future channel erosion / migration
- Maintain velocity differentials through the culvert for frequent storm events
- Be placed away from actively migrating meanders
- Be placed along a stable and straight length of channel at a perpendicular angle to the watercourse.

Given these considerations, for Black Creek and Westminster Creek, we recommend the existing crossing spans of 7.2 m and 6.8 m, respectively, be maintained at a minimum. The current crossing sizes are appropriate as both streams are straight and armoured with gabion baskets and/or concrete meshing, and therefore are not expected to migrate laterally. Furthermore, the crossings are in good condition and fully encompass the existing average channel bankfull widths.

With regards to the West Branch of Don River, present channel alignment did not suggest any further planimetric adjustment towards the road. We recommend the current crossing span of 11 m be improved upon to a minimum of 15 m in width. The additional 4 m would provide a buffer against any potential erosion issues to the crossing footings, as the channel currently contacts both walls of the existing crossing. The addition of an overbank buffer would also permit passage for terrestrial wildlife beneath Langstaff Road.

It is important to note that further amendment to the recommended crossing spans is possible. In the case where only a portion of the suggested width can be provided due to other design considerations (e.g., the presence of subsurface infrastructure or the shallowness of the road), the incorporation of channel bioengineering may also help to reduce a given crossing span while maintaining channel form and function.

6 STORMWATER MANAGEMENT

6.1 Overview

The proposed improvement of Langstaff Road will result in an increase in impervious area compared to the existing land use. Increased pavement areas as a result of the widened road are proposed to be addressed by stormwater quality treatment and quantity control measures designed according to the requirements for the West Don River and Humber River in their respective watersheds. Runoff from the new urbanized roadway will be conveyed by a new storm sewer system located within the road right-of-way.

Storage BMPs such as wet pond and dry pond can be effective in providing combined quality treatment and/or quantity control where drainage areas are sufficient, and space is available. Storage pipe system can be effective for a small drainage area and in the case of unavailability of space for other storage BMPs.

Within the study area, runoff from the proposed roadway will ultimately discharge to the existing watercourses via storm sewers. The roadway areas result in a significant increase in impervious area which eventually will result in a larger potential for erosion, flood risk, and water quality degradation along the receiving watercourses. Therefore, road runoff needs to be treated before discharging into the receiving watercourses.

The overall objective of the stormwater management plan is to implement measures to enhance the quality of runoff, satisfy the quantity control targets will be provided for post to pre-development control, and to reduce erosion potential. Under existing drainage conditions there is no stormwater management measure in place within the study area.

The following sections discuss the proposed stormwater management strategy for the Langstaff Road improvements.

6.2 Impact of the Proposed Roadway

The proposed road improvement of Langstaff Road will increase runoff from the road corridor due to an increase in impervious areas.

Table 6-1: provides a comparison of impervious area under existing and proposed conditions. The proposed conditions impervious calculation is based on ultimate 6-lane widening. The table also shows the peak flow increase due to the increase in impervious areas within the ROW.

As shown in the table below, due to increase in imperviousness, the 100-year peak flow increases up to 24% from existing along Langstaff Road. Therefore, to reduce the impacts of sediment loading as well as increased peak flow into the receiving watercourses, stormwater management measures are required for runoff quality and quantity control. The proposed measures are discussed in **Section 6.3**.

Table 6-1: Impervious Area Comparison

_				Ro	ad Are	a within	ROW		
Catchment	Station (From - To)	Total Area (ha)	Imper	sting rvious rea	Impe	posed ervious irea	Increase in Impervious (ha)	% Increase	100-year Peak Flow Increase
			(ha)	%	(ha)	%			
105	1+510 to	1.63	0.99	0.61	1.12	0.69	0.13	13	2%
110	2+188	1.49	0.85	0.57	1.04	0.70	0.19	23	5%
115	2+188 to	1.00	0.46	0.46	0.63	0.63	0.17	37	8%
120	2+664	1.24	0.71	0.57	0.91	0.73	0.20	28	8%
125	2+664 to	2.27	1.20	0.53	1.75	0.77	0.54	45	12%
130	3+465	2.08	1.06	0.51	1.71	0.82	0.64	61	15%
135	3+465 to	1.43	0.56	0.39	1.41	0.99	0.85	152	35%
140	3+974	1.27	0.66	0.52	1.16	0.91	0.50	76	23%
145	3+974 to 4+690	1 3 16 1 80 1 67 73 11 /6 17 /1		0.41	21	11%			
150	4+690 to 5+790	3.81	3.58	0.94	3.62	0.95	0.04	1	0.20%
155	5+790 to	0.53	0.24	0.45	0.49	0.93	0.25	107	22%
160	6+048	0.46	0.26	0.56	0.44	0.95	0.18	70	22%
165	6+048 to	0.60	0.24	0.4	0.43	0.72	0.19	80	19%
170	6+305	0.43	0.25	0.57	0.42	0.98	0.18	72	11%
180	6+305 to	0.65	0.21	0.33	0.34	0.52	0.12	58	10%
185	6+544	0.47	0.23	0.48	0.34	0.72	0.11	50	19%
190	6+544 to	0.86	0.36	0.42	0.49	0.57	0.13	36	12%
195	6+889	0.79	0.33	0.42	0.59	0.75	0.26	79	20%
205	6+889 to	1.10	0.42	0.38	0.85	0.77	0.43	103	24%
210	7+360	0.96	0.42	0.44	0.75	0.78	0.33	77	21%
215	7+360 to	0.58	0.33	0.57	0.47	0.81	0.14	42	14%
220	7+620	0.65	0.30	0.46	0.43	0.66	0.13	43	13%
225	7+620 to	0.90	0.48	0.53	0.48	0.53	0.00	0	0%
230	7+938	0.70	0.40	0.57	0.46	0.66	0.06	16	6%

6.3 Proposed SWM Strategy

The proposed stormwater management strategy will consist of pipe storage systems and SWM dry pond to control peak flow as well as oil and grit separators for quality control. **Table 6-2** summarizes the proposed SWM strategy for the Langstaff Road widening within the study limit. The details of the proposed SWM facilities are provided in **Section 6.3.1**.

Table 6-2: SWM Strategy for the Roadway Runoff

Road Area within ROW (ha)			Runoff Quality and Quantity Control						
From	То	Total Area	Paved Area	Quantity Control By	Quality Control By	Comments			
Humber	Humber River Watershed								
1+510	1.805	1.63	1.13	Pipe Storage (HSP-1A)	Directed to Existing Storm Sewer at Silmar Drive and Jevlan	Runoff from Catchments 105 and 110 will be controlled by two separate pipe storage systems. The post development flow is controlled to the 10-year existing conditions level to connect into existing storm			
1+805	2+190	1.58	1.11	Pipe Storage (HSP-1B)	Drive. Two OGS (OGS 1 & 2) for additional quality measure.	sewer system. The out flow from the storage system further directed to existing SWM Pond.			
2+190	2+660	2.24	1.53	Pipe Storage (HSP-2)	OGS-3-1 is downstrea m of HSP- 2 and OGS-3-2 is downstrea	Runoff from roadway area (Catchments 115 and 120) is conveyed by storm sewer and peak flow is controlled by a pipe storage system to the predevelopment condition. An OGS is provided at the outlet of pipe storage.			
2+660	3+460	4.35	3.45	Pipe Storage (HSP-3)	m of HSP- 3. From those OGS it goes through OGS-3	Runoff from roadway area (Catchments 125 and 130) is conveyed by storm sewer and peak flow is controlled by a pipe storage system to the predevelopment condition. An OGS is provided at the outlet of pipe storage.			

Road Area within ROW (ha)			Runoff Quality and Quantity Control						
From	То	Total Area	Paved Area	Quantity Control By	Quality Control By	Comments			
Don River Watershed									
3+460	3+975	2.70	2.57	Pipe Storage (DSP-1)	Outflow from Pipe Storage is directed to Proposed Dry Pond	Runoff from Catchment 135 (including pond area) and 140 is conveyed by proposed storm sewers and discharged to the proposed pipe storage system DSP-1.			
3+975	4+690	3.05	1.89	Dry SWM Pond DDP- 1	OGS-4	The controlled outflow from pipe storage DSP-1 and runoff from Catchment 145 (including dry pond area) are conveyed by proposed storm sewers and discharged to the proposed dry SWM Pond DDP-1. Outflows from the SWM facility will be controlled based on the Don River unit flow release rate and discharged to the upstream side of the proposed Culvert LC1.			
4+690	5+790	3.81	3.62	Wet Pond SWM Pond DWP-1	Wet SWM Pond	Runoff from Catchment 150 is conveyed by proposed storm sewers and discharged to the proposed wet SWM Pond DWP-1. Outflows from the SWM facility will be controlled based on the Don River unit flow release rate and discharged to the West Don River utilizing existing outlet. Some overcontrol will be provided to compensate uncontrolled flow from Catchments 155 and 160.			
5+790	6+000	0.99	0.93	-	OGS-5	No peak flow control is provided for Catchments 155 and 160. Overcontrol is provided in wet Pond DWP-1 and pipe storage system DSP-2. Quality control is provided by OGS-4 to provide quality control for Catchments 155 and 160.			

Road Area within ROW (ha)			Runoff Quality and Quantity Control				
From	То	Total Area	Paved Area	Quantity Control By	Quality Control By	Comments	
6+00	6+545	2.15	1.53	Pipe Storage (DSP-2)	OGS-6	Flows from Catchment 165, 170, 180 and 185 will be controlled based on the Don River unit release rate flow by a pipe storage system DSP-2. This pipe storage also provides some overcontrol to account for the uncontrolled flow from Catchments 155 and 160. An OGS will be provided before discharging to the watercourse. Outflow from the OGS is directed to the downstream end of the West Don River Bridge.	
6+545	6+890	1.65	1.08	Pipe Storage (DSP-3A)	OGS-7	Runoff from Catchment 190 and 195, 205 and 210 are conveyed by storm sewers and directed to two	
6+890	7+360	2.06	1.60	Pipe Storage (DSP-3B)	OGS-8	separate proposed pipe storage systems DSP-3A and DSP-3B to control peak flows to the 10-year level (equivalent to the flow generated from Catchments 205 and 210 under existing conditions Outflows from the SWM facility wi be directed to a 1050 mm (42") diameter existing trunk storm sewer.	
7+360	7+620	1.23	0.89	Pipe Storage (DSP-4)	OGS-9	Runoff from Catchments 220 and 215 will be controlled by a pipe storage system DSP-4 based on the Don River unit flow release rate before discharging to Westminster Creek. An OGS will be provided for quality treatment.	
7+620	7.940	1.60	0.94	Pipe Storage (DSP-5)	OGS-10	Runoff Catchments 225 and 230 will be controlled by pipe storage system DSP-5 based on the Don River unit flow release rate before discharging to Westminster Creek. An OGS will be provided for quality treatment.	

6.3.1 Proposed SWM Facilities

The following section discusses in detail of the proposed SWM facilities. It includes three pipe storage systems within Humber River watershed (HSP), two dry SWM ponds in the West Don River watershed (DDP) and five pipe storage systems within the West Don River watershed (DSP).

Stage Storage Analysis of Proposed SWM facilities are included in Appendix E.

1. Pipe Storage HSP-1A and HSP-1B:

Two underground Pipe Storage Systems HSP-1A and HSP-1B, are proposed on Langstaff Road to control the flow from Catchments 105 and 110, respectively. The both pipe storage facilities will control the peak flows from post- to 10-year pre-development level. The outflow from the Pipe Storage facilities HSP-1A and HSP-1B will be directed to the existing storm sewer which runs southerly from Langstaff Road via Silmar Drive and Jevlan Drive. The HSP-1A and HSP-1B facilities will service 3.21 ha of right-of-way area of Langstaff Road. Two oil and grit separators (OGS-1 and OGS-2) will be provided before discharging into the existing storm sewer for additional quality measure.

Following are the features of these pipe storage systems:

- They will be two separate 90 m long and 2400 mm x 1200 mm concrete box storage pipe, which will be installed at slope 0.20%. The outlet invert of HSP-1A and HSP-1B will be approximately 204.12 m and 205.35 m, respectively. The inverts are estimated only and depending upon the invert of the existing connecting sewer, the invert, width and length of the pipe storage facility can be adjusted during the detailed design phase.
- The controlling features for the HSP-1A consist of a 100 mm diameter orifice at an invert elevation of 204.12 m and a 250 mm diameter orifice at invert elevation of 204.91 m.
- The controlling features for the HSP-1B consist of a 100 mm diameter orifice at an invert elevation of 205.35 m and a 250 mm diameter orifice at invert elevation of 206.14 m.
- The 10-year storage volume for HSP-1A and HSP-1B will be approximately 257 m³ and 252 m³ while the 10-year WSL will be approximately 205.31 m and 206.52, respectively.

2. Pipe Storage HSP-2:

An underground Pipe Storage System HSP-2, is proposed on Langstaff Road to control the flow from Catchments 115 and 120. The pipe storage facility will control the peak flows from post- to pre- development levels before discharging to the downstream of the Black Creek culvert at Langstaff Road. The facility will service 2.24 ha of right-of-way area of Langstaff Road. An OGS will be provided (OGS-3) before discharging the outflow to Black Creek. An additional OGS (OGS-3-1) is going to be added directly downstream of pipe storage HSP-2.

Following are the features of this pipe storage system:

— It will be a 180 m long and 3000 mm x 1200 mm concrete box storage pipe which will be installed at slope 0.20%. The estimated inlet and outlet inverts of pipe storage will be 204.81 m and 204.44 m, respectively, which need to confirm and adjusted during the detailed design phase.

- The controlling features consist of a 200 mm diameter orifice at an invert elevation of 204.44 m and a 310 mm diameter orifice at invert elevation of 205.51 m.
- The 100-year storage volume for this facility will be approximately 640 m³ and the 100-year WSL will be approximately 205.62 m.

3. Pipe Storage HSP-3:

An underground Pipe Storage System HSP-3, is proposed on Langstaff Road to control the flow from Catchments 125 and 130. The pipe storage facility will control the peak flows from post- to pre- development level condition before discharging to the downstream of the Black Creek culvert at Langstaff Road. The facility will service 4.35 ha of right-of-way of Langstaff Road. OGS-3 will provide quality treatment of controlled runoff from HSP-2 and HSP-3 before discharging the outflows to Black Creek. An additional OGS (OGS-3-2) is going to be added directly downstream of pipe storage HSP-3.

The outflow from the Pipe Storage facility HSP-2 and HSP-3 will be discharged to Black Creek downstream of Langstaff Road culvert from the existing outlet.

Following are the features of this pipe storage system:

- It will be a 220 m long and 3000 mm x 1200 mm box concrete storage pipe at slope 0.20%. The estimated inlet and outlet inverts of pipe storage will be 204.44 m and 204.00 m, respectively, which need to confirm and adjusted during the detailed design phase.
- The controlling features consist of a 160 mm diameter orifice at an invert elevation of 204.00 m and a 400 mm diameter orifice at invert elevation of 204.35.
- The 100-year storage volume for this facility will be approximately 792 m³ and the 100-year WSL will be approximately 205.20 m.

4. Pipe Storage DSP-1:

An underground Pipe Storage System DSP-1, is proposed by the oversized storm sewers on Langstaff Road to control the flow from Catchments 135 and 140 before discharging to dry SWM pond DDP-1. The facility will service 2.70 ha of the right-of-way area of Langstaff Road.

Following are the features of this pipe storage system:

- It will be a twin 3000 mm x 1200 mm concrete box pipe, 222 m long and which will be installed at slope of 0.10%. The estimated inlet and outlet inverts of the pipe storage will be 208.20 m and 207.98 m, respectively, which need to confirm and adjusted during the detailed design phase.
- The controlling features consist of an 82 mm diameter orifice at an invert elevation of 207.98 m and a 170 mm diameter orifice at an invert elevation of 208.73 m.

- The 100-year storage volume for this facility will be approximately 1598 m³ and the 100-year WSL will be approximately 209.18 m.
- The outlet of the storage pipe will be connected to the dry SWM pond DDP-1 to further control the flow as per the unit flow release rate of Don River.

5. Dry SWM Pond DDP-1:

This dry pond will be located on the northside of the proposed Langstaff Road overpass across CN MacMillan Rail Yard, approximately between St. 4+200 and St. 4+300 and provide the peak flow control of roadway Catchments 145 and outflow from the pipe storage DSP-1 based on the unit flow release rate of Don River Sub-basin 6. An OGS (OGS-4) will be provided at the inlet before discharging into the dry pond to reduce the frequency of pond maintenance.

Following are the control features of the SWM pond:

- The outflow from the SWM facility will discharge to the upstream of the proposed Culvert LC1 crossing at Langstaff Road. The outlet pipe from the pond will be a 450 mm diameter pipe and 1200 mm control maintenance hole configured with two 80 mm and 180 mm diameter orifice at elevations 205.60 m and 206.65 m, respectively.
- The pond will have 3H:1V side slope. The 100-year storage volume for this pond will be approximately 1898 m³ and the 100-year water surface elevation (WSL) will be 207.70 m.
- Approximately 76 m long retaining wall is required on the south-west side of the pond to maintain the roadway grading. The top elevation of the retaining wall will be 211.50 m.
- An overflow weir has been set at an elevation of 208.00 m to function during large rainfall events. The weir will have a 1.2 m crest width with 5H:1V side slopes.
- The outflow from the SWM facility will be discharged to the upstream side of proposed Culvert LC1.

6. Wet SWM Pond DWP-1:

A wet SWM facility is proposed on the north-east corner of proposed Langstaff Road / CN MacMillan Rail Yard overpass and Keele Street intersection, at approximate Sta. 5+535 to 5+640. The facility will provide the peak flow control of roadway Catchment 150 based on the unit flow release rate of Don River Sub-basin 1. Pond DWP-1 will service a total roadway area of 3.81 ha of Catchment 150 with an approximate imperviousness of 88%. The SWM pond will provide an enhanced level of quality treatment of road runoff. Outflow from the SWM pond will be connected to the existing storm sewer of Langstaff Road just east of Keele Street and will be discharged to West Don River the utilizing existing outlet. An OGS (OGS-5) will also be provided before discharging the outflow to the West Don River after collecting the runoff from uncontrolled Catchments 150 and 160.

Following are the features of the SWM pond:

- The require permanent pool volume is about 1000 m³. The provided permanent pool volume is above 3000 m³. The permanent pool elevation will be approximately 206.40 m and bottom of the pond will 205.30 m, which provides a depth of permanent pool as 1.10 m.
- The outflow from this SWM facility will discharge to the West Don River tributary crossing Langstaff Road west of Keele Street. The outlet pipe from the pond will be a 450 mm diameter pipe and 1200 mm control maintenance hole configured with 80 mm diameter orifice at elevations 206.40 m.
- The pond will have 3H:1V side slopes and bottom elevation of 205.30 m. A
 0.30 m freeboard is considered above the 100-year pond level.
- The SWM facility will be used to provide over control of the peak flows as much as possible to balance the controlled flow from Catchments 155 and 160.
- The 100-year storage volume for this facility will be approximately 3004 m³ and the 100-year WSL will be approximately 207.20 m.

7. Pipe Storage DSP-2:

An underground Pipe Storage System DSP-2, is proposed by the oversized storm sewers on Langstaff Road to control the flow from Catchments 165, 170, 180 and 185. The storage pipe will be slightly overcontrolled to account for the uncontrolled flows of Catchments 155 and 160. The pipe storage facility will control the peak flows based on the unit flow release rate of Don River Sub-basin 5 before discharging to the downstream end of the West Don River Bridge. The facility will service 2.15 ha of right-of-way area of Langstaff Road. An OGS (OGS-6) will be provided before discharging the outflow to West Don River.

Following are the features of this pipe storage system:

- It will be a twin 3000 mm x 1200 mm concrete box pipe, 160 m long and which will be installed at slope 0.20%. The estimated inlet and outlet inverts of the pipe storage will be 197.90 m and 197.58 m, respectively, which need to confirm and adjusted during the detailed design phase.
- The controlling features consist of a 100 mm diameter orifice at an invert elevation of 197.58 m and a 400 mm diameter orifice at invert elevation of 198.70 m.
- The 100-year storage volume for this facility will be approximately 1152 m³ and the 100-year WSL will be approximately 198.78 m.
- An existing outlet structure will be used to discharge the controlled flow to the West Don River.

8. Pipe Storage DSP-3A and DSP-3B:

Two underground Pipe Storage Systems DSP-3A and DSP3-B, are proposed on Langstaff Road to control the flow from Catchments 190, 195, 205 and 210. The pipe storage facility will control the peak flows equivalent to the 10-year pre-development

flow of Catchments 205 and 210 to maintain the existing conditions flow rates before connecting to the 1050 mm (42") diameter existing storm sewer (as per existing contract DWG.77-104-9 & 77-104-8) which is located between Connie Crescent and North Rivermede Road and runs southerly from Langstaff Road. A thorough investigation of connection feasibility to the existing storm sewer is recommended at the detailed design stage. The facility will service 3.72 ha of right-of-way area of Langstaff Road. Two OGS units (OGS-7 and OGS-8) will be provided before discharging the outflow from these SWM systems to the existing storm sewer for additional quality measure.

Following are the features of pipe storage systems DSP-3A and DSP3-B:

- Pipe Storage Systems DSP-3A and DSP3-B will be 2400 mm x 1200 mm concrete box storage pipe with 125 m and 130 m long, respectively, and which will be installed at slope 0.20% for both SWM facilities. The estimated inlet and outlet inverts of the pipe storage DSP-3A will be 202.00 m and 201.76 m, respectively and for DSP3-B, the estimated inverts will be 202.76 m and 202.50 m, respectively. These inverts need to confirm and adjusted during the detailed design phase.
- The controlling features for the DSP-3A consist of a 115 mm diameter orifice at an invert elevation of 301.76 m and a 250 mm diameter orifice at invert elevation of 202.67 m.
- The controlling features for the DSP-3B consist of a 205 mm diameter orifice at an invert elevation of 205.50 m and a 270 mm diameter orifice at invert elevation of 203.41 m.
- The 10-year storage volume for this DSP-3A will be approximately 346 m³ and the 10-year WSL will be approximately 202.95 m.
- The 10-year storage volume for this DSP-3B will be approximately 361 m³ and the 10-year WSL will be approximately 203.67 m.

9. Pipe Storage DSP-4:

An underground Pipe Storage System DSP-4, is proposed on Langstaff Road to control the flow from Catchments 220 and 215. The pipe storage facility will control the peak flows based on the unit flow release rate of Don River Sub-basin 8A before discharging to the downstream end of the Westminster Creek culvert. The facility will service 1.23 ha of right-of-way area of Langstaff Road. An OGS (OGS-9) will be provided before discharging the outflow to Westminster Creek.

Following are the features of this pipe storage system:

— It will be a twin 2400 mm x 1200 mm box concrete storage pipe, 110 m long and at a 0.20% slope. The estimated inlet and outlet inverts of the pipe storage will be 202.65 m and 202.43 m, respectively, which need to confirm and adjusted during the detailed design phase.

- The controlling features consist of an 80 mm diameter orifice at an invert elevation of 202.43 m and a 140 mm diameter orifice at invert elevation of 203.54 m.
- The 100-year storage volume for this facility will be approximately 632 m³ and the 100-year WSL will be approximately 203.52 m.

10. Pipe Storage DSP-5:

An underground Pipe Storage System DSP-5, is proposed on Langstaff Road to control the flow from Catchments 225 and 230. The pipe storage facility will control the peak flows based on the unit flow release rate Don River Sub-basin 8A before discharging to the downstream end of the Westminster Creek culvert. The facility will service 1.23 ha of right-of-way of Langstaff Road. An OGS (OGS-10) will be provided before discharging the outflow to Westminster Creek.

Following are the features of this pipe storage system:

- It will be twin 2400 mm x 1200 mm box concrete storage pipe, 111 m long and at slope 0.20%. The inlet and outlet inverts of the pipe storage will be 202.27 m and 202.05 m, respectively.
- The controlling features consist of a 123 mm diameter orifice at an invert elevation of 202.05 m and a 230 mm diameter orifice at invert elevation of 203.13 m.
- The 100-year storage volume for this facility will be approximately 553 m³ and the 100-year WSL will be approximately 203.25 m.

6.3.2 Oil and Grit Separators

Oil and grit separators (OGS) are provided for the quality control at the outlet point of the pipe storage systems.

- OGS-1 and OGS-2 will be provided at the outlet of Pipe Storage systems HSP-1A and HSP-1B near Silmar Drive before discharging to the existing storm sewer.
- OGS-3 will be provided at the outlet of Pipe Storage systems HSP-2 and HSP-3 at approximate Sta. 2+500 before discharging to the downstream of the Black Creek culvert. OGS-3-1 and OGS-3-2 are directly downstream from the Pipe storage systems HSP-2 and HSP-3. The location and full details will be addressed during the detail design. Runoff will go through OGS-3-1 and OGS-3-2 first before going through OGS-3.
- OGS-4 will be provided at the inlet of Dry SWM Pond (DDP-1) at approximate Sta. 4+220 before discharging into the proposed dry pond (DDP-1) to reduce the amount of maintenance.
- OGS-5 will be provided at approximate Sta. 5+980 at the storm sewer that conveyed runoff from Pond (DWP-1) and Catchments 155 and 160 before discharging to the West Don River.

- OGS-6 will be provided at the outlet of Pipe Storage systems DSP-2 at approximate Sta. 6+1040 before discharging to the downstream of the West Don River bridge at Langstaff Road.
- OGS-7 and OGS-8 will be provided at the outlet of Pipe Storage systems
 DSP-3A and DSP-3B at approximate Sta. 7+110 and 7+130 before directing to the existing 1050 mm (42") trunk storm sewer.
- OGS-9 will be provided at the outlet of Pipe Storage DSP-4 at approximate Sta. 7+605 before discharging to the downstream end of the Westminster Creek culvert.
- OGS-10 will be provided at the outlet of Pipe Storage DSP-5 at approximate Sta. 7+640 before discharging to the downstream end of the Westminster Creek culvert.

It is understood that OGS will not provide enhanced level of quality treatment; however, due to urbanization and property constraints, other treatment train approaches are not practically feasible. In some cases, the existing storm sewer drains to existing SWM facilities which provide additional quality measure (west of Highway 400, outflow from dry pond DDP-1 to SWM Pond C via Culvert LC1 and proposed one wet SWM facility DWP-1) for the enhanced level of quality treatment. Detailed sizing of OGS will be carried out during the detailed design phase.

6.4 Water Balance and Low Impact Development Measures

The water balance requirement is to retain a minimum of 5 mm of runoff from the site. Most of the proposed roadway will have an urban section with storm sewer systems to convey storm runoff. Therefore, it is not feasible to retain 5 mm of runoff at every section of the proposed roadway. However, measures will be provided wherever feasible using infiltration galleries and exfiltration trenches. Infiltration galleries are subject to soils and groundwater table conditions.

The Preliminary Geotechnical Investigation Report prepared by Thurber Engineering Limited was reviewed for the borehole information to find potential the depth of groundwater table. In one location, i.e. east of Creditstone Road, Sta 4+160, the groundwater table is located approximately 2.0 m below the ground surface. In this section of the road, an infiltration gallery is not feasible, as there will be not enough clearance. In other locations, groundwater table was not encountered within the borehole depth of 3.7 m, which will provide above 1.0 m separation from the bottom of infiltration galleries to the groundwater table. It is recommended to further review on the seasonally high groundwater table and adjust the depth of infiltration gallery accordingly during the detailed design phase. A table of subsurface soil conditions and depth of groundwater table based on Preliminary Geotechnical Investigation Report. This table is included in **Appendix E** of this report.

Based on the preliminary assessment, proposed LID measures may potentially be located within the boulevard between the multi-use path and cycle track. **Table 6-3**

provides the potential LID measures which will be further investigated during the detailed design phase.

Table 6-3: SWM Strategy for the Roadway Runoff

ID	Catchment ID	Drainage Area (ha)	Proposed LID Features/ Comment	Volume for 5 mm Runoff Retention (m³)	Size of Proposed LID Features (m) x W (m) x D (m)	Provided Volume* (m³)
IG01	105	1.63	Infiltration Gallery	81.5	40 x 1.5 x 1.0	24.0
IG02	110	1.49	Infiltration Gallery	74.5	50 x1.5 x 1.0	30.0
IG03	115	1.00	Infiltration Gallery	50.0	100 x 1.5 x 1.0	24.0
IG04	120	1.24	Infiltration Gallery	62.0	40 x 1.5 x 1.0	24.0
IG05 IG06 IG07 IG08	125	2.27	Infiltration Gallery	113.5	40 x 1.5 x 1.0 42 x 1.5 x 1.0 65 x 1.5 x 1.0 60 x 1.5 x 1.0	124
-	130	2.08	Utility conflict	104.0	-	-
IG09 IG10 IG11	135	2.08	Infiltration Gallery	104.0	65 x 1.5 x 1.0 50 x 1.5 x 1.0 60 x 1.5 x 1.0	105.0
IG12 IG13 IG14 IG15	140	1.61	Infiltration Gallery	80.5	30 x 1.5 x 1.0 55 x1.5 x 1.0 70 x1.5 x 1.0 40 x1.5 x 1.0	117.0
	145	2.70 (roadway)	Infiltration Gallery	135		
ET17	150	3.81	Exfiltration Trench	190.5	100 x 1.5 x 1.0	60.0
-	155	0.53	Steep Road Profile	26.5	-	-
-	160	0.46	Steep Road Profile	23.0	-	-
-	165	0.60	Utility conflict	30.0	-	-
IG18 IG19	170	0.43	Infiltration Gallery	21.5	40 x 1.5 x 1.0 50 x1.5 x 1.0	54.0
-	180	0.65	Potential overpass structure	32.5	-	-
-	185	0.47	Potential overpass structure	23.5	-	-
-	190	0.86	Potential overpass structure	43.0	-	-

ID	Catchment ID	Drainage Area (ha)	Proposed LID Features/ Comment	Volume for 5 mm Runoff Retention (m³)	Size of Proposed LID Features (m) x W (m) x D (m)	Provided Volume* (m³)
-	195	0.79	Potential overpass structure	39.5	-	-
IG20	205	1.10	Utility conflict	55.0	-	-
-	210	0.96	Utility conflict	48.0	-	Ī
IG21	215	0.58	Infiltration Gallery	29.0	55 x 1.5 x 1.0	33.0
-	220	0.65	Utility conflict	32.5	-	-
IG22	225	0.90	Infiltration Gallery	45.0	65 x 1.5 x 1.0	39.0
-	230	0.70	Utility conflict	35.0		-
Total		29.59		1479		670

^{*}Note: Provided volume is based on 40% void Ratio.

As illustrated in **Table 6-3**, the require volume for 5 mm runoff retention is 1479 m³. Based on preliminary assessment, an approximate volume of 670 m³ could be potentially provided avoiding conflicts with existing utilities.

The following will be reviewed further during the detailed design phase:

- Detailed investigation and design of all low impact development and water balance measures. Based on seasonal groundwater table and soil conditions, locations and sizes of LID water balance measures could vary.
- Review conflict with existing and new utilities.
- The potential increase of the footprint of infiltration galleries to maximize retention volume in an effort to get additional retention volume.
- Field testing of hydrogeological conditions such as site-specific percolation rates, depth of bed rock, depth of seasonally high groundwater table, etc.

7 SEDIMENT AND EROSION CONTROL

Uncontrolled erosion and sedimentation occurring during construction can result in a loss of topsoil, a disruption of nearby watercourses and a degradation of downstream water quality. During construction, erosion and sedimentation control measures should be implemented to prevent the migration of soils from the site. The following recommendations should be considered when developing the detailed Erosion and Sedimentation Control drawings:

General

- Daily inspections are to be carried out particularly after rain events and repairs.
- Any in-water work that is necessary must be conducted in dry conditions within the appropriate fisheries timing window indicated by the TRCA.

Vegetative

- All areas not subject to active construction 30 days after area grading should be top soiled and seeded as per Special Provision 572S01 (OPSS 572) immediately after completion of such grading.
- Immediately following seed application, a straw erosion control blanket should be installed on any exposed slopes adjacent to sensitive features, as per OPSS 572.05.07, 572.05.08 and 572.07.04.05.
- The erosion control matting / blankets shall be fully biodegradable.
- Finished slopes will be graded to an acceptable slope and planted according to applicable TRCA Guidelines. Large cuts should be terraced to minimize surface erosion.

Structural

- As construction proceeds, diversion swales should be graded where needed along the right-of-way boundaries to intercept drainage from external areas and direct it away from exposed surfaces.
- The locations of sediment / dewatering traps should be confirmed in the field by the on-site inspector and environmental inspector.
- Temporary sedimentation traps should be sized based on 125 m³/ha of drainage area.
- The integrity of all sediment trapping devices will be monitored regularly (at least weekly, and immediately following rain events) and properly maintained; such structures will be removed only after the soils of the construction areas have been stabilized and then only after the trapped sediments have been removed.
- The contractor will identify a contingency plan for accidental sediment release.
- All culvert work should be conducted "in the dry" and inside MNRF's timing window for fisheries where applicable.

- All dewatering for culvert installation should be directed to a sediment / dewatering trap.
- Straw bale flow and/or rock checks should be provided in roadside ditches, especially in all ditches immediately upstream of their discharge into a watercourse.
- Additional erosion control works may be required during the course of construction. These may consist of silt fences, swales, and/or diversion berms.
 The location and need for these works will need to be established in the field.

Temporary silt fencing should be installed:

- Around sensitive vegetative features.
- Approximately 2 m from the final toe-of-slope for the roadway embankment widening areas.
- Runoff from excavated areas or unvegetated soil will not be permitted to discharge off site or directly into active or temporary watercourses or any natural areas.
- Heavy duty silt fence should be used at crossings locations where rare species are present.
- The contractor should abide by the requirements set out in the Greater Golden Horseshoe Area Conservation Authorities Erosion and Sediment Guideline for Urban Construction (December 2006).

The integration of these measures will minimize the impacts of erosion and sedimentation during the construction of Langstaff Road within project limits.

8 CONCLUSIONS AND RECOMMENDATIONS

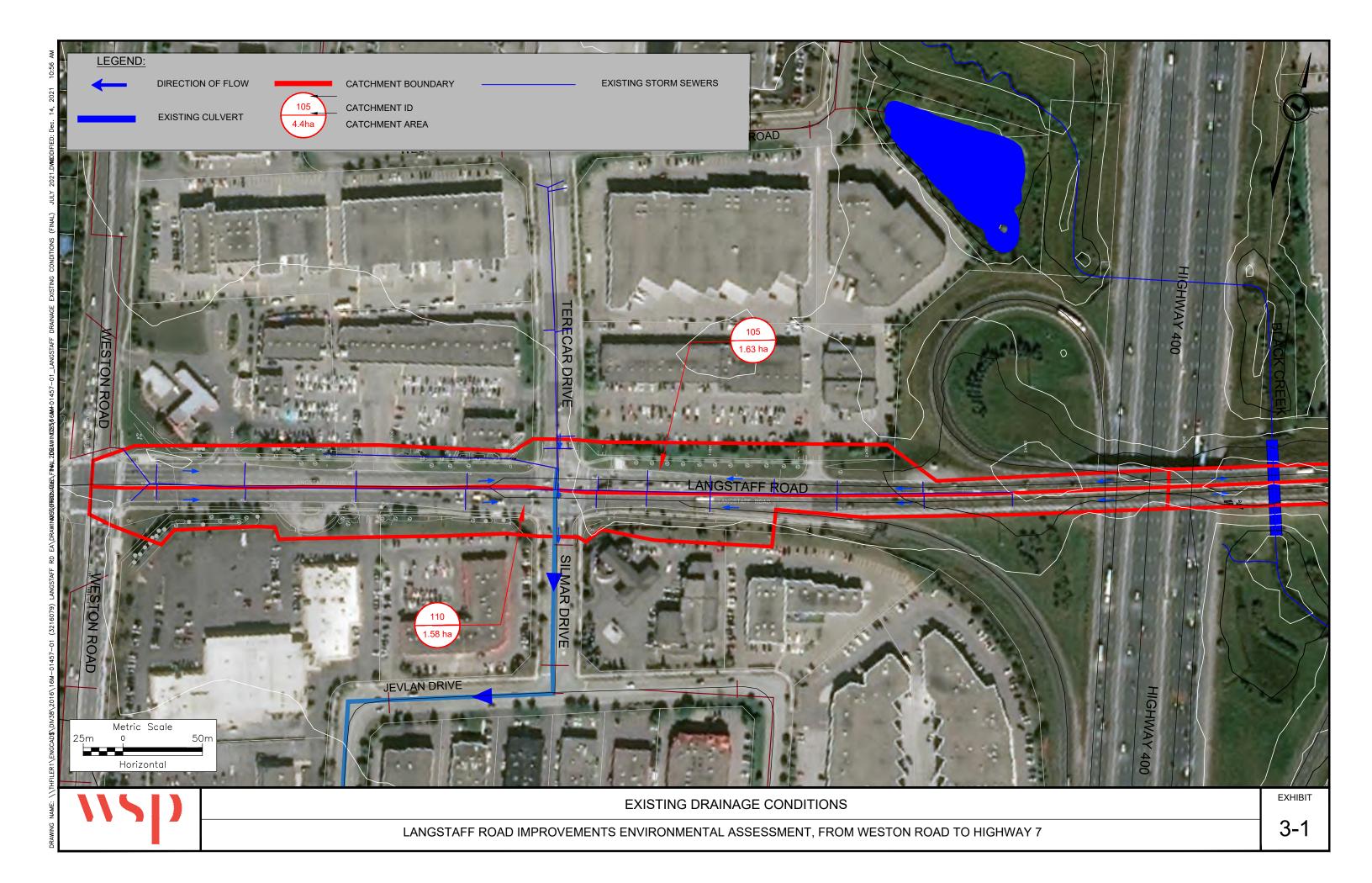
Based on the preceding assessments and findings for Langstaff Road from Weston Road easterly to Dufferin Street, the following conclusions can be made:

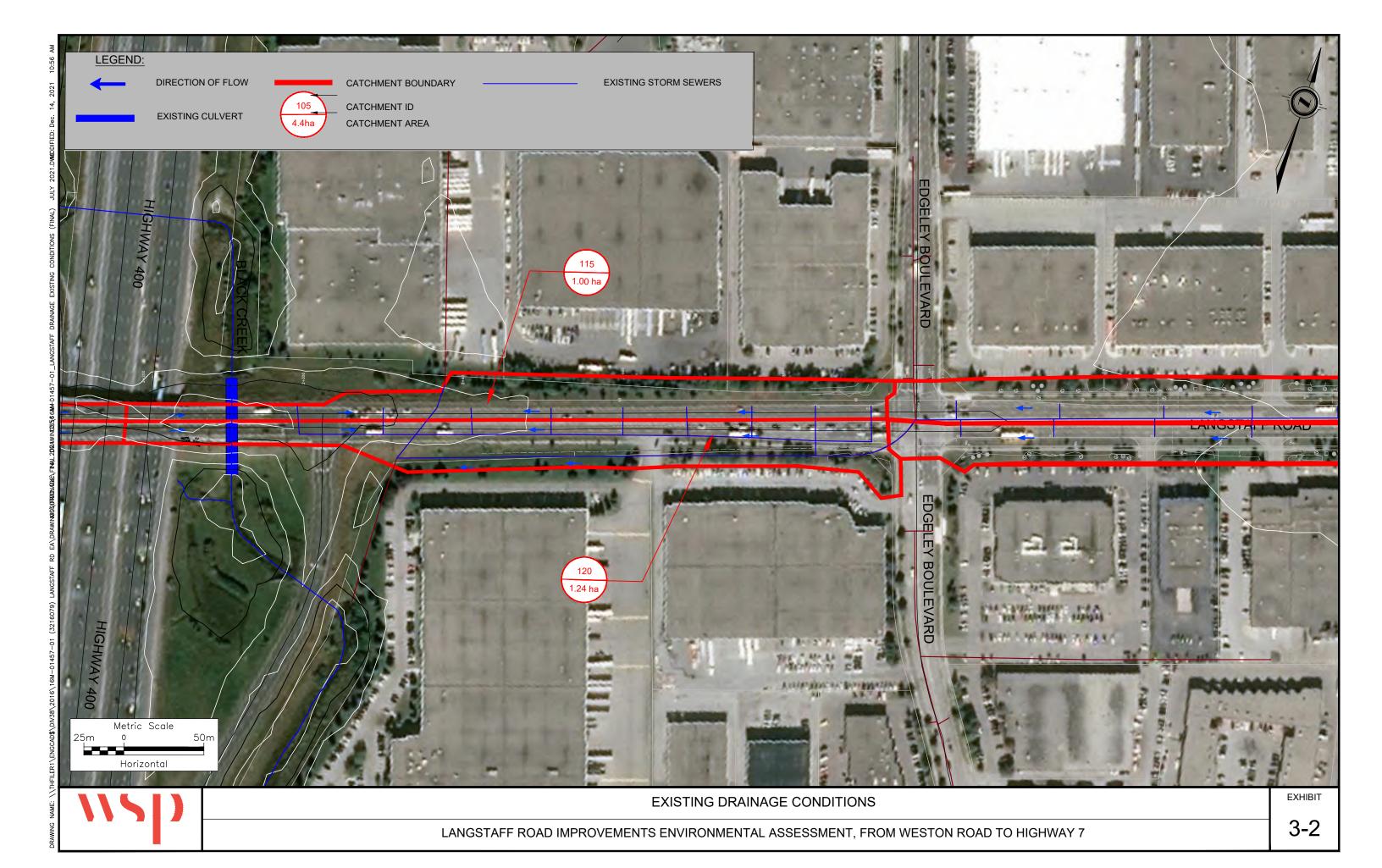
- 1. The proposed road improvements include the widening of Langstaff Road to ultimate 6-lanes from Weston Road easterly to Dufferin Street, adding on street cycling facilities, sidewalk, connection across the CN MacMillan Rail Yard from Creditstone Road to Keele Street, grade separation at GO Transit Barrie Line, intersection improvements, streetscape and new storm sewer system.
- 2. The study area lies within two major watersheds which are the Humber River and Don River. There are three watercourses that cross Langstaff Road within the study area: Black Creek (Tributary of Humber River), West Don River (West branch of Don River) and Westminster Creek (a tributary of West Don River).
- **3.** Hydrological analysis of the roadway corridor is carried out using the Visual OTTHYMO hydrological model with the following storm distributions:
 - The SCS 12-hour storm distribution of the York Region IDF was used in the analysis to generate the peak flows for the West Don River watershed.
 - The AES 12-hour storm distribution of the York Region IDF was used in the analysis to generate the peak flows for the Humber River watershed.
 - For proposed conditions, hydrologic assessments include the proposed stormwater management facilities in place.
 - There is a requirement of unit flow rate control for the proposed work within both the Humber River and Don River watersheds.
- 4. Hydraulic performance of existing watercourse crossing structures was performed using the HEC-RAS model. HEC-RAS models for the West Don River, Westminster Creek and Black Creek were provided by TRCA in 2017.
 - The existing Black Creek culvert at Langstaff Road consists of a 3-cell 2.4 m span x 2.4 m rise x 60 m long. All three cells are of equal size. The hydraulic analysis results show that the existing culvert meets all hydraulic requirements.
 - The HEC-RAS hydraulic model of the West Don River Bridge at Langstaff Road (Bowes Bridge) is updated with the 2019 flows obtained from the TRCA utilizing the PCSWMM model. The existing HEC-RAS model is also updated with revised sections and road profile based on latest survey information. The existing bridge has a span of 11.4 m. The results of existing conditions hydraulic assessment show that the existing bridge meets freeboard and soffit clearance requirements for the 100-year design storm, but the Regional Storm overtops Langstaff Road by 1.10 m.

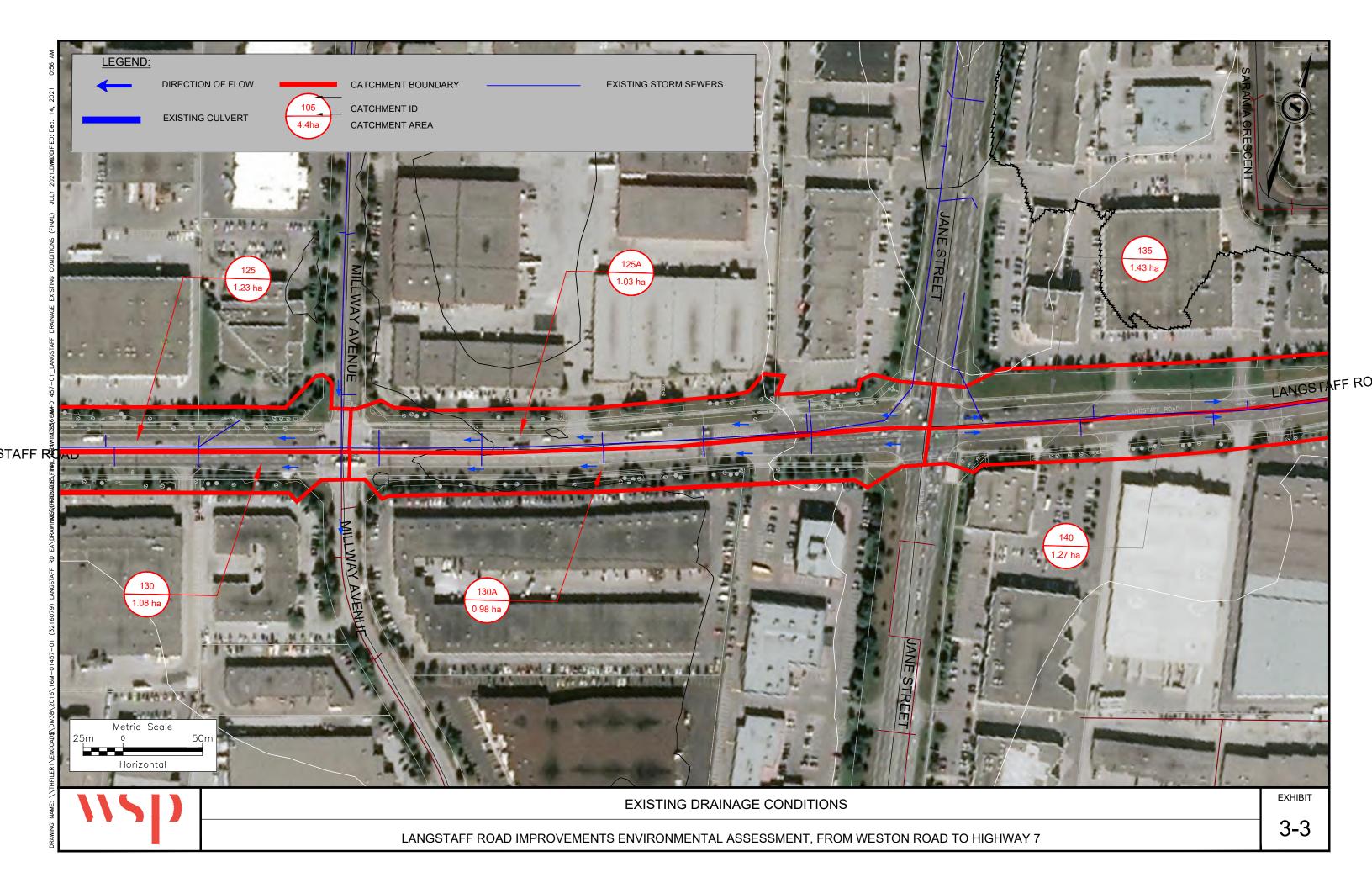
- The existing conditions HEC-RAS models of Westminster Creek is a part of the West Don River Model (River 2, Reach 1). The flows for this reach were also updated based on the 2019 flows. Westminster Creek crosses Langstaff Road by a 2-cell each 3.7 m span x 1.8 m rise concrete box culvert. Based on the new flows, the existing culvert meets the freeboard requirement for the 100-year storm. The Regional Storm overtops Langstaff Road by 0.19 m; however, it meets the relief flow depth and relief flow criteria.
- 5. Under proposed conditions, the widening of Langstaff Road is not expected to directly impact Black Creek and Westminster Creek culverts. Therefore, proposed conditions hydraulic assessments for these two culverts is not required.
- 6. For the West Don River bridge at Langstaff Road (Bowes Bridge), a 30 m single span structure is proposed to replace the existing structure. The proposed conditions hydraulic assessment illustrated that the proposed 30 m single span bridge is hydraulically efficient and meets all hydraulic performance requirements. The Regional storm does not overtop Langstaff Road.
- 7. A new culvert is proposed (Culvert LC1) just east of Creditstone Road to facilitate the drainage for an unnamed tributary of the West Don River. The proposed size of the culvert is 2.4 m span by 1.5 m rise.
- **8.** Under existing conditions, there is no SWM facilities for runoff quantity and quality control. The existing storm sewers and roadside ditches convey both major and minor storm runoff to the receiving watercourses.
- **9.** Under proposed conditions various stormwater systems are provided for runoff quality control and peak flow control.
 - Two dry SWM ponds and eight pipe storage systems for peak flow control.
 - Twelve oil grit separators are proposed for runoff quality treatment.
 - Infiltration galleries are provided in various location for LID and water balance measures.

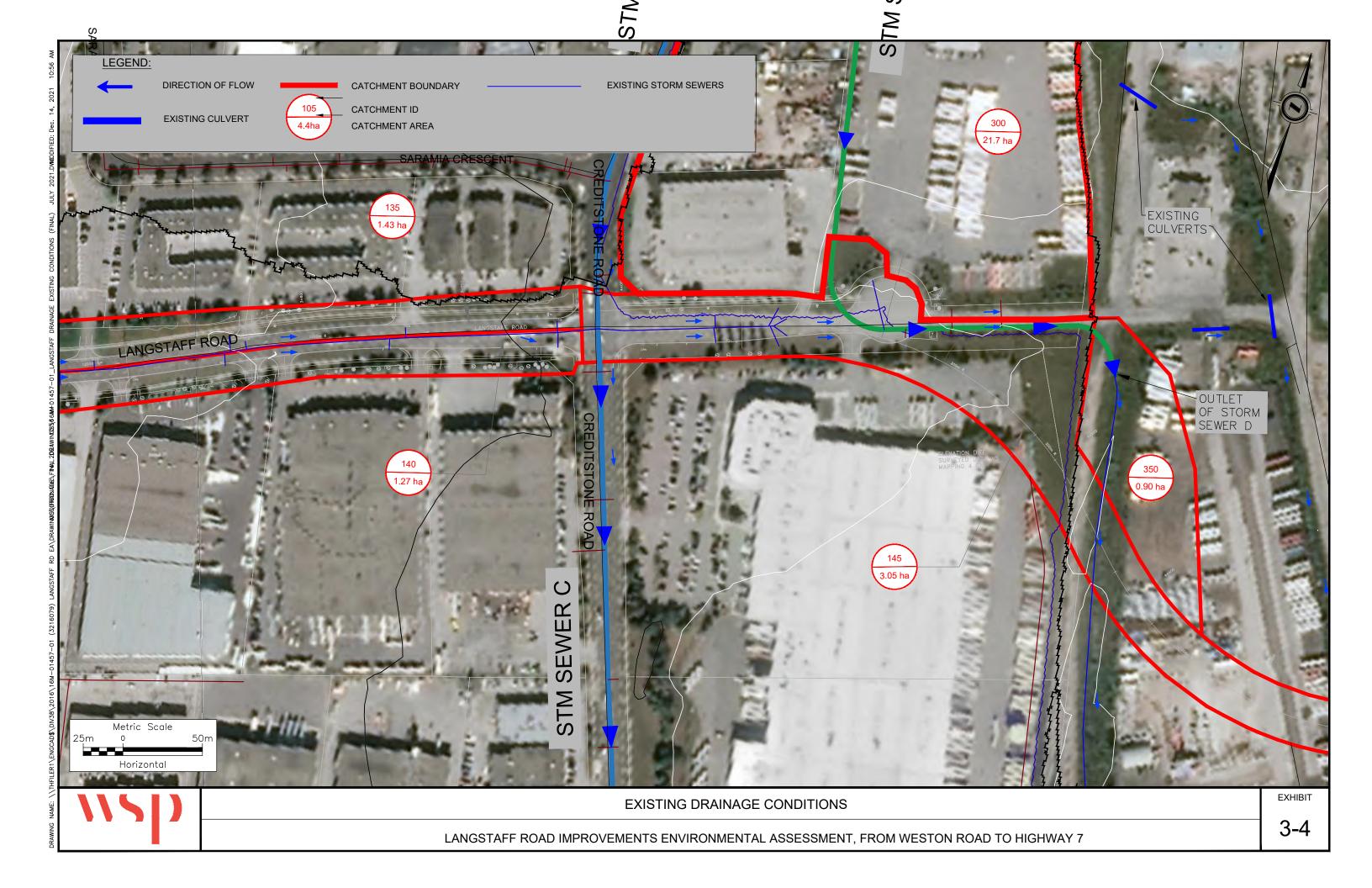
Based on the preceding assessments and conclusions, following SWM strategy recommendations are made for the Langstaff Road widening:

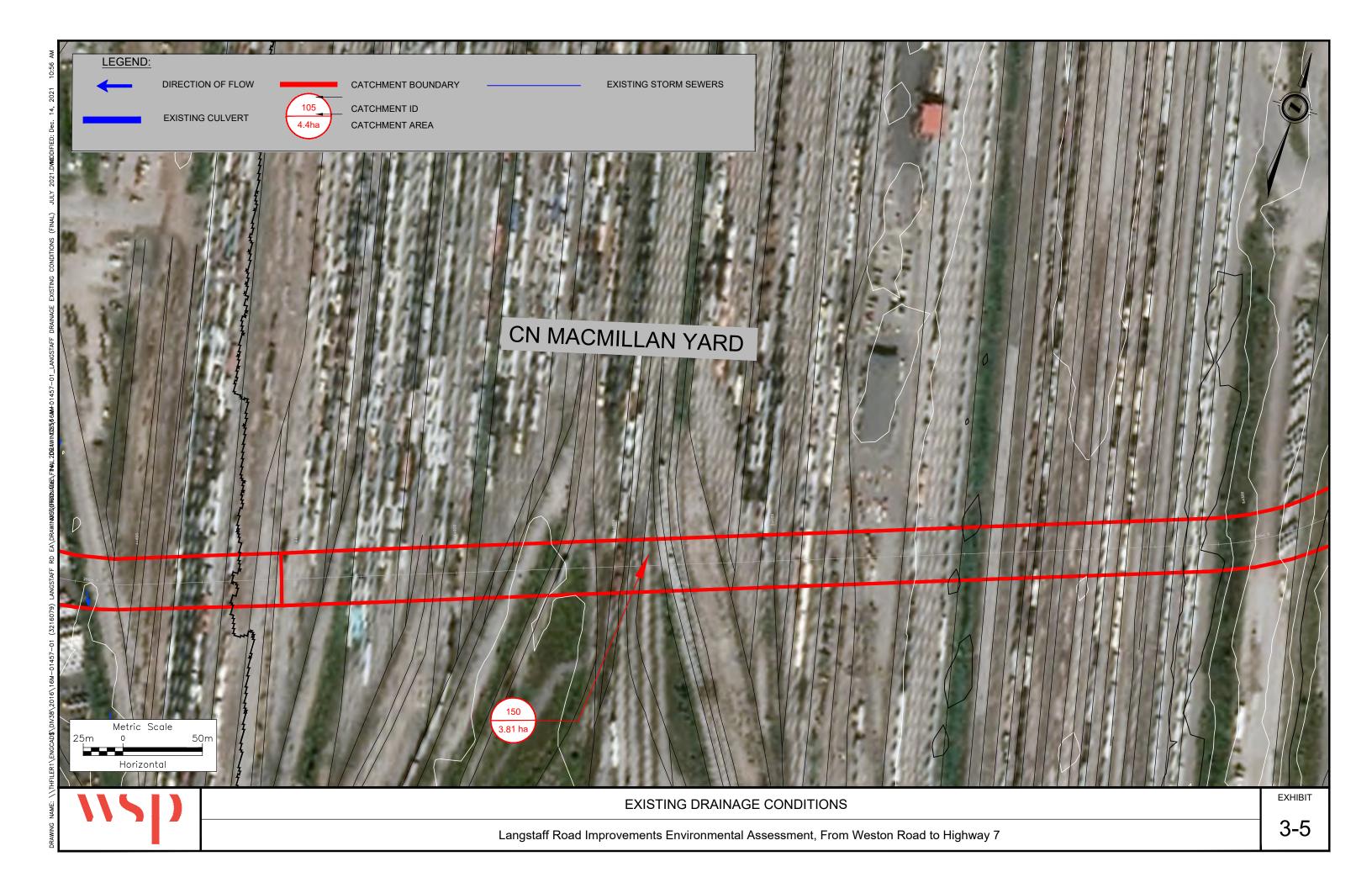
- 1. A 30 m single span bridge to be installed to replace the existing Bowes Bridge.
- **2.** A new Culvert LC1 sized 2.4 m span by 1.50 m rise be installed to the east of Creditstone Road at Sta. 4+390.
- 3. A new SWM Dry pond facility (DDP-1) be implemented within the West Don River watershed east of Creditstone Road for peak flow control (to be controlled to the unit flow release rate). Approximately 76 m long retaining wall is required on the south-west side of the pond to maintain the roadway grading. The top elevation of the retaining wall will be 211.50 m.
- **4.** A new wet SWM pond facility (DWP-1) be implemented within the West Don River watershed at the north-west quadrant of Keele Street and Langstaff Road

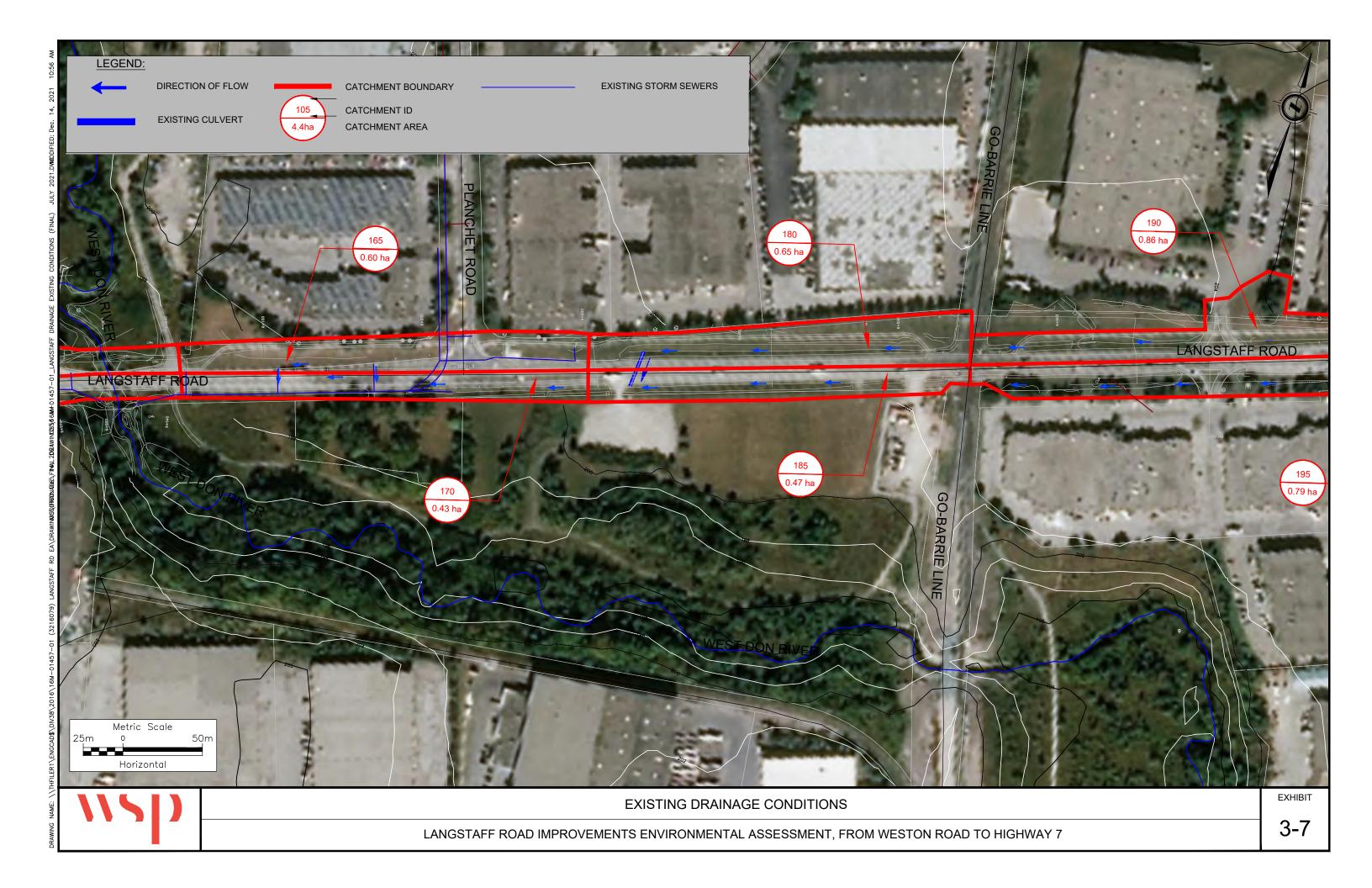

- intersection (i.e. at the east end of the CN MacMillan Rail Yard crossing) for peak flow control (to be controlled to the unit flow release rate).
- 5. Four pipe storage systems HSP-1A, HSP1-B, HSP-2 and HSP-3 be installed within the Humber River watershed. HSP-1A and HSP1-B controls the flow to the 10-year level to maintain the existing conditions flow rate and the outflow will be connected to the existing storm sewer. HSP-2 and HSP-3 will control the flow from post- to pre- development levels as in existing conditions.
- 6. A pipe storage system DSP-1 be installed within the West Don River watershed west of Creditstone Road and the outflow will be discharged to the SWM dry pond facility (DDP-1).
- 7. A pipe storage system DSP-2 be installed within the West Don River watershed between Keele Street and the GO Transit Barrie Line which will provide peak flow control based on the unit flow release rate.
- 8. A pipe system DSP-3A and DSP-3B be installed within the West Don River watershed between the GO Transit Barrie Line and North Rivermede Road which will control to the existing 10-year flow rate and the outflow be connected to the existing 1050 mm sewer. A detailed investigation of the existing 1050 mm sewer and its conditions must be reviewed in the detailed design phase.
- 9. Two pipe storage system DSP-4 and DSP-5 be installed within the West Don River watershed on both west and east sides of Westminster Creek, respectively, which will provide peak flow control based on the unit flow release rate.
- **10.** Twelve Oil-grit separators be implemented at different locations for runoff quality control. The sizing of OGS will be confirmed during the detailed design phase.
- 11. Infiltration galleries and/or exfiltration trenches be implemented at 20 locations as a preliminary recommendation for water balance requirement. However, the location and size of all infiltration galleries depend on the soil and groundwater conditions and utility conflicts which will be further reviewed during the detailed design phase.
- 12. During the detailed design phase, it is recommended to explore the possibility of utilizing the City of Vaughan SWM Pond C located just south of the CNR overpass so that runoff of Langstaff Road from the east of CNR Access Road to the high point at CNR overpass can be conveyed by a storm sewer and discharged into the City of Vaughan's SWM pond to reduce the road spread.

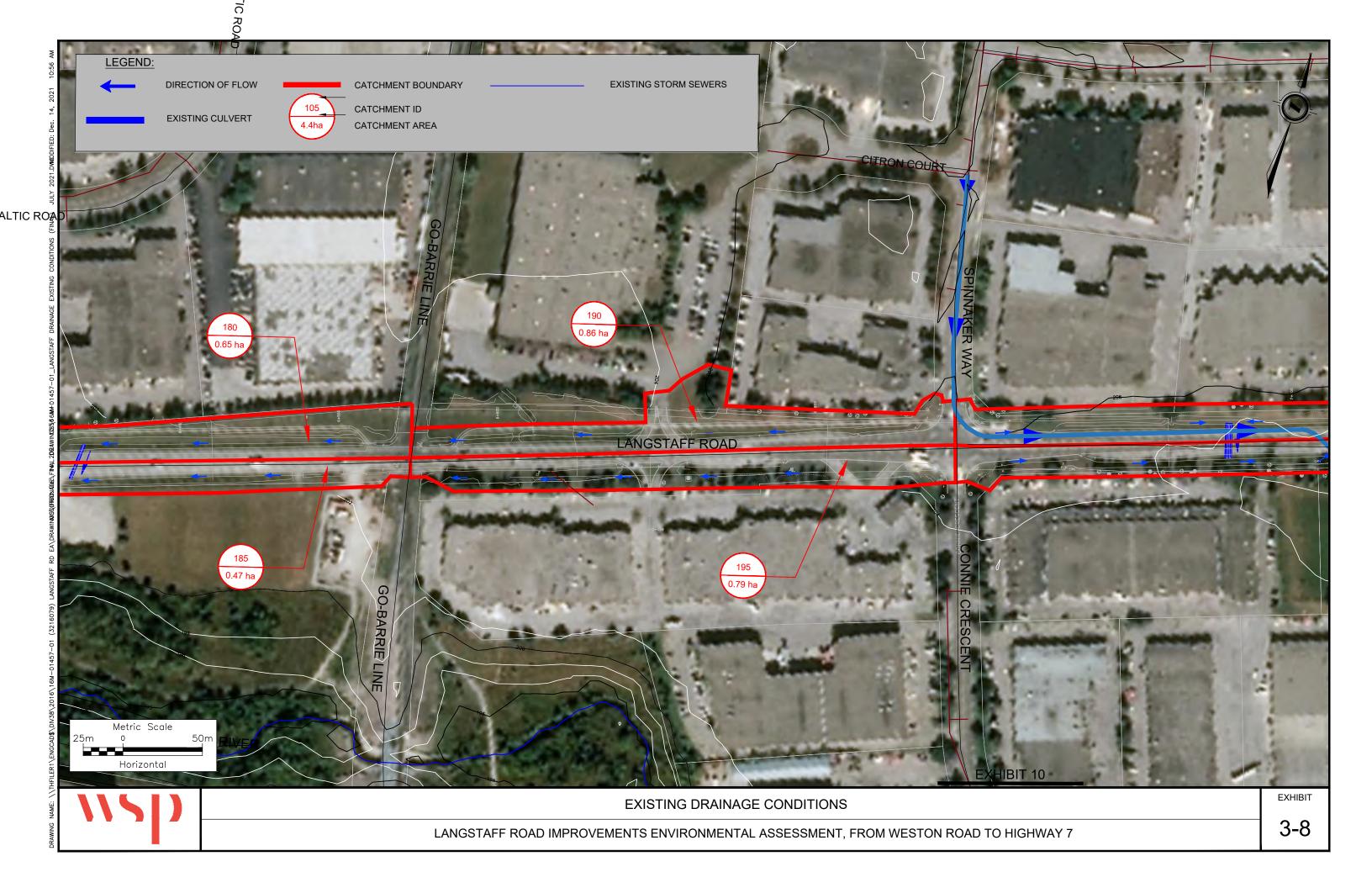

Following commitments are carried forward for the detailed design phase:

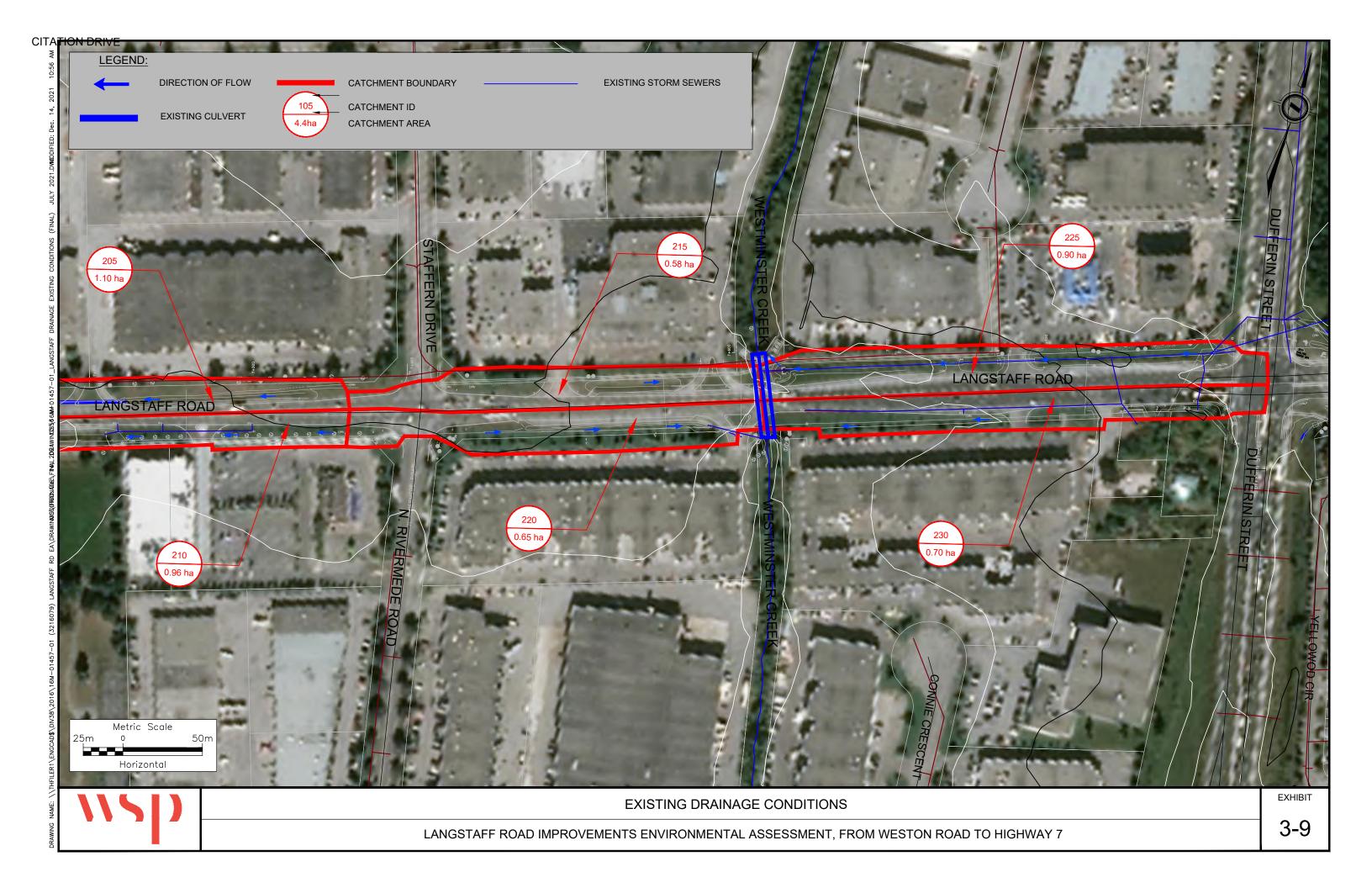

- The hydraulic modelling of all crossings will be updated as per the TRCA's updated hydraulics models available at that time.
- In the existing and proposed conditions hydrologic modelling of the road corridor, an initial abstraction value of 1.0 mm for impervious areas will be used.

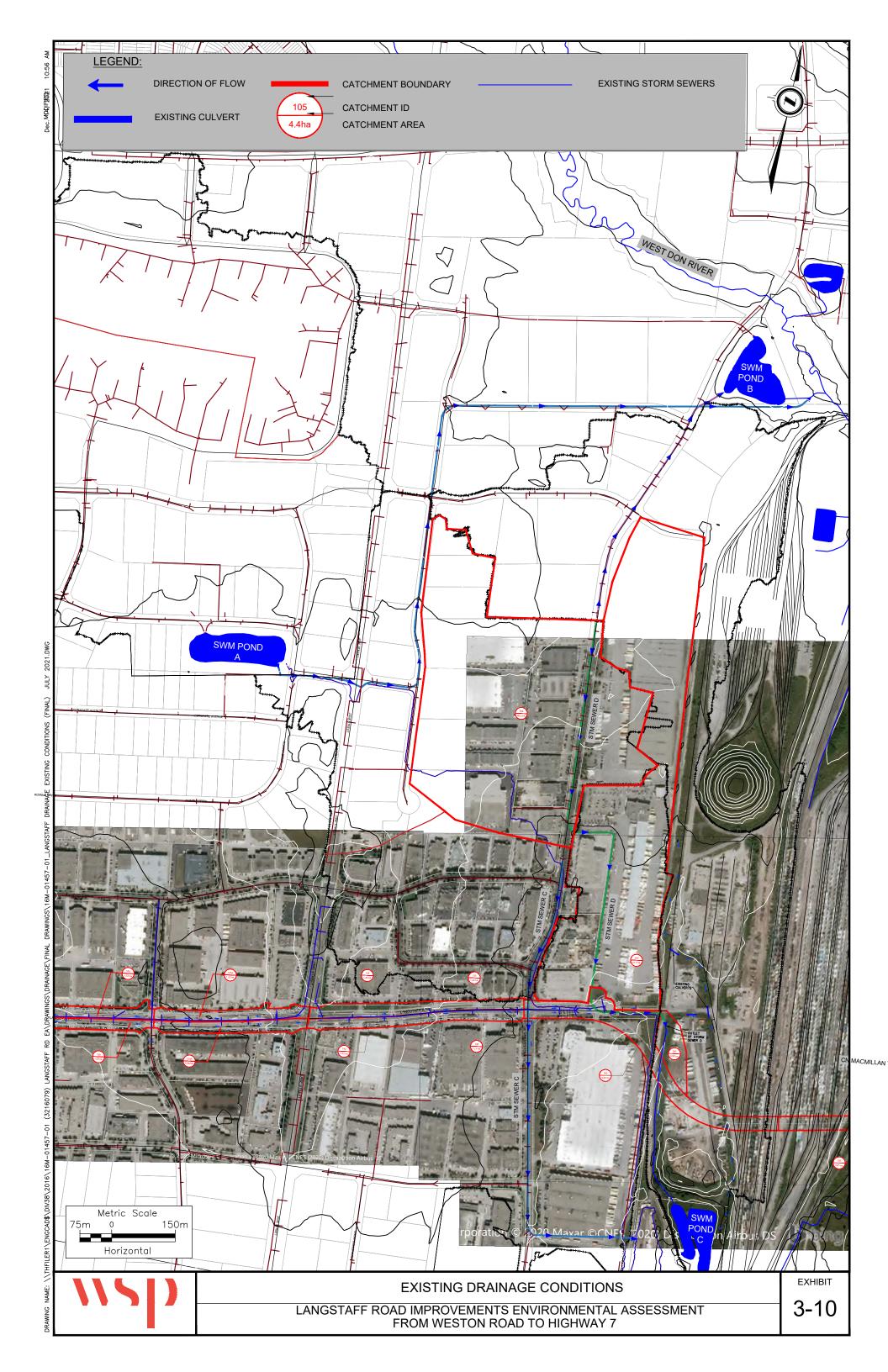

- While determining the size (length, width and depth) of infiltration galleries and / or exfiltration trenches, seasonal groundwater table, infiltration test and conflict with utilities will be further reviewed.
- Investigate the drainage area and capacity of existing SWM Pond C (under jurisdiction of City of Vaughan) located south of the Langstaff Road overpass to determine if it is feasible to convey runoff from a portion of Langstaff Road overpass bridge to the SWM pond.
- During the overpass bridge construction, review of the flooding impact of proposed Culvert LC1 will be completed with detailed survey in the vicinity of Culvert LC1. The proposed size of Culvert LC1 will be updated accordingly.

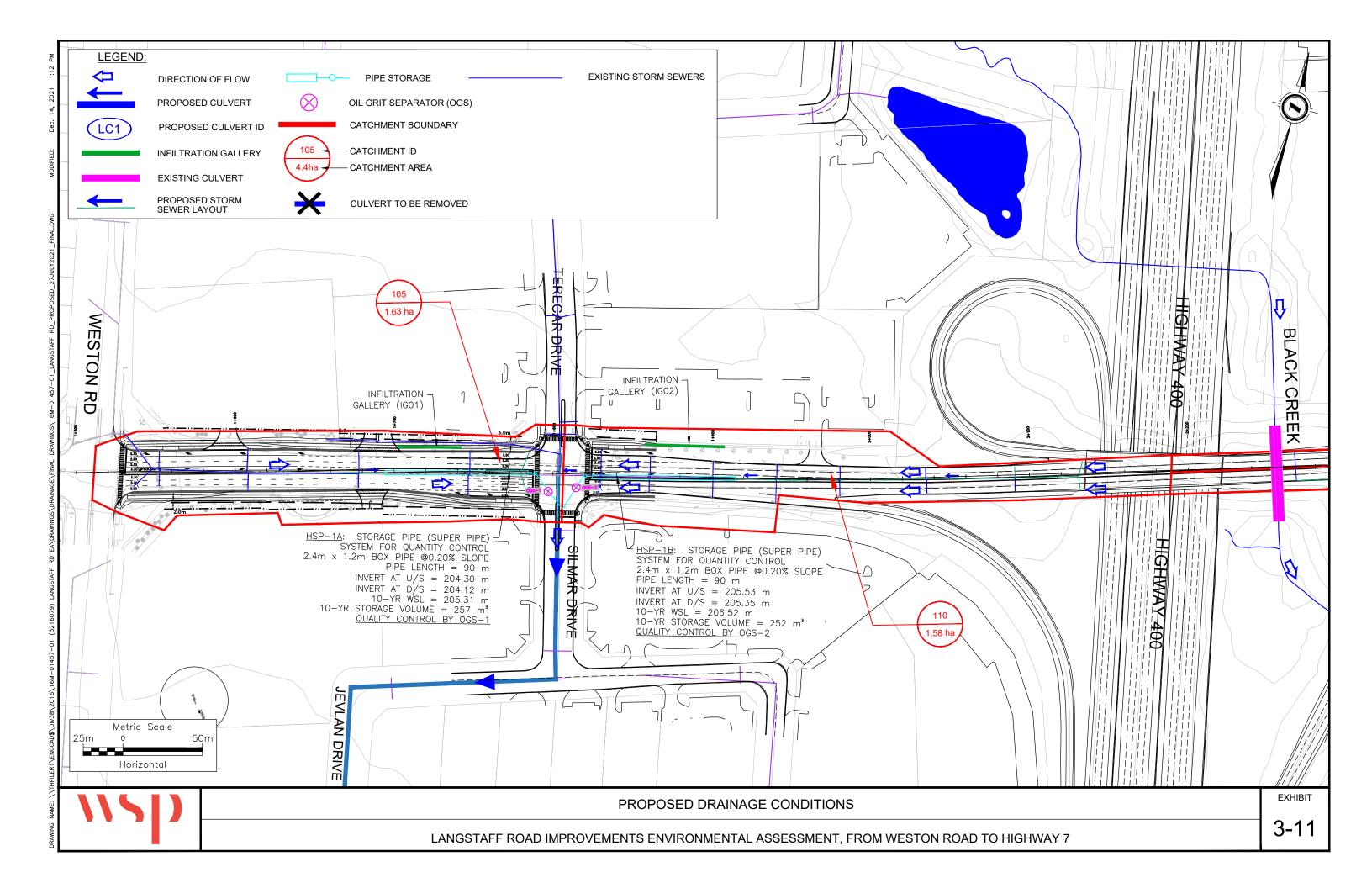

Exhibits

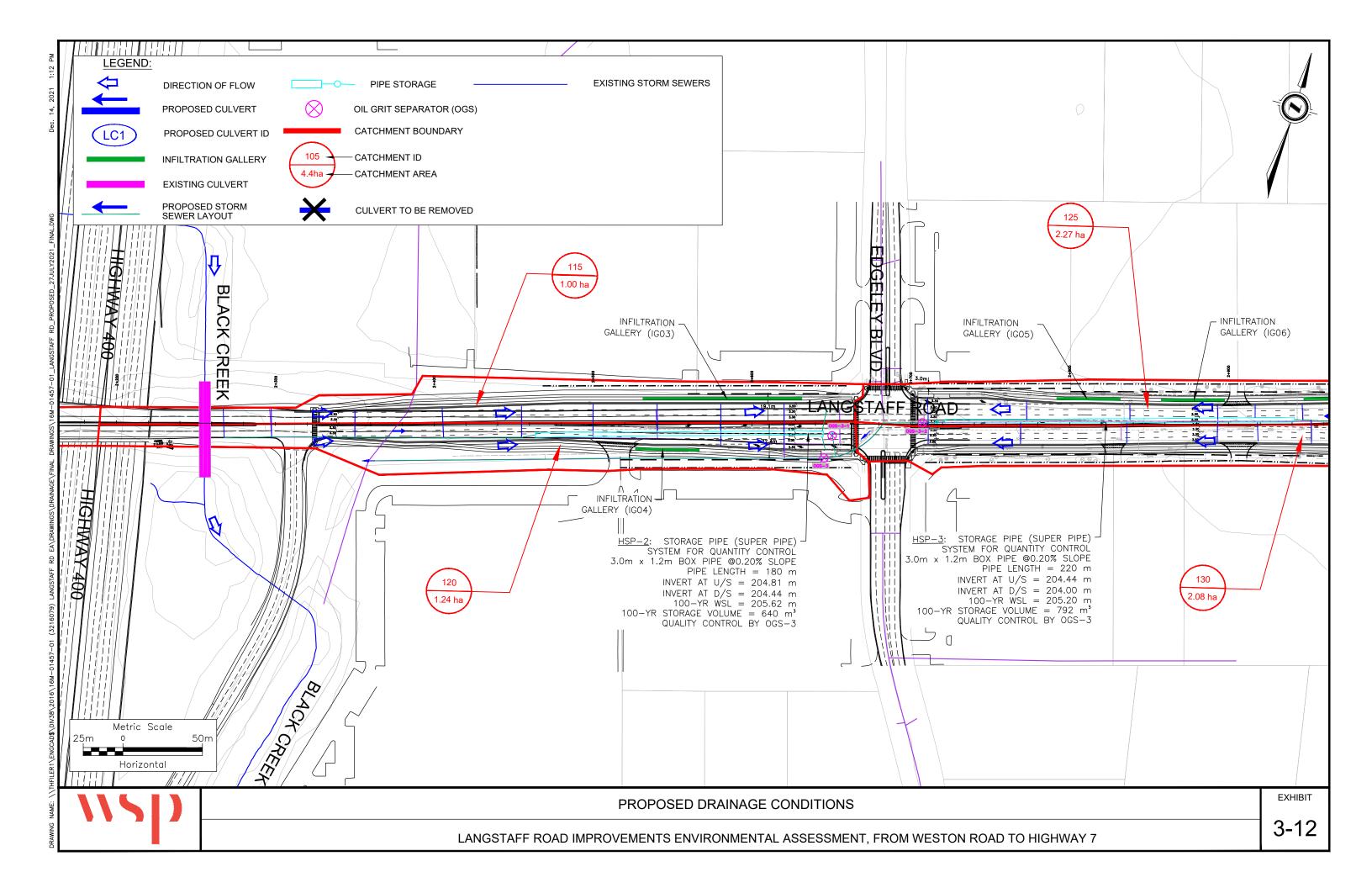


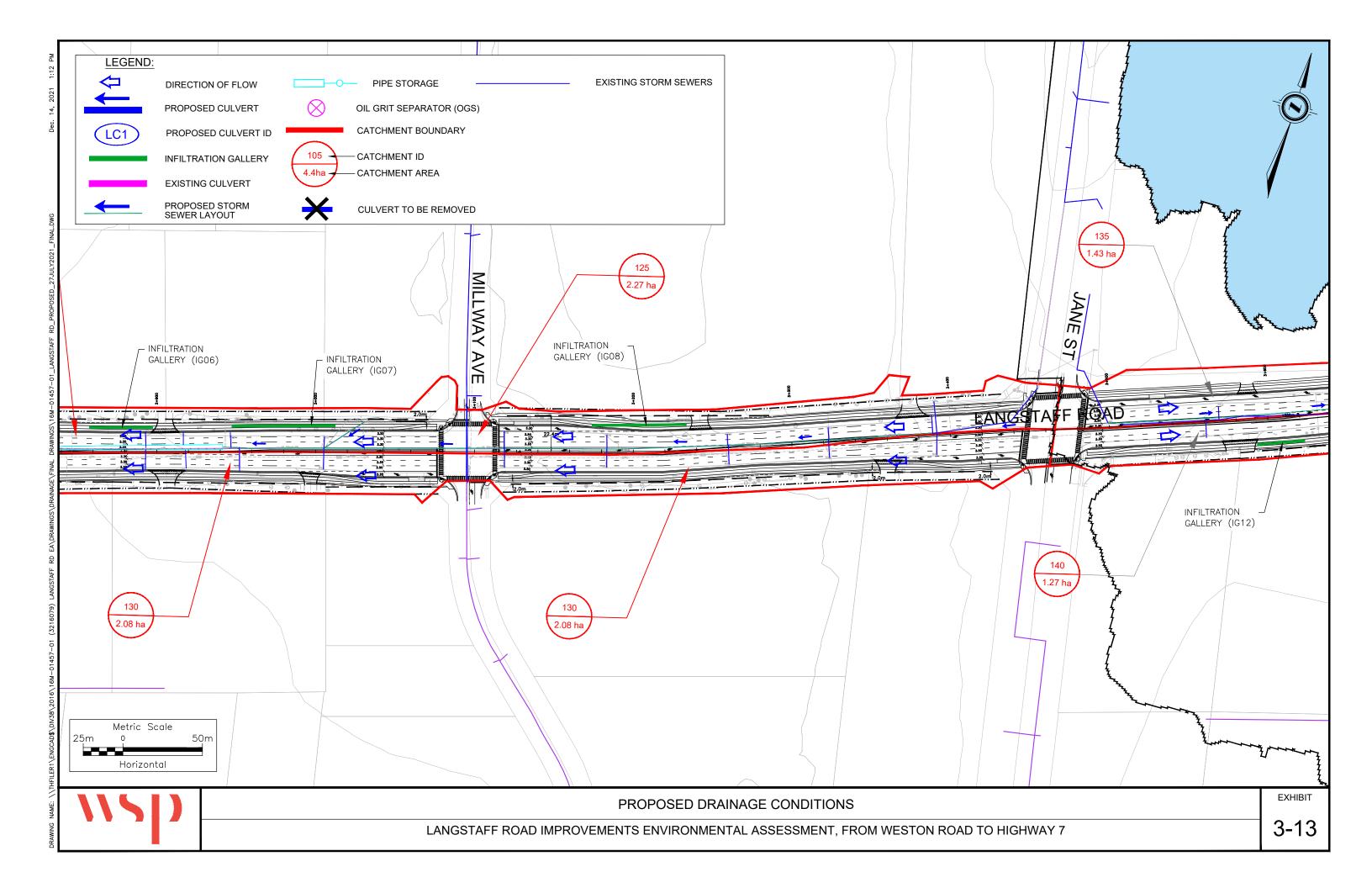


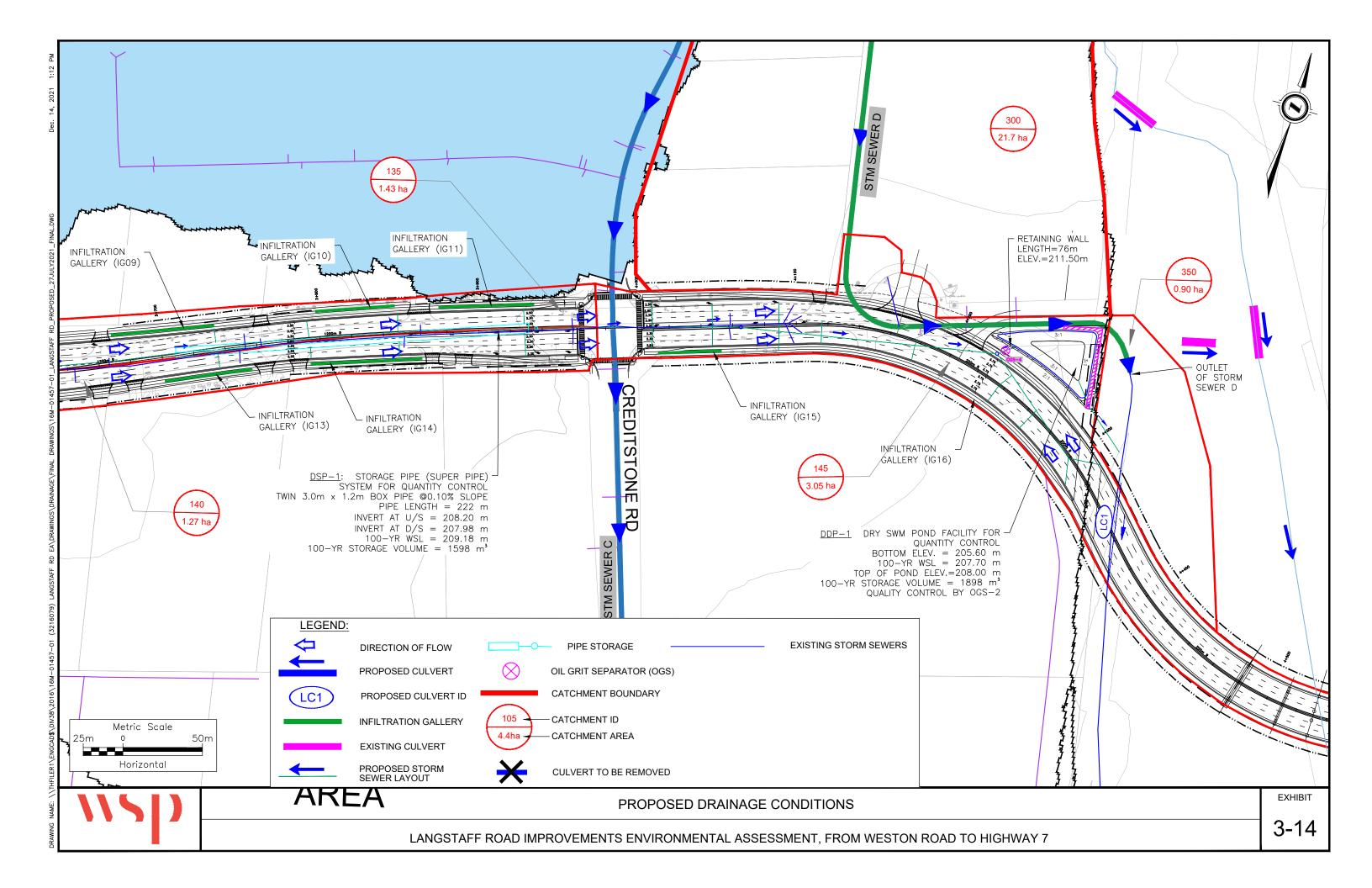


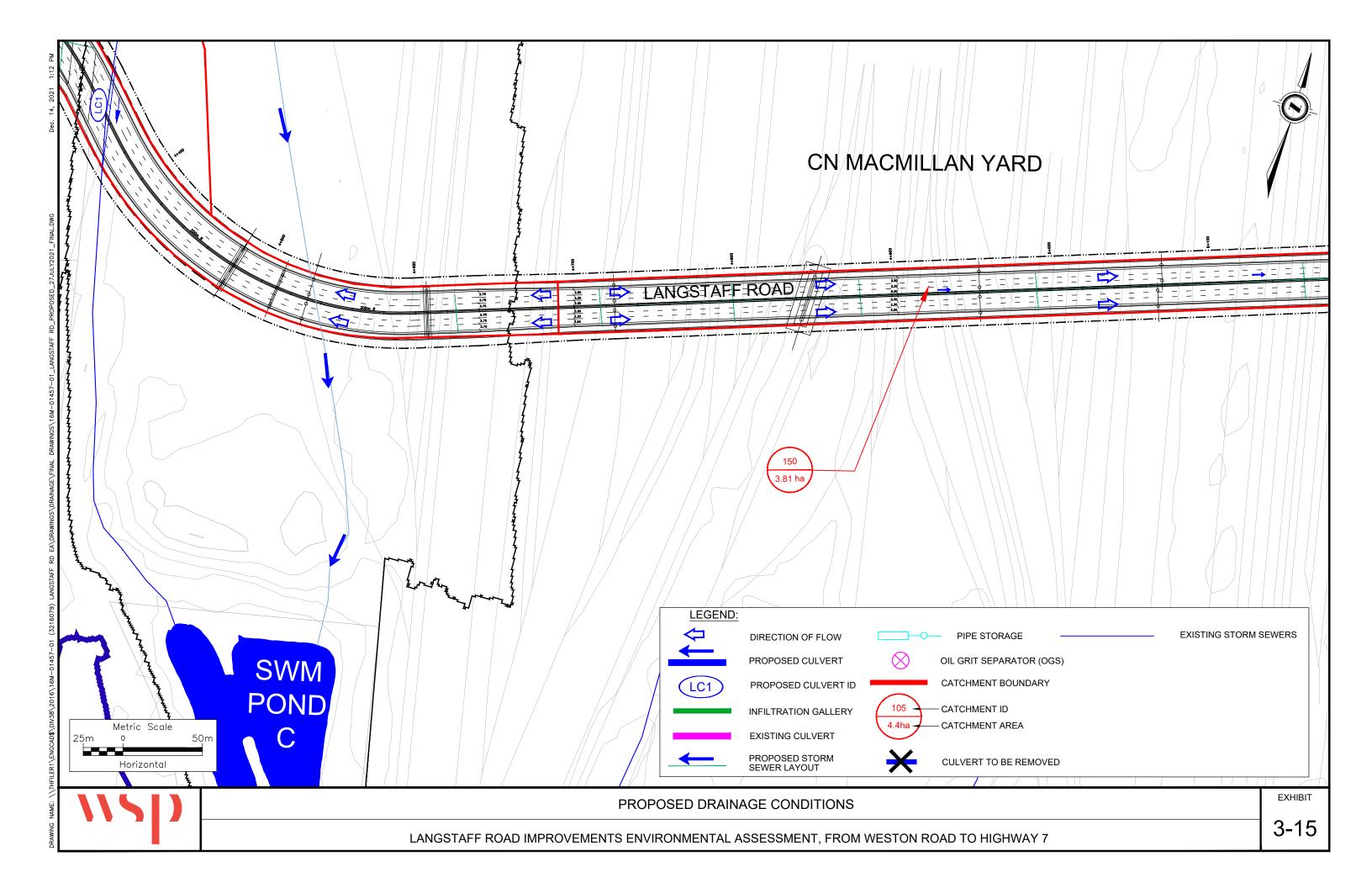


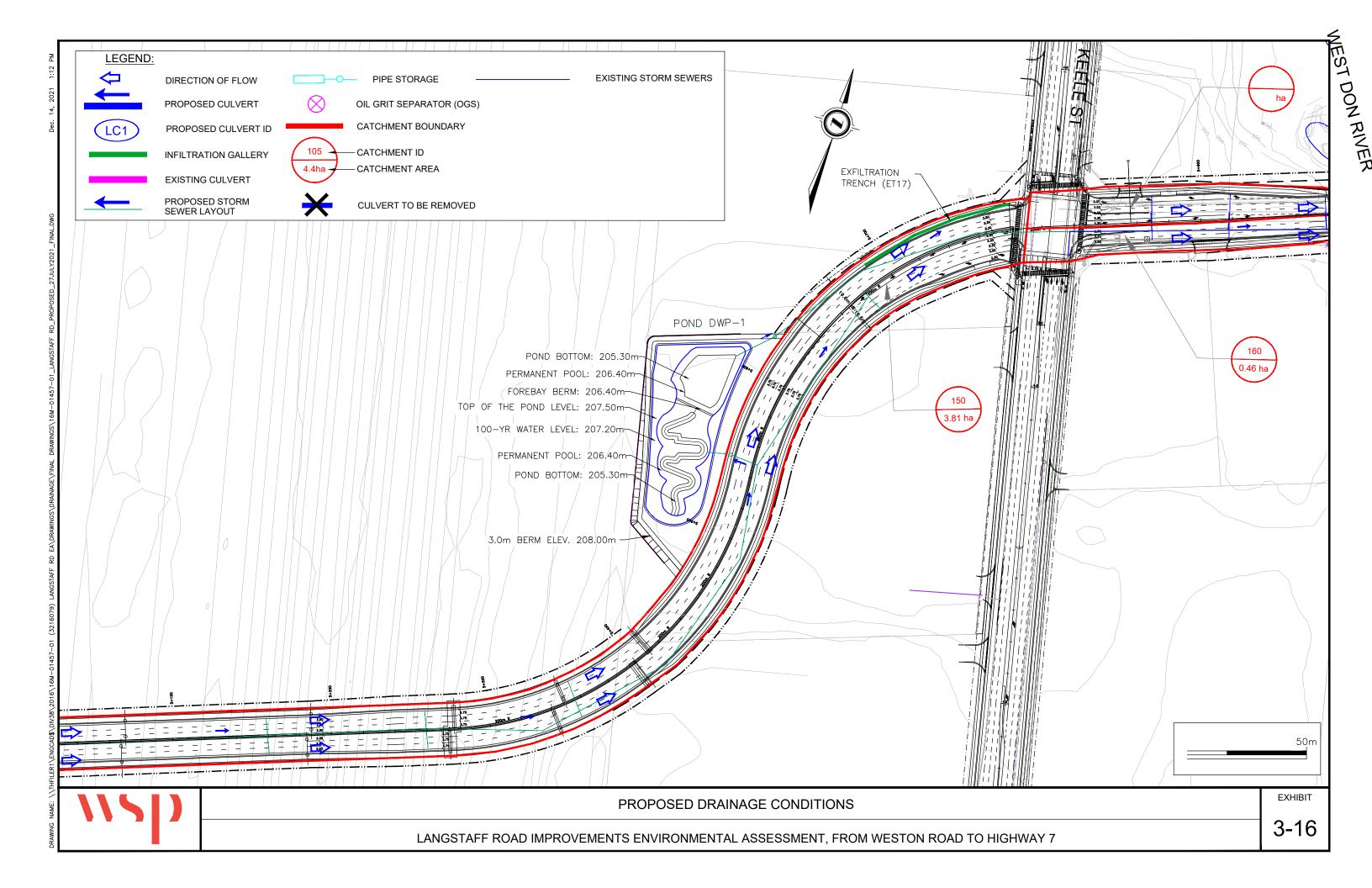


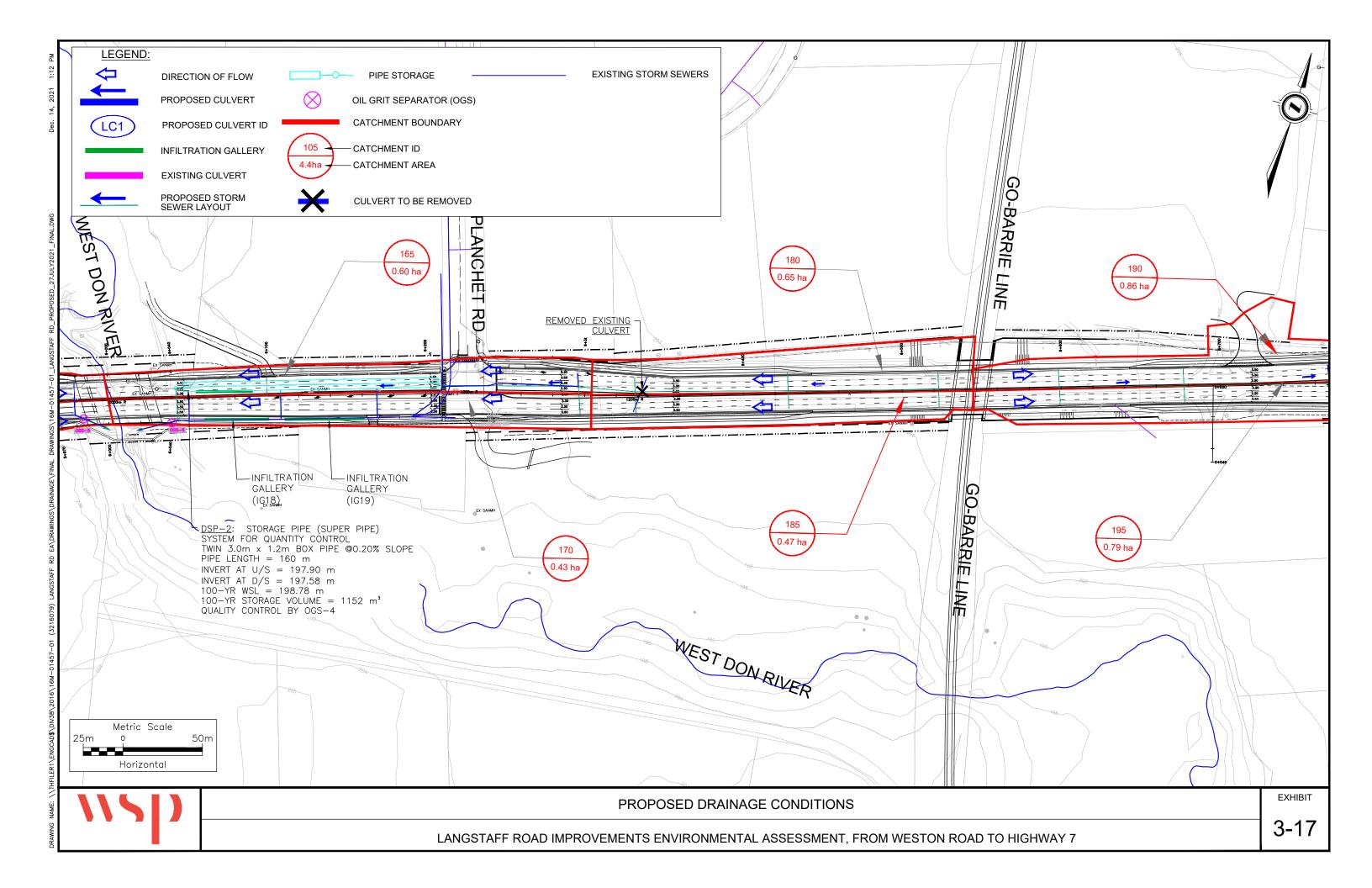


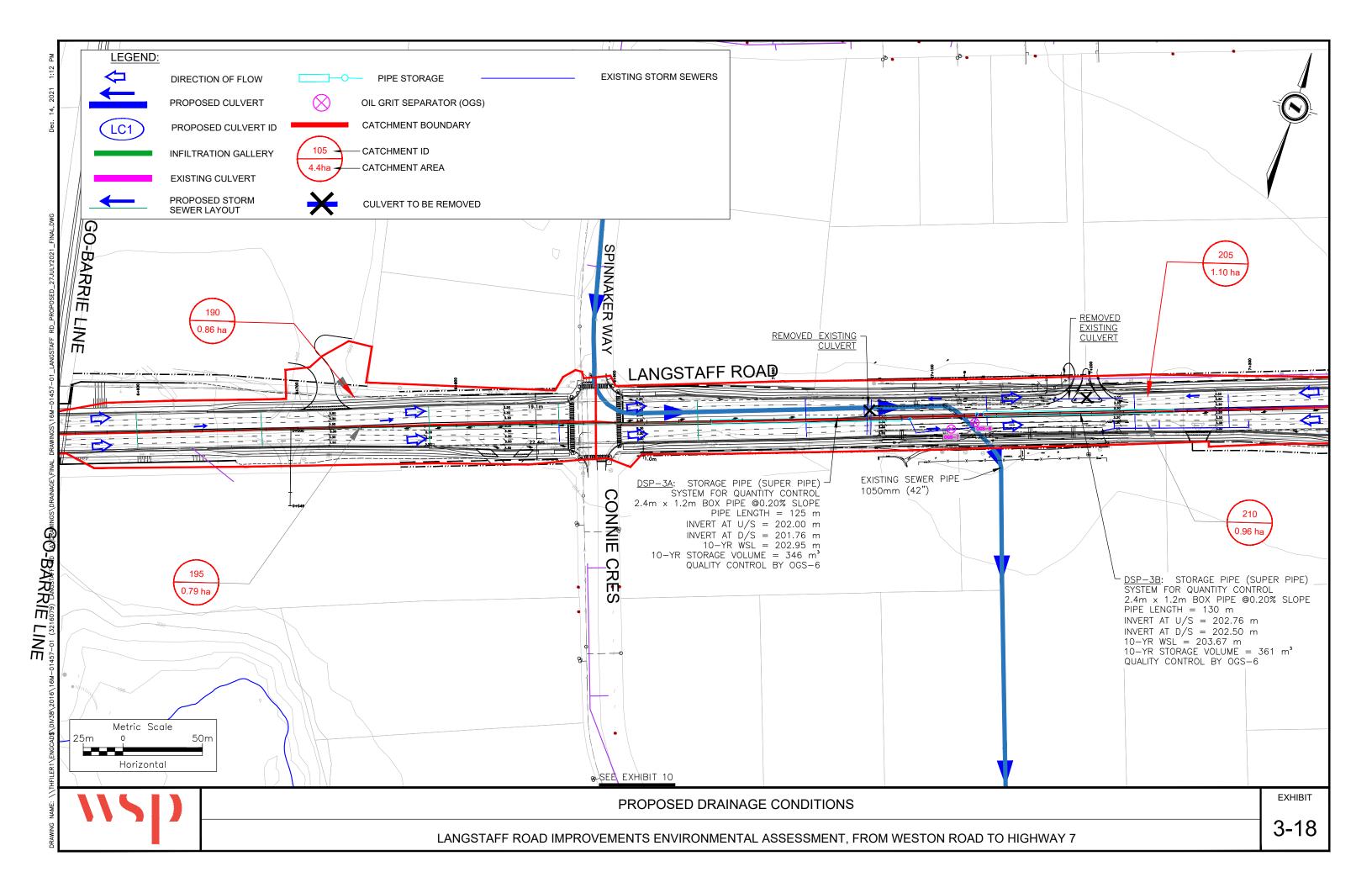


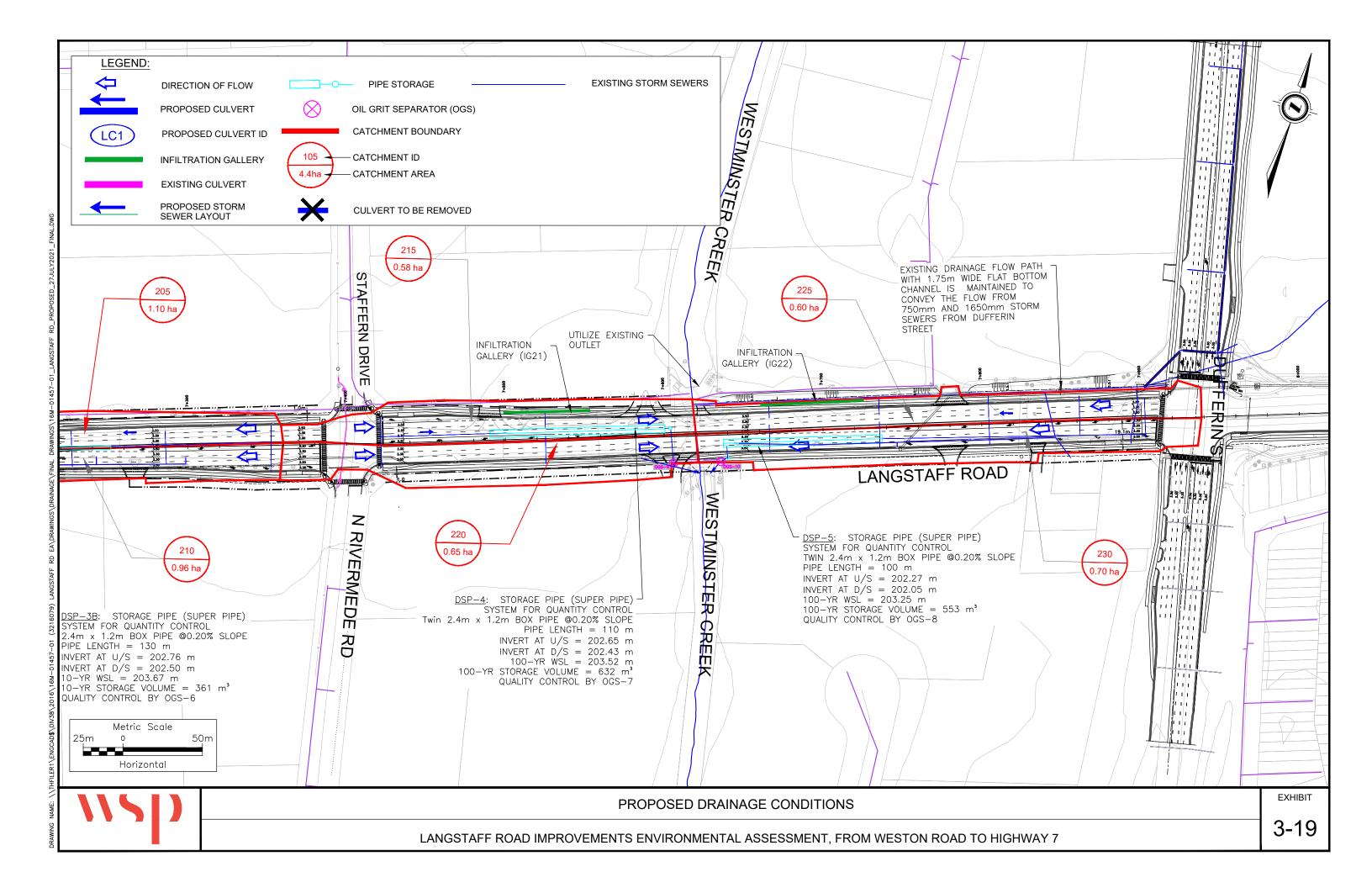


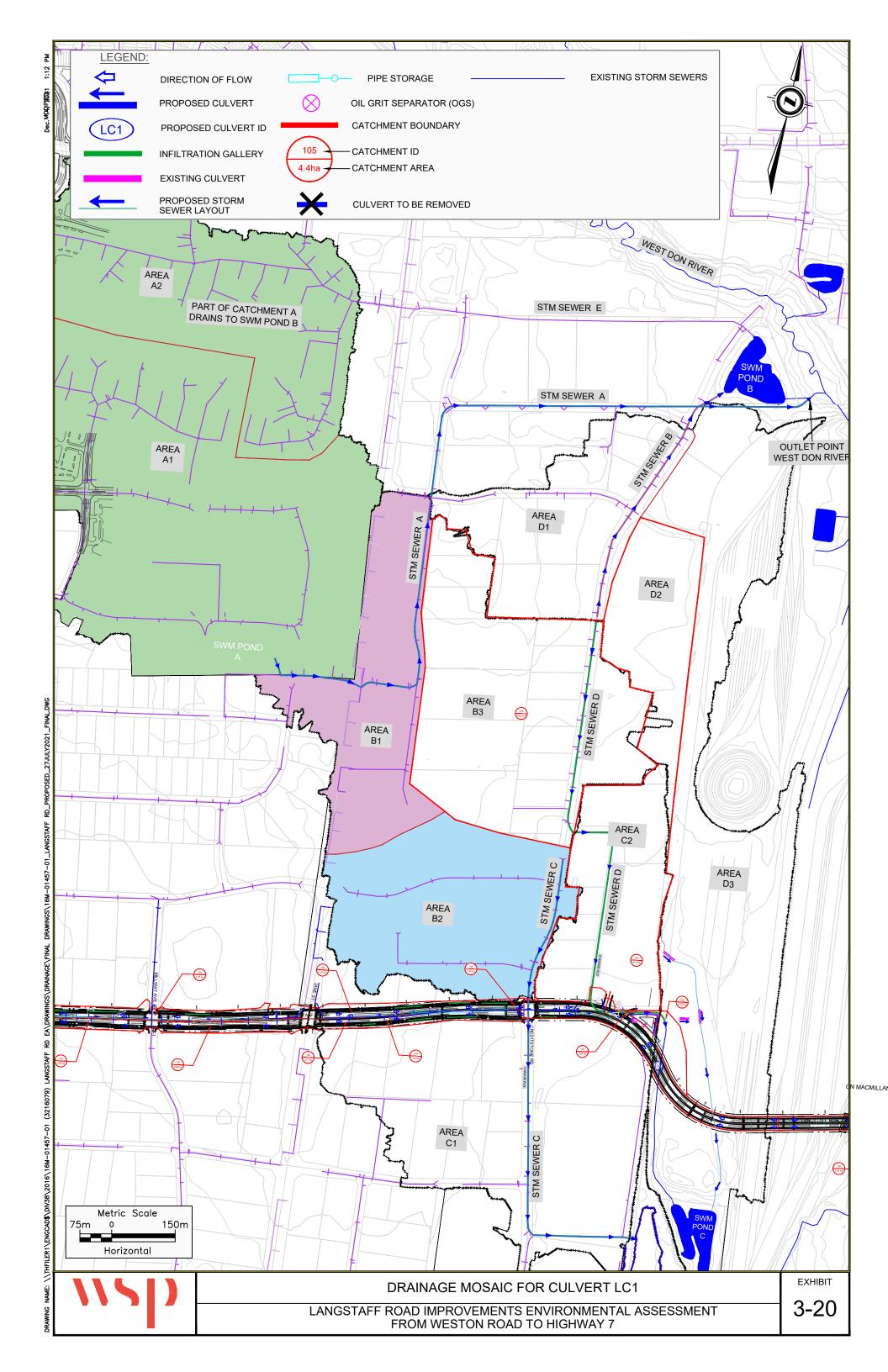


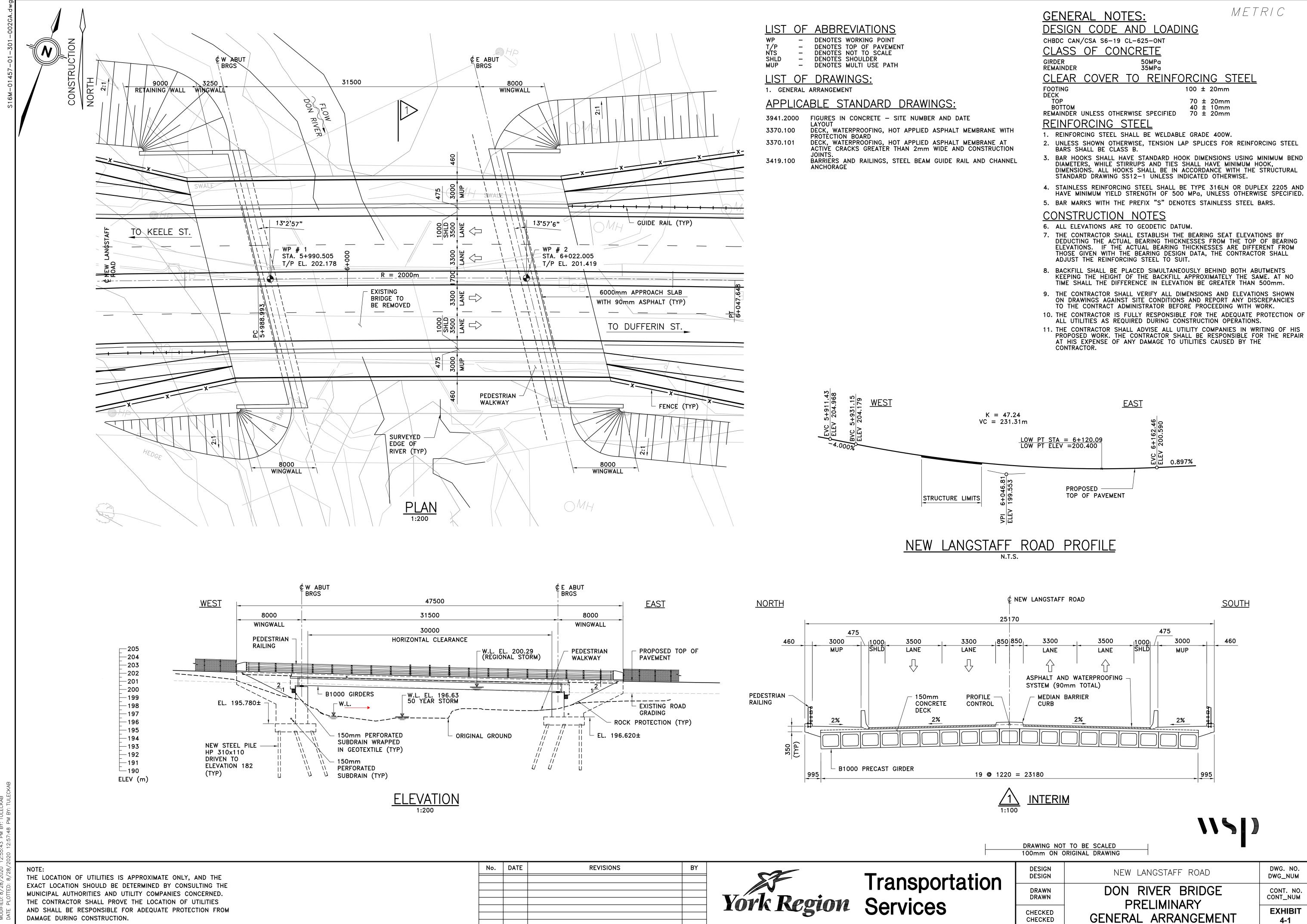


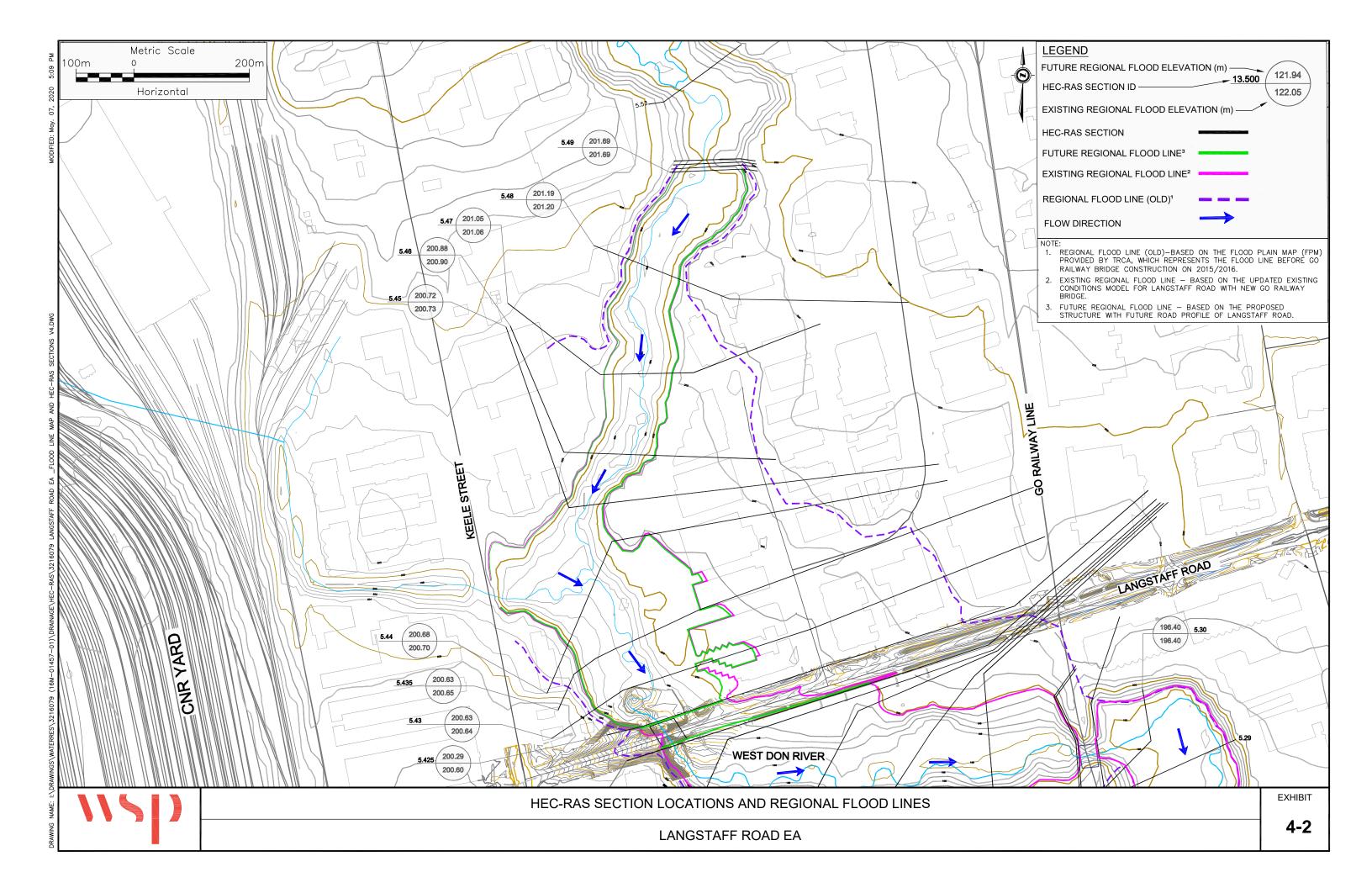


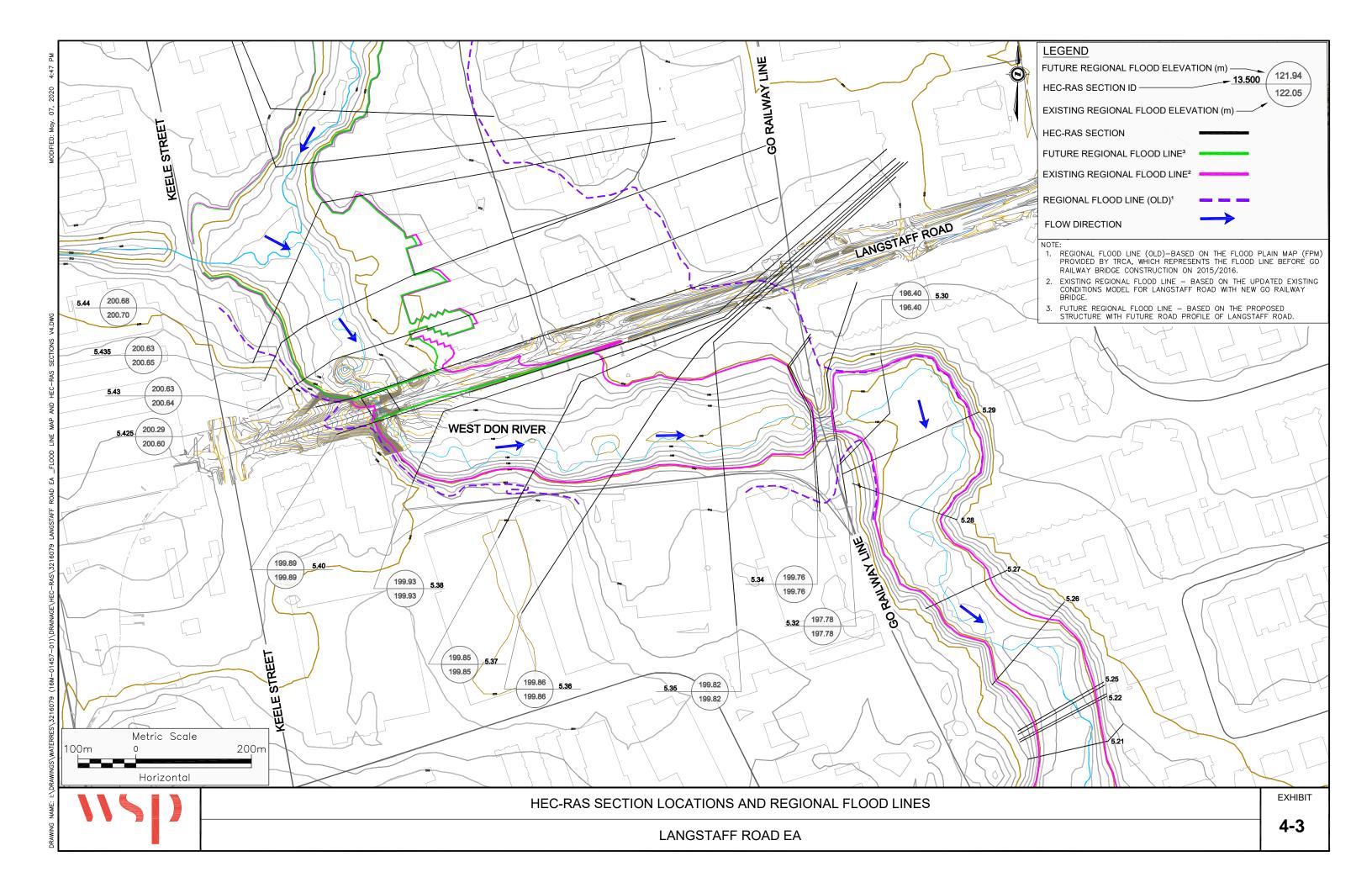


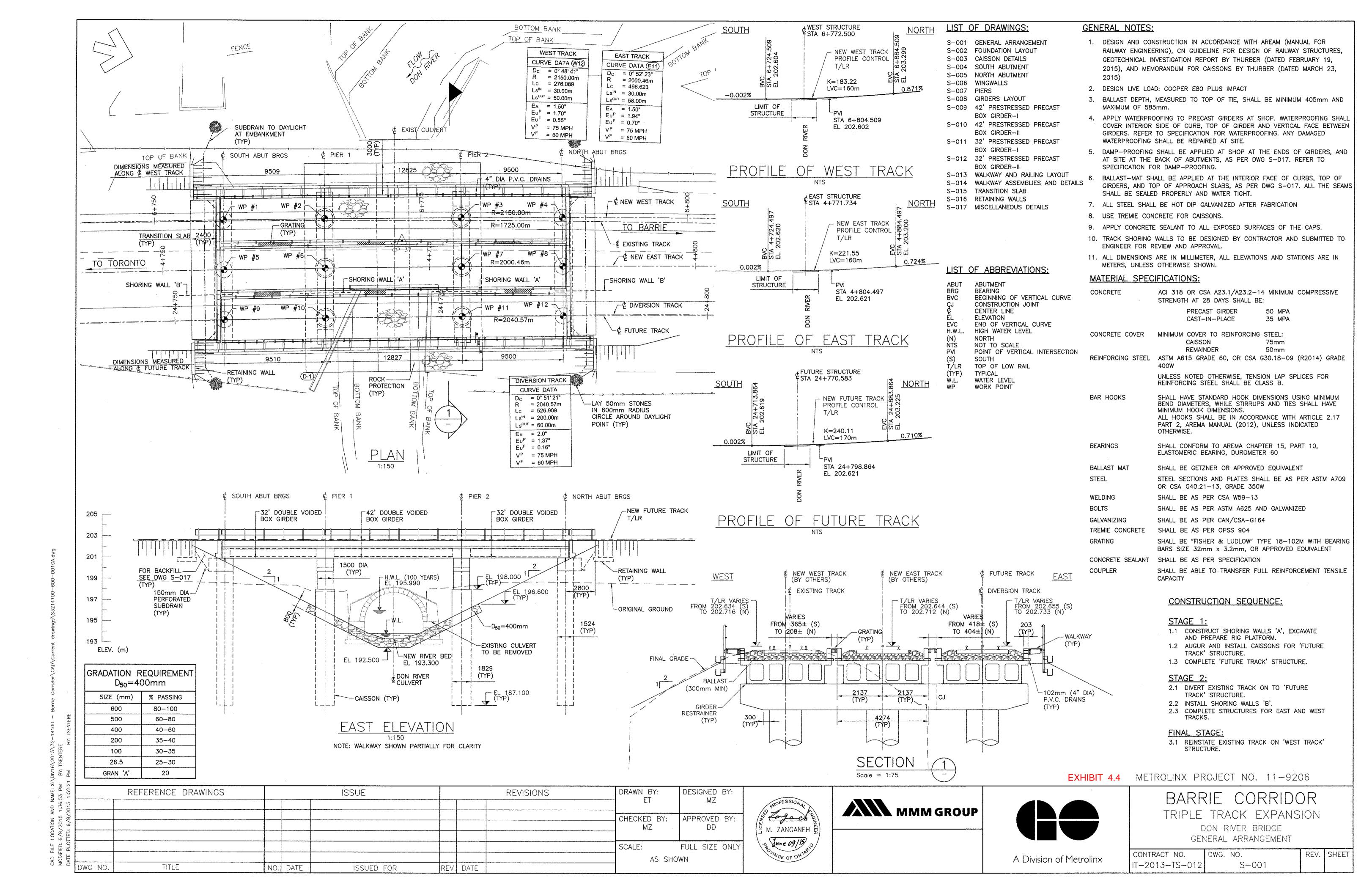












CAD FILE LOCATION AND NAME: S:\2016\16M-01457-01\301\S16M-01457-(MODIFIED: 8/28/2020 12:55:43 PM BY: TULECKAB

APPENDIX

A

Site Investigation Photographs

Photographic Inventory, May 2, 2018 (Photo 1 to 12)

Photo 1: Black Creek Culvert, Downstream View

Photo 2: Black Creek Culvert, Upstream View

Photo 3: West Don River Bridge (Bowes Bridge), Upstream view

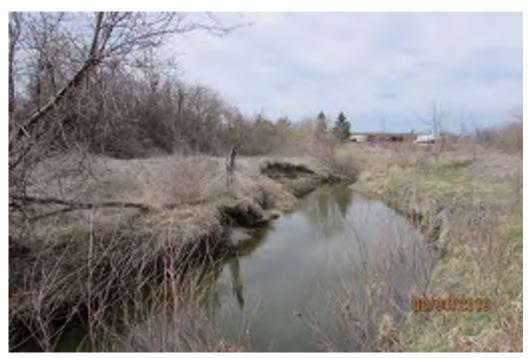


Photo 4: West Don River Channel, Upstream view from Langstaff Road

Photo 5: West Don River Bridge (Bowes Bridge), Downstream view

Photo 6: Storm Outlet on West Don River, East side on downstream of Bridge

Photo 7: Existing Drainage culvert CSP 500 mm near St. 6+340, Upstream view

Photo 8: Existing Drainage culvert CSP 500 mm near St. 6+340, Downstream view

Photo 9: Existing Drainage Culvert Twin CSP 900 mm near St. 7+060, Downstream view

Photo 10: Existing Drainage Culvert Twin CSP 900 mm near St. 7+060, Upstream view

Photo 11: Westminster Creek Culvert, Upstream view

Photo 12: Westminster Creek Culvert, Upstream view

Photographic Inventory, June 16, 2021 (Photo 13 to 24)

Photo 13: Looking east from Langstaff Road toward CN Property Yard

Photo 14: Looking East toward CNR Property and Road

Photo 15: Looking North from Langstaff Road toward CNR Railway Line (West Side Ditch)

Photo 16: Looking North from Langstaff Road toward CNR Railway Line (East Side Ditch)

Photo 17: Outlet of 1650 mm diameter storm Sewer that crosses Langstaff Road and discharges to a ditch downstream of Langstaff Road in CN Property (Inlet Channel to Existing SWM Pond C)

Photo 18: Close view of 1650 mm diameter Storm Sewer Outlet

Photo 19: Downstream Channel of 1650 mm diameter Outlet, which drains to Existing SWM Pond C

Photo 20: Location of Drainage Features in the Vicinity of CNR Yard

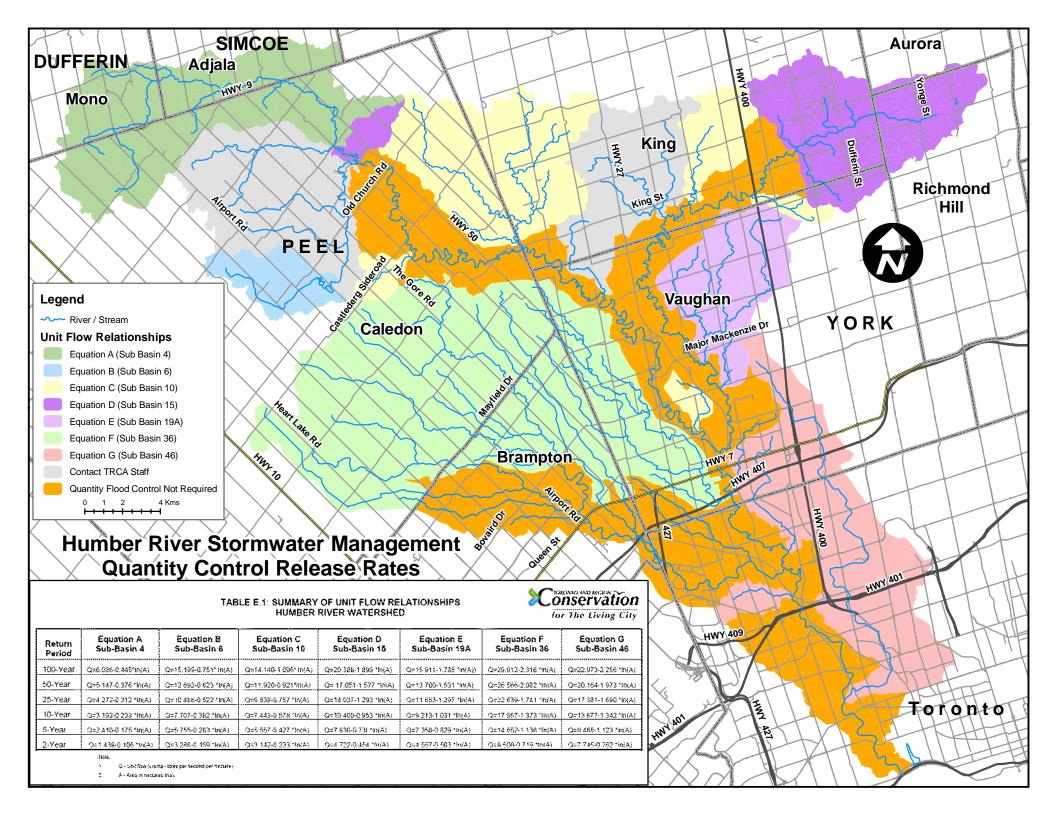
Photo 21 Culvert C1 Upstream View

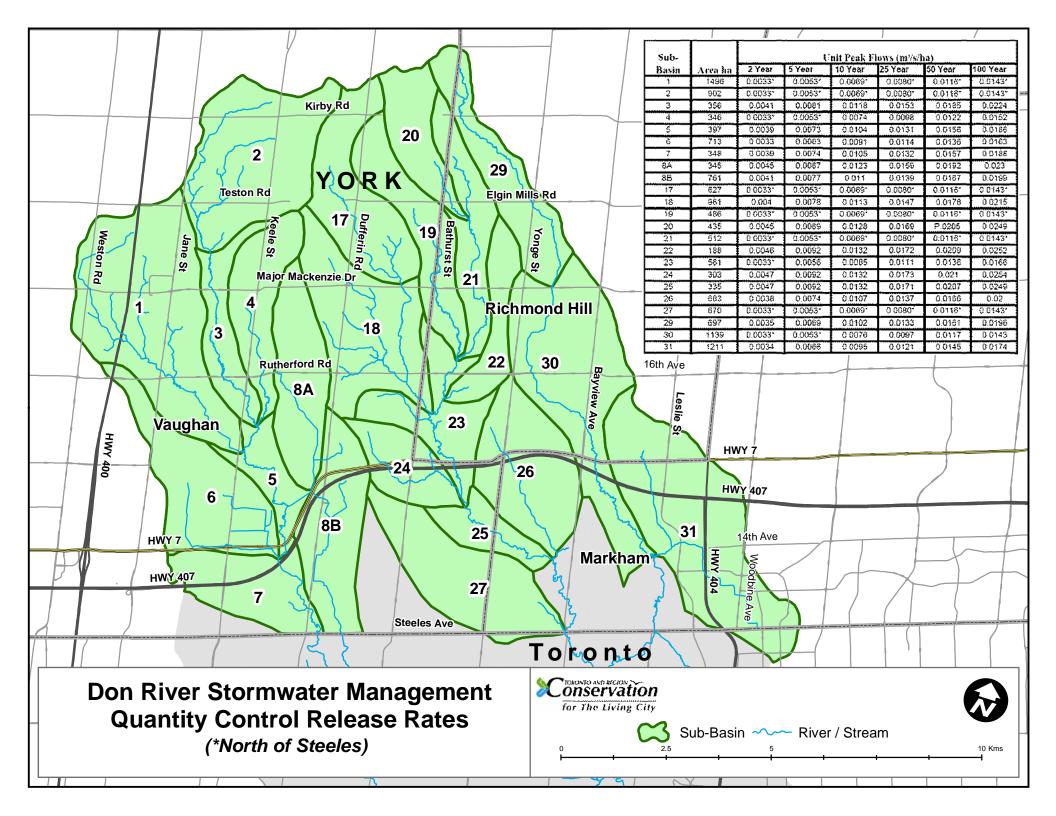
Photo 22: Culvert C2 Upstream View

Langstaff Road EA

Photo 23: Culvert C3 Downstream View

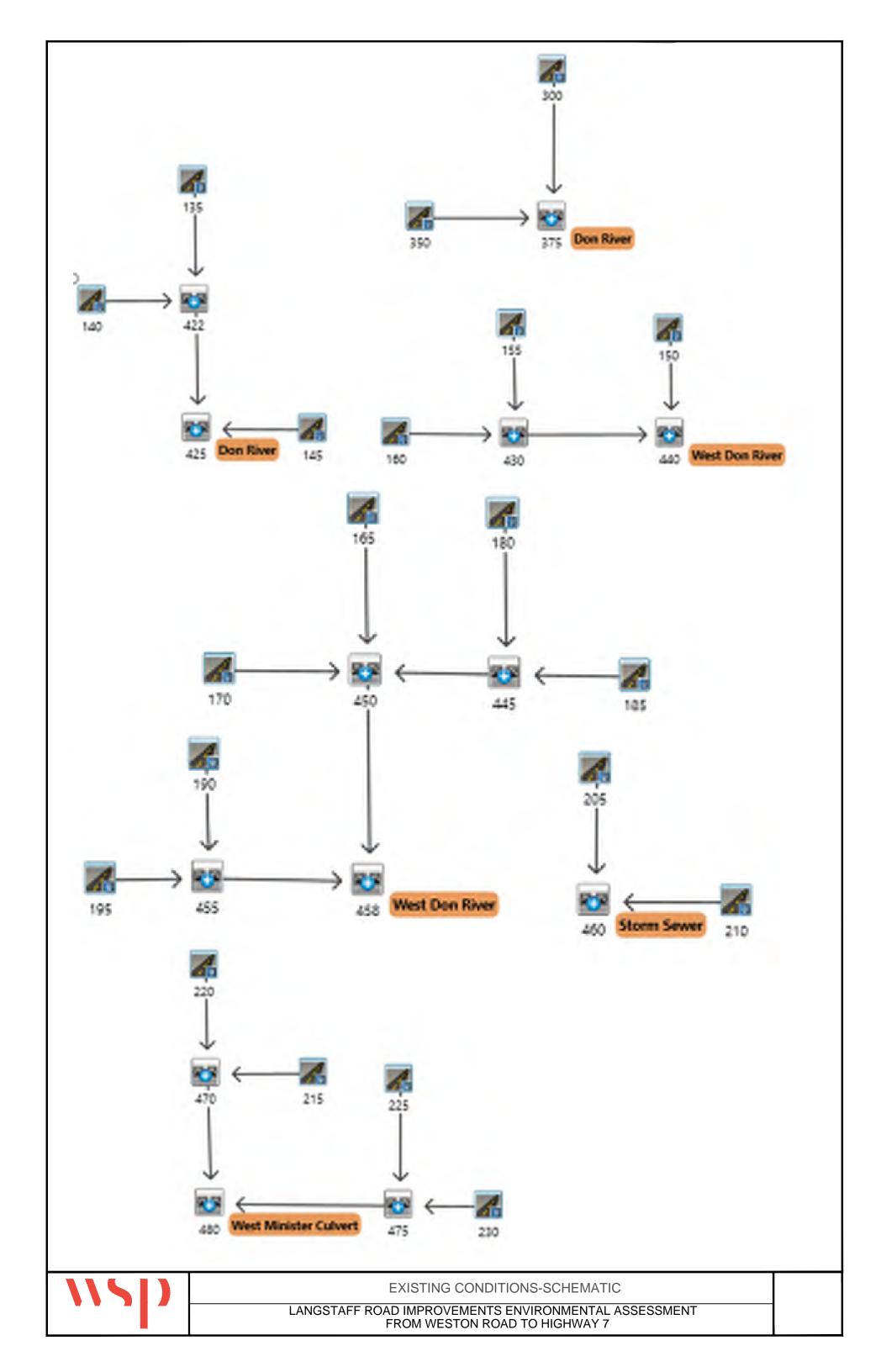
Photo 24: Culvert C4 Downstream view


APPENDIX


B

Hydrologic Assessments

York Region Langstaff Road EA


Unit Flow Rate of Humber River and Don River Watershed

York Region Langstaff Road EA

Existing Conditions Hydrologic Summary

Summary of Existing Conditions Hydrologic Modelling Parameters

16M-01457-01 Langstaff Rd EA

Sub-	IUH	Drainage		•	viousne	ess		SCS		straction		ning's	Time to	Number		Length		lope	CN
Catchment ID	Class	Area (ha)	Direct		(%) ndirect	=	Total	Curve Number		m) Impervious		n' Impervious	Peak (hours)	of Linear Reservoirs		m) Impervious	(·····	(%) Impervious	CN AMC III
105	Standard	1.63	61	+	0	=	61	86	5.0	2.0	0.25	0.013	n/a	n/a	25	650	2.0	1.0	
110	Standard	1.58	57	+	0	=	57	85	5.0	2.0	0.25	0.013	n/a	n/a	25	650	2.0	1.0	
115	Standard	1.00	46	+	0	=	46	83	5.0	2.0	0.25	0.013	n/a	n/a	17	475	2.0	1.0	
120	Standard	1.24	57	+	0	=	57	83	5.0	2.0	0.25	0.013	n/a	n/a	17	475	2.0	1.0	
125	Standard	2.27	53	+	0	=	53	83	5.0	2.0	0.25	0.013	n/a	n/a	20	800	2.0	1.0	
130	Standard	2.08	51	+	0	=	51	83	5.0	2.0	0.25	0.013	n/a	n/a	20	800	2.0	1.0	
135	Standard	1.43	39	+	0	=	39	84	5.0	2.0	0.25	0.013	n/a	n/a	30	503	2.0	1.0	
140	Standard	1.27	52	+	0	=	52	83	5.0	2.0	0.25	0.013	n/a	n/a	25	503	2.0	1.0	
145	Standard	3.05	62	+	0	=	62	86	5.0	2.0	0.25	0.013	n/a	n/a	40	531	2.0	1.0	
150	Standard	3.81	94	+	0	=	94	88	5.0	2.0	0.25	0.013	n/a	n/a	40	150	2.0	1.0	
155	Standard	0.56	45	+	0	=	45	87	5.0	2.0	0.29	0.013	n/a	n/a	25	260	2.0	1.0	
160	Standard	0.43	56	+	0	=	56	89	5.0	2.0	0.25	0.013	n/a	n/a	20	260	2.0	1.0	
165	Standard	0.60	40	+	0	=	40	83	5.0	2.0	0.25	0.013	n/a	n/a	20	250	2.0	1.0	
170	Standard	0.43	57	+	0	=	57	89	5.0	2.0	0.25	0.013	n/a	n/a	20	250	2.0	1.0	
180	Standard	0.65	33	+	0	=	33	83	5.0	2.0	0.25	0.013	n/a	n/a	40	66	2.0	1.0	
185	Standard	0.47	48	+	0	=	48	79	5.0	2.0	0.35	0.013	n/a	n/a	20	240	2.0	1.0	
190	Standard	0.86	42	+	0	=	42	83	5.0	2.0	0.25	0.013	n/a	n/a	50	340	2.0	1.0	
195	Standard	0.79	42	+	0	=	42	83	5.0	2.0	0.25	0.013	n/a	n/a	20	340	2.0	1.0	
205	Standard	1.11	38	+	0	=	38	83	5.0	2.0	0.25	0.013	n/a	n/a	20	470	2.0	1.0	
210	Standard	0.96	44	+	0	=	44	83	5.0	2.0	0.25	0.013	n/a	n/a	20	470	2.0	1.0	
215	Standard	0.58	57	+	0	=	57	83	5.0	2.0	0.25	0.013	n/a	n/a	30	260	2.0	1.0	
220	Standard	0.65	46	+	0	=	46	83	5.0	2.0	0.25	0.013	n/a	n/a	20	260	2.0	1.0	
225	Standard	0.90	53	+	0	=	53	83	5.0	2.0	0.25	0.013	n/a	n/a	25	320	2.0	1.0	
230	Standard	0.70	57	+	0	=	57	81	5.0	2.0	0.29	0.013	n/a	n/a	25	320	2.0	1.0	
235	Standard	0.66	67	+	0	=	67	83	5.0	2.0	0.25	0.013	n/a	n/a	20	320	2.0	1.0	
240	Standard	0.72	67	+	0	=	67	83	5.0	2.0	0.25	0.013	n/a	n/a	20	320	2.0	1.0	
350	Standard	0.90	70	+	0	=	70	79	5.0	2.0	0.25	0.013	n/a	n/a	40	258	2.0	1.0	
Total/Ave		41.33	63	+	0	=	63	83	5.00										<u> </u>

Humber River Watershed Visual OTTHYMO Summary - Existing

** SIMULATION:Run 02	**
*************	******

READ STORM	Filenam	ata\	Local\Te		D 92-0edff20f5fb	5\f5bec23e
Ptotal= 42.00 mm	Comment	s: 2Y12				
TIME	RAIN	TIME	RAIN	' TIME	RAIN TIM	E RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr hr	s mm/hr
0.25	0.00	3.50	7.14	6.75	2.94 10.00	0.42
0.50	0.42	3.75	7.14	7.00	2.94 10.25	0.42
0.75	0.42	4.00	7.14	7.25	2.94 10.50	0.42
1 00	a 12 l	1 25	7 1/1	j 7 50	1 68 10 75	0 12

0.75	0.42	4.00	7.14	7.25	2.94	10.50	0.42
1.00	0.42	4.25	7.14	7.50	1.68	10.75	0.42
1.25	0.42	4.50	19.32	7.75	1.68	11.00	0.42
1.50	0.42	4.75	19.32	8.00	1.68	11.25	0.42
1.75	0.42	5.00	19.32	8.25	1.68	11.50	0.42
2.00	0.42	5.25	19.32	8.50	0.84	11.75	0.42
2.25	0.42	5.50	5.46	8.75	0.84	12.00	0.42
2.50	2.52	5.75	5.46	9.00	0.84	12.25	0.42
2.75	2.52	6.00	5.46	9.25	0.84	İ	
3.00	2.52	6.25	5.46	9.50	0.42	İ	
3.25	2.52	6.50	2.94	9.75	0.42	İ	

CALIB					
STANDHYD (0110)	Area	(ha)=	1.58		
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir. Conn.(%)=	57.00
		IMPERVI	OUS	PERVIOUS (i)	

		THE LIVETOUS	I LIVETOUS (I)
Surface Area	(ha)=	0.90	0.68
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	650.00	25.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42
0.250	0.00	3.333	7.14	6.417	2.94	9.50	0.42
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42
0.417	0.42	3.500	7.14	6.583	2.94	9.67	0.42
0.500	0.42	3.583	7.14	6.667	2.94	9.75	0.42
0.583	0.42	3.667	7.14	6.750	2.94	9.83	0.42

Page 1

${\tt LangstaffRd_EA_Existing_HumberWatershed}$

STANDHYD (0105)	Area	(ha)=	1.63			
ID= 1 DT= 5.0 min	Total	Imp(%)=	61.00	Dir.	Conn.(%)=	61.00

		IMPERVIOUS	PERVIOUS (1)
Surface Area	(ha)=	0.99	0.64
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	650.00	25.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGRA	APH		
TIME	RAIN		RAIN		RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42
0.250	0.00	3.333	7.14	6.417	2.94	9.50	0.42
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42
0.417	0.42	3.500	7.14	6.583	2.94	9.67	0.42
0.500	0.42	3.583	7.14	6.667	2.94	9.75	0.42
0.583	0.42	3.667	7.14		2.94	9.83	0.42
0.667	0.42	3.750	7.14		2.94	9.92	0.42
0.750	0.42	3.833	7.14		2.94	10.00	0.42
0.833	0.42	3.917	7.14		2.94	10.08	0.42
0.917	0.42		7.14		2.94		0.42
1.000	0.42		7.14		2.94		0.42
1.083		4.167	7.14		2.94		0.42
1.167		4.250	7.14		1.68		0.42
1.250	0.42	4.333	19.32		1.68		0.42
1.333		4.417	19.32		1.68		0.42
1.417		4.500	19.32		1.68		0.42
1.500	0.42		19.32		1.68		0.42
1.583	0.42	4.667	19.32		1.68		0.42
1.667		4.750	19.32		1.68		0.42
1.750	0.42		19.32		1.68		0.42
1.833	0.42	4.917	19.32		1.68		0.42
1.917	0.42	5.000	19.32		1.68		0.42
2.000	0.42	5.083		8.167	1.68		0.42
2.083	0.42	5.167	19.32		1.68		0.42
2.167	0.42	5.250	19.32		0.84		0.42
2.250	0.42	5.333		8.417	0.84		0.42
2.333	2.52	5.417	5.46		0.84	11.58	0.42
2.417	2.52	5.500	5.46		0.84	11.67	0.42
2.500	2.52	5.583		8.667	0.84	11.75	0.42
2.583	2.52	5.667	5.46		0.84	11.83	0.42
2.667	2.52	5.750	5.46		0.84	11.92	0.42
2.750	2.52	5.833	5.46		0.84		0.42
2.833	2.52	5.917		9.000	0.84		0.42
2.917	2.52	6.000	5.46		0.84		0.42
3.000	2.52	6.083	5.46		0.84		0.42
3.083	2.52	6.167	5.46	9.250	0.84		
			Page	3			

	Langs	taffRd E	A Exist	ing Humberk	latersh	ed	
0.667	0.42	3.750	7.14	6.833	2.94	9.92	0.42
0.750	0.42	3.833	7.14	6.917	2.94	10.00	0.42
0.833	0.42	3.917	7.14	7.000 7.083 7.167	2.94	10.08	0.42
0 917	0 42	4 999	7 14	7 083	2 94	10 17	0 42
1 000	0.42	4 083	7 14	7 167	2 94	10.27	0.42
1 000	0.42	1 4.003	7.14	7.107	2.04	10.23	0.42
1.003	0.42	4.107	7.14	7.230	1 60	10.33	0.42
1.107	0.42	4.230	10 22	7.250 7.333 7.417	1.00	10.42	0.42
1.250	0.42	4.333	19.32	7.417	1.00	10.58	0.42
1.333	0.42	4.417	19.32	7.500 7.583 7.667	1.00		
1.41/	0.42	4.500	19.32	7.583	1.68	10.67 10.75	0.42
1.500	0.42	4.583	19.32	7.667	1.68	10.75	
1.583	0.42	4.667	19.32	7.750 7.833 7.917	1.68		0.42
1.667	0.42	4.750	19.32	7.833	1.68	10.92 11.00	0.42
1.750	0.42	4.833	19.32	7.917	1.68		
1.833	0.42	4.917	19.32	8.000 8.083 8.167	1.68	11.08	0.42
1.917	0.42	5.000	19.32	8.083	1.68	11.17	0.42
2.000	0.42	5.083	19.32	8.167	1.68	11.25	0.42
2.083	0.42	5.167	19.32	8.250 8.333 8.417	1.68	11.33	0.42
2.167	0.42	5.250	19.32	8.333	0.84	11.42	0.42
2.250	0.42	5.333	5.46	8.417	0.84	11.50	0.42
2.333	2.52	5.417	5.46	8.500	0.84	11.58	0.42
2.417	2.52	5.500	5.46	8.583	0.84	11.67	0.42
2.500	2.52	5.583	5.46	8.500 8.583 8.667	0.84	11.75	0.42
2 583	2 52	5 667	5 46	8 750	0 84	11 83	0 42
2 667	2 52	5 750	5.46	8.750 8.833 8.917	0.01	1 11 92	0.12
2.007	2.52	5 833	5.46	8 917	0.04	1 12 00	0.42
2.730	2.52	D 5.033	E 46	0.517	0.04	12.00	0.42
2.033	2.52	5.017	E 46	9.000 9.083 9.167	0.04	12.00	0.42
2.917	2.32	0.000	5.40	0.003	0.04	12.17	0.42
3.000	2.52	0.003	5.40	9.250	0.04	1 12.25	0.42
3.003	2.52	0.10/	5.46	9.250	0.64	1	
Max.Eff.Inten.(mm/	hr)=	19.32		10.72			
over (m Storage Coeff. (m Unit Hyd. Tpeak (m	in)	15.00		30.00			
Storage Coeff. (m	in)=	15.16	(11)	28.16 (11)			
Unit Hyd. Tpeak (m	in)=	15.00		30.00			
Unit Hyd. peak (c	ms)=	0.07		0.04			
						TALS*	
PEAK FLOW (c		0.05		0.01		.060 (iii)
	rs)=	5.25		5.50		5.25	
RUNOFF VOLUME (mm)=	40.00 42.00		16.73	2	9.98	
TOTAL RAINFALL (mm)=	42.00		42.00	4.	2.00	
RUNOFF COEFFICIENT	=	0.95		0.40		0.71	
(i) CN PROCEDURE CN* = 85. (ii) TIME STEP (D THAN THE STO (iii) PEAK FLOW DO	0 Ia T) SHOUI RAGE COI	= Dep. S LD BE SMA FFICIENT	Storage ALLER OF	(Above) R EQUAL			
CALIB							

${\tt LangstaffRd_EA_Existing_HumberWatershed}$

Max.Eff.Inten.(mm/hr)= (min)	19.32 15.00	11.18 30.00	
Storage Coeff.		15.16 (ii)	27.95 (ii)	
Unit Hyd. Tpeak	(min)=	15.00	30.00	
Unit Hyd. peak	(cms)=	0.07	0.04	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.01	0.065 (iii)
TIME TO PEAK	(hrs)=	5.25	5.50	5.25
RUNOFF VOLUME	(mm)=	40.00	17.47	31.20
TOTAL RAINFALL	(mm)=	42.00	42.00	42.00
RUNOFF COEFFICI	ENT =	0.95	0.42	0.74

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0400)					
1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.	

1 + 2 = 3 | AREA OPEAK (ha) (cms) | ID1= 1 (0105): 1.63 0.065 | 1D2= 2 (0110): 1.58 0.069 | ID = 3 (0400): 3.21 0.125 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1.63 0.065 5.25 31.20 1.58 0.060 5.25 29.98 5.25

| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Area (ha)= 2.27 Total Imp(%)= 53.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i)
1.20 1.07
2.00 5.00
1.00 2.00
800.00 20.00
0.013 0.250 Surface Area Dep. Storage Average Slope Length Mannings n (ha)= (mm)= (%)= (m)=

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		IRA	ANSFURITE	J RIETUUK!	4PH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAI
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/h
0.083				6.250			
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42

Page 4

	Lange	taffRd F	Λ Evist	ing Humberv	latarch	od	
0.250		3.333		6.417	2.94		0.42
0.333	0.42		7.14		2.94		0.42
0.417	0.42		7.14		2.94		0.42
0.500	0.42		7.14		2.94		0.42
0.583	0.42		7.14		2.94		0.42
0.667	0.42		7.14		2.94		0.42
0.750		3.833	7.14		2.94		0.42
							0.42
0.833		3.917	7.14		2.94		
0.917		4.000	7.14		2.94		0.42
1.000	0.42		7.14		2.94		0.42
1.083		4.167	7.14		2.94		0.42
1.167		4.250	7.14		1.68		0.42
1.250		4.333	19.32		1.68		0.42
1.333		4.417	19.32		1.68		0.42
1.417		4.500	19.32		1.68		0.42
1.500		4.583	19.32		1.68		0.42
1.583		4.667	19.32		1.68		0.42
1.667	0.42		19.32		1.68		0.42
1.750		4.833		7.917	1.68		0.42
1.833		4.917	19.32		1.68		0.42
1.917	0.42	5.000	19.32	8.083	1.68	11.17	0.42
2.000	0.42	5.083	19.32	8.167	1.68	11.25	0.42
2.083	0.42	5.167	19.32	8.250	1.68	11.33	0.42
2.167	0.42	5.250	19.32	8.333	0.84	11.42	0.42
2.250	0.42	5.333	5.46	8.417	0.84	11.50	0.42
2.333	2.52	5.417	5.46	8.500	0.84	11.58	0.42
2.417	2.52	5.500	5.46	8.583	0.84	11.67	0.42
2.500	2.52	5.583	5.46	8.667	0.84	11.75	0.42
2.583	2.52	5.667	5.46	8.750	0.84	11.83	0.42
2.667	2.52	5.750	5.46	8.833	0.84	11.92	0.42
2.750	2.52	5.833	5.46	8.917	0.84	12.00	0.42
2.833	2.52	5.917	5.46	9.000	0.84	12.08	0.42
2.917		6.000	5.46		0.84		0.42
3.000	2.52		5.46		0.84		0.42
3.083		6.167	5.46		0.84		
M F.C. T ((1)	40.33		0.07			
Max.Eff.Inten.(mm/		19.32		9.87			
over (r		15.00		30.00			
	nin)=	17.17	(11)	28.93 (ii)			
Unit Hyd. Tpeak (r		15.00		30.00			
Unit Hyd. peak (d	cms)=	0.07		0.04	*****	TALS*	
PEAK FLOW (ems)=	0.06		0.02		.081 (iii)	
	nrs)=	5.25		5.50		5.25	
	(mm)=	40.00		15.38		8.42	
	(mm)=	42.00		42.00		2.00	
RUNOFF COEFFICIENT		0.95		0.37		2.68	
NONOTT COEFFICIENT	-	0.55		0.57	,		

Page 5

2.750 2.55 2.833 2.55 2.917 2.55 3.000 2.55 3.083 2.55	2 5.833	6 8.917 0.84 6 9.000 0.84 6 9.083 0.84 6 9.167 0.84 6 9.250 0.84	12.00 0.42 12.08 0.42 12.17 0.42 12.25 0.42						
<pre>Max.Eff.Inten.(mm/hr)=</pre>	19.32 15.00 17.17 (ii) 15.00 0.07	30.00 28.93 (ii) 30.00 0.04	OTALS*						
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.06 5.25 40.00 42.00 0.95	0.02 5.50 15.38 42.00 0.37	0.072 (iii) 5.25 27.93 42.00 0.66						
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.									
ADD HYD (0405) 1 + 2 = 3 	AREA QPEAK (ha) (cms) 2.27 0.081 2.08 0.072	TPEAK R.V. (hrs) (mm) 5.25 28.42 5.25 27.93							
ID = 3 (0405): NOTE: PEAK FLOWS DO NO	4.35 0.153	5.25 28.19							
CALIB	(ha)= 1.24								
	IMPERVIOUS 0.71 2.00 1.00 475.00 0.013	PERVIOUS (i) 0.53 5.00 2.00 17.00 0.250							
NOTE: RAINFALL WAS			TEP.						

 $LangstaffRd_EA_Existing_HumberWatershed \\ (iii) \ PEAK \ FLOW \ DOES \ NOT \ INCLUDE \ BASEFLOW \ IF \ ANY.$

CALIB					
STANDHYD (0130)	Area	(ha)=	2.08		
ID= 1 DT= 5.0 min	Total	Imp(%)=	51.00	Dir. Conn.(%)=	51.00
·					
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	1.0	6	1.02	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	800.0	0	20.00	
Mannings n	` =	0.01	3	0.250	
NOTE: RAINF	ALL WAS	TRANSFOR	MED TO	5.0 MIN. TIME	STEP.

	TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42				
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42				
0.250	0.00	3.333	7.14	6.417	2.94	9.50	0.42				
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42				
0.417	0.42	3.500	7.14	6.583	2.94	9.67	0.42				
0.500	0.42	3.583	7.14	6.667	2.94	9.75	0.42				
0.583	0.42	3.667	7.14	6.750	2.94	9.83	0.42				
0.667	0.42	3.750	7.14	6.833	2.94	9.92	0.42				
0.750	0.42	3.833	7.14	6.917	2.94	10.00	0.42				
0.833	0.42	3.917	7.14	7.000	2.94	10.08	0.42				
0.917	0.42	4.000	7.14	7.083	2.94	10.17	0.42				
1.000	0.42	4.083	7.14	7.167	2.94	10.25	0.42				
1.083	0.42	4.167	7.14	7.250	2.94	10.33	0.42				
1.167	0.42	4.250	7.14	7.333	1.68	10.42	0.42				
1.250	0.42	4.333	19.32	7.417	1.68	10.50	0.42				
1.333	0.42	4.417	19.32	7.500	1.68	10.58	0.42				
1.417	0.42	4.500	19.32	7.583	1.68	10.67	0.42				
1.500	0.42	4.583	19.32	7.667	1.68	10.75	0.42				
1.583	0.42	4.667	19.32	7.750	1.68	10.83	0.42				
1.667	0.42	4.750	19.32	7.833	1.68	10.92	0.42				
1.750	0.42	4.833	19.32	7.917	1.68	11.00	0.42				
1.833	0.42	4.917	19.32	8.000	1.68	11.08	0.42				
1.917	0.42	5.000	19.32	8.083	1.68	11.17	0.42				
2.000	0.42	5.083	19.32	8.167	1.68	11.25	0.42				
2.083	0.42	5.167	19.32	8.250	1.68	11.33	0.42				
2.167	0.42	5.250	19.32	8.333	0.84	11.42	0.42				
2.250	0.42	5.333	5.46	8.417	0.84	11.50	0.42				
2.333	2.52	5.417	5.46	8.500	0.84	11.58	0.42				
2.417	2.52	5.500	5.46	8.583	0.84	11.67	0.42				
2.500	2.52	5.583	5.46	8.667	0.84	11.75	0.42				
2.583	2.52	5.667	5.46	8.750	0.84	11.83	0.42				
2.667	2.52	5.750	5.46	8.833	0.84	11.92	0.42				

Page 6

LangstaffRd EA Existing HumberWatershed										
	201183			D HYETOGRA						
TIME	RAIN	I TIME	RAIN		RAIN		RAIN			
hrs	mm/hr			l' hrs	mm/hr		mm/hr			
0.083	0.00	3.167		6.250	5.46		0.42			
0.167	0.00			6.333	2.94		0.42			
0.167	0.00		7.14		2.94		0.42			
					2.94					
0.333	0.42			6.500			0.42			
0.417	0.42	3.500		6.583	2.94		0.42			
0.500	0.42		7.14 7.14		2.94		0.42			
0.583 0.667	0.42 0.42	3.667 3.750	7.14	6.750	2.94	9.83	0.42			
0.750	0.42		7.14		2.94		0.42			
0.833	0.42		7.14	7.000	2.94		0.42			
0.917	0.42		7.14	7.083 7.167	2.94		0.42			
1.000	0.42		7.14				0.42			
1.083	0.42		7.14	7.250	2.94		0.42			
1.167	0.42		7.14	7.333	1.68		0.42			
1.250	0.42		19.32	7.417	1.68		0.42			
1.333		4.417	19.32		1.68		0.42			
1.417	0.42		19.32		1.68		0.42			
1.500	0.42		19.32		1.68		0.42			
1.583		4.667	19.32		1.68		0.42			
1.667	0.42		19.32	7.833	1.68		0.42			
1.750	0.42		19.32	7.917	1.68		0.42			
1.833		4.917	19.32		1.68		0.42			
1.917	0.42		19.32		1.68		0.42			
2.000	0.42		19.32		1.68		0.42			
2.083	0.42	5.167	19.32	8.250	1.68		0.42			
2.167	0.42		19.32		0.84		0.42			
2.250	0.42		5.46		0.84		0.42			
2.333	2.52	5.417	5.46		0.84		0.42			
2.417	2.52	5.500	5.46		0.84		0.42			
2.500	2.52		5.46		0.84		0.42			
2.583	2.52	5.667	5.46		0.84		0.42			
2.667	2.52	5.750	5.46		0.84		0.42			
2.750	2.52		5.46		0.84		0.42			
2.833	2.52	5.917	5.46		0.84		0.42			
2.917	2.52	6.000	5.46		0.84		0.42			
3.000	2.52	6.083	5.46		0.84		0.42			
3.083	2.52	6.167	5.46	9.250	0.84					
Max.Eff.Inten.(mm		19.32		9.87						
over (15.00		25.00						
	min)=	12.56		23.22 (ii)						
Unit Hyd. Tpeak (15.00		25.00						
Unit Hyd. peak (cms)=	0.08		0.05						
						TALS*				
	cms)=	0.04		0.01		.048 (iii)				
	hrs)=	5.25		5.42		5.25				
RUNOFF VOLUME	(mm)=	40.00		15.38		.40				
TOTAL RAINFALL	(mm)=	42.00		42.00		2.00				
RUNOFF COEFFICIEN	T =	0.95		0.37	6	9.70				

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | CALIB | STANDHYD (0115)| |ID= 1 DT= 5.0 min | Area (ha)= 1.00 Total Imp(%)= 46.00 Dir. Conn.(%)= 46.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.54 5.00 2.00 Surface Area 0.46 2.00 Dep. Storage Average Slope Length Mannings n 1.00 17.00 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42
0.250	0.00	3.333	7.14	6.417	2.94	9.50	0.42
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42
0.417	0.42	3.500	7.14	6.583	2.94	9.67	0.42
0.500	0.42	3.583	7.14	6.667	2.94	9.75	0.42
0.583	0.42	3.667	7.14	6.750	2.94	9.83	0.42
0.667	0.42	3.750	7.14	6.833	2.94	9.92	0.42
0.750	0.42	3.833	7.14	6.917	2.94	10.00	0.42
0.833	0.42	3.917	7.14	7.000	2.94	10.08	0.42
0.917	0.42	4.000	7.14	7.083	2.94	10.17	0.42
1.000	0.42	4.083	7.14	7.167	2.94	10.25	0.42
1.083	0.42	4.167	7.14	7.250	2.94	10.33	0.42
1.167	0.42	4.250	7.14	7.333	1.68	10.42	0.42
1.250	0.42	4.333	19.32	7.417	1.68	10.50	0.42
1.333	0.42	4.417	19.32	7.500	1.68	10.58	0.42
1.417	0.42	4.500	19.32	7.583	1.68	10.67	0.42
1.500	0.42	4.583	19.32	7.667	1.68	10.75	0.42
1.583	0.42	4.667	19.32	7.750	1.68	10.83	0.42
1.667	0.42	4.750	19.32	7.833	1.68	10.92	0.42
1.750	0.42	4.833	19.32	7.917	1.68	11.00	0.42
1.833	0.42	4.917	19.32	8.000	1.68	11.08	0.42
1.917	0.42	5.000	19.32	8.083	1.68	11.17	0.42
2.000	0.42	5.083	19.32	8.167	1.68	11.25	0.42
2.083	0.42	5.167	19.32	8.250	1.68	11.33	0.42
2.167	0.42	5.250	19.32	8.333	0.84	11.42	0.42
2.250	0.42	5.333	5.46	8.417	0.84	11.50	0.42

Page 9

******	******	**					
READ STORM	Filenar	ne: C:\U	sers\rav	.zhao\App	D		
			Local\Te				
i				e-4ce0-8b	92-0edff	20f5fb5\	4ca76b
Ptotal= 54.38 mm	Comment	s: 5Y12					
TIM			RAIN		RAIN		RA:
hr		hrs		' hrs			
	9.00					10.00	
	0.54					10.25	
	5 0.54					10.50	
	0.54					10.75	
	0.54			7.75		11.00	
	0.54			8.00		11.25	
	0.54			8.25		11.50	
	0.54			8.50		11.75 12.00	
	9.54 0 3.26					12.25	
	5 3.26						0.5
3.6	0 3.26	6 25	7.07	9.50	0.54		
	5 3.26			9.75			
3.2	3.20	0.50	3.01	1 3173	0.54		
CALIB							
STANDHYD (0110)	Area	(ha)=	1.58				
ID= 1 DT= 5.0 min	Total In	np(%)=	57.00	Dir. Conn	.(%)= 5	7.00	
		[MPERVIO		RVIOUS (i)		
Surface Area		0.90		0.68			
Dep. Storage	(mm)=	2.00 1.00		5.00			
Average Slope	(%)=	1.00		2.00			

(m)=

0.013

Mannings n

LangstaffRd_EA_Existing_HumberWatershed NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE:	RAINFAL	L WAS TI	RANSFORME	D TO	5.0 MIN.	TIME STE	Р.	
			TRA	ANSFORME	D HYFTOGR	APH		
	TIME	RAIN	l TIME	RAIN	l' TIME	RAIN	TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	i' hrs	mm/hr	i hrs	mm/hr
	0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
	0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
	0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
	0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
	0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
				Page	11			

0.250

```
Natershed
0.84 | 11.58
0.84 | 11.67
0.84 | 11.75
0.84 | 11.83
0.84 | 11.92
0.84 | 12.00
0.84 | 12.08
0.84 | 12.17
0.84 | 12.25
                                    2.333
                                                                                                                                                                           0.42
                                   2.417
2.500
2.583
2.667
2.750
2.833
                                                                                                                                    0.84
0.84
0.84
0.84
0.84
0.84
0.84
                                                                                                                                                                          0.42
0.42
0.42
0.42
0.42
0.42
0.42
                                    2.917
                                    3.000
                                    3.083
         Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                           19.32
15.00
12.56 (ii)
15.00
0.08
                                                                                                           9.87
25.00
23.22 (ii)
25.00
                                                                                                             0.05
                                                                                                                                           *TOTALS*
                                                                                                                                             0.035 (iii)
5.25
26.69
42.00
0.64
         PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                             0.02
5.25
40.00
42.00
0.95
                                                                                                           0.01
5.42
15.38
42.00
0.37
          (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0410)|
| 1 + 2 = 3 |
                                                                   AREA
(ha)
1.00
1.24
                                                                                   QPEAK
(cms)
0.035
0.048
                                                                                                           TPEAK
(hrs)
5.25
5.25
                                                                                                                             R.V.
(mm)
26.69
29.40
           ID1= 1 ( 0115):
+ ID2= 2 ( 0120):
               ID = 3 ( 0410):
                                                                  2.24
                                                                                                          5.25
                                                                                                                              28.19
                                                                                 0.083
          NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
  ADD HYD ( 0420)|
1 + 2 = 3 |
                                                                                   QPEAK
(cms)
0.153
0.083
                                                                                                                             R.V.
(mm)
28.19
                                                                   AREA
                                                                   (ha)
4.35
                                                                                                           (hrs)
5.25
            ID1= 1 ( 0405):
+ ID2= 2 ( 0410):
                                                                   2.24
                                                                                                           5.25
                                                                                                                              28.19
                 ID = 3 ( 0420):
                                                                   6.59
                                                                                    0.236
                                                                                                           5.25
                                                                                                                              28.19
```

Langs 0.500 0.54 0.583 0.54 0.667 0.54 0.676 0.54 0.759 0.54 0.790 0.54 0.833 0.54 0.917 0.54 1.080 0.54 1.083 0.54 1.167 0.54 1.159 0.54 1.333 0.54 1.159 0.54 1.333 0.54 1.583 0.54 1.583 0.54 1.583 0.54 1.583 0.54 1.583 0.54 1.250 0.54 1.250 0.54 1.583 0.54 1.583 0.54 1.583 0.54 1.583 0.54 1.250 0.54 1.250 0.54 1.250 0.54 1.583 0.54 1.583 0.54 1.583 0.54 1.917 0.54						
Langs	taffRd_E	A_Exist	ing_HumberW	atersh	ed	
0.500 0.54	3.583	9.25	6.66/	3.81	9.75	0.54
0.583 0.54	3.66/	9.25	6.750	3.81	9.83	0.54
0.00/ 0.54	3./50	9.25	0.033	2.01	9.92	0.54
0.750 0.54	2 017	0.25	7 000	2 01	10.00	0.54
0.033 0.34	4 000	0.25	7.000	2 01	10.00	0.54
1 000 0 54	4.000	9.25	7.063	3 81	10.17	0.54
1 000 0.54	4.003	9 25	7.107	3 81	10.23	0.54
1 167 0 54	4 250	9 25	7.230	2 18	10.33	0.54
1 250 0 54	4 333	25 02	7 417	2 18	10.50	0.54
1.333 0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417 0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500 0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583 0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667 0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750 0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833 0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917 0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000 0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083 0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167 0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250 0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333 3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417 3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500 3.26	5.583	7.07	8.667	1.09	11.75	0.54
2.583 3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667 3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.750 3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833 3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.91/ 3.26	6.000	7.07	9.083	1.09	12.1/	0.54
3.000 3.26	6.083	7.07	9.16/	1.09	12.25	0.54
3.083 3.26	6.16/	7.07	9.250	1.09	l	
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	25.02		16.14			
over (min)	15.00		25.00			
Storage Coeff. (min)=	13.67	(ii)	24.71 (ii)			
Unit Hyd. Tpeak (min)=	15.00		25.00			
Unit Hyd. peak (cms)=	0.08		0.05			
					TALS*	
PEAK FLOW (cms)=	0.06		0.02	0	.084 (iii))
TIME TO PEAK (hrs)=	5.25		5.42		5.25	
RUNOFF VOLUME (mm)=	52.38		25.88	40	9.98	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	54.38		54.38	54	9.98 4.38	
RUNOFF COEFFICIENT =	0.96		0.48		0.75	
(i) CN PROCEDURE SELECTE	D FOR P	FRVTOUS	LOSSES			
CN* = 85.0 Ia						
(ii) TIME STEP (DT) SHOUL						
THAN THE STORAGE COE						
(iii) PEAK FLOW DOES NOT I			V IF ANY.			
• •						

CA	LIB					
i st	ANDHYD (0105)	Area	(ha)=	1.63		
					D (9/)	
ID=	1 DT= 5.0 min	lotal	Imp(%)=	61.00	Dir. Conn.(%)=	61.00
			IMPERVI	OUS	PERVIOUS (i)	
	Surface Area	(ha)=	0.9	9	0.64	
	Dep. Storage	(mm)=	2.0	0	5.00	
	Average Slope	(%)=	1.0	0	2.00	
	Length	(m)=	650.0	0	25.00	
	Mannings n	` =	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	i hrs	mm/hr
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750		4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54
2.583	3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667	3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09	12.17	0.54
			Page	13			
			_				

	Langs	taffRd E	A Existi	ng Humbe	rWatersh	ed	
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54
2.583	3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667	3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09	12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09	12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09	l	

Max.Eff.Inten.(mm, over (m		25.02 15.00	15.31 30.00	
Storage Coeff. (r	min)=	15.48 (ii)	25.35 (ii)	
Unit Hyd. Tpeak (r	min)=	15.00	30.00	
Unit Hyd. peak (d	cms)=	0.07	0.04	
				TOTALS
PEAK FLOW (d	cms)=	0.08	0.03	0.112 (iii)
TIME TO PEAK (H	nrs)=	5.25	5.42	5.25
RUNOFF VOLUME ((mm)=	52.38	24.05	39.06
TOTAL RAINFALL ((mm)=	54.38	54.38	54.38
RUNOFF COEFFICIENT	Γ =	0.96	0.44	0.72

⁽i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 83.0$ Ia = Dep. Storage (Above)

	3 000	2 26	igstattko s I 6 083	_EA_EX1	sting_Huml 7 9 167	erwaters 1 A9	snea 1 12 25	а
	3.083	3.26	6.167	7.0	7 9.250	1.09	12.25	٠.
Max.Eff.In Storage Co Unit Hyd. Unit Hyd.	nten.(mm	n/hr)=	25.0	32	16.71			
Storage Co	neff ((min)=	13.6	שי 7 (ii)	24 56 (ii)		
Unit Hvd.	Tpeak (min)=	15.0	90	25.00	/		
Unit Hyd.	peak (cms)=	0.0	8	0.05			
							OTALS*	
PEAK FLOW		(cms)=	0.0	97	0.02		0.090 (iii	.)
PEAK FLOW TIME TO PI RUNOFF VOI TOTAL RAII	EAK ((hrs)=	5.2	25	5.42		5.25	
TOTAL PATE	NEALL	(mm)=	54.3	88	26.88		42.43 54.38	
RUNOFF COI	FFFTCTFN	(IIIII) =	94.3	16	0 49		0.78	
			3.3	-	05			
/13 au								
					S LOSSES: e (Above	,		
					OR EQUAL	,		
			COEFFICIE		OK EQUAL			
(iii) PEA					OW IF ANY			
, ,								
ADD UVD / /	0400\							
ADD HYD ((0400) 3		ΔRFΔ	ΟΡΕΔΚ	TPFAK	R V		
ADD HYD (0 1 + 2 = 1	0400) 3		AREA (ha)	QPEAK	TPEAK (hrs)	R.V.		
ADD HYD ((1 + 2 = :	0400) 3 	5):	AREA (ha) 1.63 @	QPEAK (cms)	TPEAK (hrs) 5.25	R.V. (mm) 42.43		
1 + 2 = 1 ID1= 1 + ID2= 2	3 (0105 (0116	5): 9):	AREA (ha) 1.63 0	QPEAK (cms) 0.090	TPEAK (hrs) 5.25 5.25	R.V. (mm) 42.43 40.98		
1 + 2 = 1 ID1= 1 + ID2= 2 ======	3 (0105 (0116							
1 + 2 = 1 ID1= 1 + ID2= 2 ======	3 (0105 (0116				TPEAK (hrs) 5.25 5.25			
1 + 2 = 1 ID1= 1 + ID2= 2 ======	(0105 (0116 (0406	9):	3.21 0	174	5.25	41.71		
1 + 2 = : ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PEA	(0105 (0116 (0406 AK FLOWS	9):	3.21 0	174	5.25	41.71		
1 + 2 = 1 ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE	(0105 (0116 (0406 (0406	9): 5 DO NOT	3.21 0	BASEFL	5.25 OWS IF AN	41.71 Y.		
1 + 2 = 1 ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE	(0105 (0116 (0406 (0406	9): 5 DO NOT	3.21 0	BASEFL	5.25 OWS IF AN	41.71 Y.		
1 + 2 = 1 ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE	(0105 (0116 (0406 (0406	9): 5 DO NOT	3.21 0	BASEFL	5.25 OWS IF AN	41.71 Y.	53.00	
1 + 2 = : ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PEA	3 (0105 (0116 (0406 AK FLOWS 0125) min	Area	3.21 @ INCLUDE (ha)= Imp(%)=	2.27 53.00	5.25 OWS IF AN	41.71 Y. 	53.00	
1 + 2 = : ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE CALIB STANDHYD ((ID= 1 DT= 5.0)	3 (0105 (0116 	DO NOT	3.21 @ INCLUDE (ha)= Imp(%)=	2.27 53.00	5.25 OWS IF AN Dir. Co	41.71 Y. 	53.00	
1 + 2 = : ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE CALIB STANDHYD ((ID= 1 DT= 5.0)	3 (0105 (0116 	DO NOT	3.21 @ INCLUDE (ha)= Imp(%)=	2.27 53.00	5.25 OWS IF AN Dir. Co	41.71 Y. 	53.00	
1 + 2 = : ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE CALIB STANDHYD ((ID= 1 DT= 5.0)	3 (0105 (0116 	DO NOT	3.21 @ INCLUDE (ha)= Imp(%)=	2.27 53.00	5.25 OWS IF AN Dir. Co	41.71 Y. 	53.00	
1 + 2 = : ID1= 1 + ID2= 2 ===== ID = 3 NOTE: PE CALIB STANDHYD ((ID= 1 DT= 5.0)	3 (0105 (0116 	DO NOT	3.21 @ INCLUDE (ha)= Imp(%)=	2.27 53.00	5.25 OWS IF AN Dir. Co	41.71 Y. 	53.00	
1 + 2 = 1 ID1= 1 + ID2= 2 ====== ID = 3 NOTE: PEA CALIB STANDHYD ((ID= 1 DT= 5.0)	3 (0105 (01105 (0	Area Total (ha)= (mm)= (%)= (m)=	3.21 @ INCLUDE (ha)= Imp(%)= IMPERVI 1.2 2.0 1.0 800.0	2.27 53.00 COUS 200 00	5.25 OWS IF AN Dir. Co PERVIOUS 1.07 5.00 2.00 20.00	41.71 Y. 	53.00	
1 + 2 = 1 ID1= 1 + ID2= 2 ID = 3 NOTE: PE CALIB STANDHYD (ID= 1 DT= 5.0 Surface Al Dep. Stor: Average S: Length Mannings I	3	Area Total (ha)= (mm)= (%)= ==	3.21 @ (ha)= Imp(%)= IMPERVI 1.2 2.0 1.0 800.0	2.27 53.00 COUS 2000 000 000 000 000 000	5.25 OWS IF AN Dir. Co PERVIOUS 1.07 5.00 2.00 20.00	41.71 Y. 		

	-	TRA	ANSFORMED	HYETOGR.	APH			
RAIN	1	TIME	RAIN	TIME	RAIN	1	TIME	RAIN
mm/hr	Ĺ	hrs	mm/hr	hrs	mm/hr	Ĺ	hrs	mm/hr
			Page 1	4				
		RAIN	RAIN TIME	RAIN TIME RAIN 'mm/hr hrs mm/hr	RAIN TIME RAIN TIME	RAIN TIME RAIN TIME RAIN mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	mm/hr hrs mm/hr hrs mm/hr	RAIN TIME RAIN TIME RAIN TIME mm/hr hrs mm/hr hrs mm/hr hrs

LangstaffRd_EA_Existing_HumberWatershed

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0130)	Area	(ha)= 2.	08	
ID= 1 DT= 5.0 min	Total	Imp(%)= 51.	00 Dir. Conn.(%)=	51.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	1.06	1.02	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	800.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR.	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54

Page 15

	Langs	staffRd_E	A_Exist	ing_HumberW	latershed	
2.58	3 3.26	5.667	7.07	8.750	1.09 11	.83 0.54
2.66	7 3.26	5.750	7.07	8.833	1.09 11	.92 0.54
2.750	0 3.26	5.833	7.07	8.917	1.09 12	.00 0.54
2.83	3 3.26	5.917	7.07	9.000	1.09 12	.08 0.54
2.91	7 3.26	6.000	7.07	9.083	1.09 12	.17 0.54
3.000	0 3.26	6.083	7.07	9.167	1.09 12	.25 0.54
3.08	3 3.26	6.167	7.07	9.250	1.09	
Max.Eff.Inten.(r	mm/hr)=	25.02		15.31		
over	(min)	15.00		30.00		
Storage Coeff.	(min)=	15.48	(ii)	25.35 (ii)		
Unit Hyd. Tpeak	(min)=	15.00		30.00		
Unit Hyd. peak	(cms)=	0.07		0.04		
					*TOTALS	*
PEAK FLOW	(cms)=	0.07		0.03	0.101	(iii)
TIME TO PEAK	(hrs)=	5.25		5.42	5.25	
RUNOFF VOLUME	(mm)=	52.38		24.05	38.49	
TOTAL RAINFALL	(mm)=	54.38		54.38	54.38	
RUNOFF COEFFICIE	ENT =	0.96		0.44	0.71	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0405)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0125):	2.27	0.112	5.25	39.06
+ ID2= 2 (0130):	2.08	0.101	5.25	38.49
ID = 3 (0405):	4.35	0.214	5.25	38.79

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0120)	Area	(ha)=	1.24	-1 - (0)	
ID= 1 DT= 5.0 min	lotal	Imp(%)=	5/.00	Dir. Conn.(%)=	57.00
·					
		IMPERVIO	US	PERVIOUS (i)	
Surface Area	(ha)=	0.71		0.53	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	475.00		17.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 17

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0115)	Area	(ha)= 1.00)	
ID= 1 DT= 5.0 min	Total	Imp(%) = 46.06	Dir. Conn.(%)=	46.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.46	0.54	
Dep. Storage	(mm) =	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n	` =	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54

Page 19

LangstaffRd_EA_Existing_HumberWatershed

		TR	ANSFORME	D HYETOGRAI	РН	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667			9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833			9.25	7.000	3.81	10.08	0.54
0.917			9.25	7.083	3.81	10.17	0.54
1.000			9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167		4.250	9.25	7.333	2.18	10.42	0.54
1.250		4.333	25.02	7.417	2.18		0.54
1.333			25.02	7.500	2.18	10.58	0.54
1.417		4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583		4.667	25.02	7.750	2.18		0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750			25.02	7.917	2.18		0.54
1.833		4.917	25.02	8.000	2.18	11.08	0.54
1.917			25.02	8.083	2.18	11.17	0.54
2.000			25.02	8.167	2.18		0.54
2.083			25.02	8.250	2.18		0.54
2.167		5.250	25.02	8.333	1.09		0.54
2.250			7.07	8.417	1.09	11.50	0.54
2.333		5.417	7.07	8.500	1.09	11.58	0.54
2.417			7.07	8.583	1.09		0.54
2.500			7.07	8.667	1.09		0.54
2.583		5.667	7.07	8.750	1.09	11.83	0.54
2.667			7.07	8.833	1.09	11.92	0.54
2.750		5.833	7.07	8.917	1.09		0.54
2.833			,,	9.000	1.09		0.54
2.917		6.000	7.07	9.083	1.09		0.54
3.000			7.07	9.167	1.09		0.54
3.083	3.26	6.167	7.07	9.250	1.09	l	
Max.Eff.Inten.(m	m/hr)=	25.02		15.31			
	(min)	10.00		25.00			
Storage Coeff.	(min)=	11.33	(ii)	20.27 (ii)			
Unit Hyd. Tpeak		10.00	(/	25.00			
Unit Hyd. peak	(cms)=	0.10		0.05			
, ,	/				*T0	TALS*	
PEAK FLOW	(cms)=	0.05		0.02		.066 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOLUME	(mm)=	52.38		24.05		0.19	
TOTAL RAINFALL	(mm)=	54.38		54.38		4.38	

Page 18

					ing_Humber			
	2.16		5.250	25.02		1.09		-
	2.25	0.54	5.333	7.07	8.417	1.09	11.50	-
	2.33		5.417	7.07		1.09		-
	2.41			7.07		1.09		-
	2.50		5.583	7.07		1.09	11.75	-
	2.58	3 3.26	5.667	7.07	8.750	1.09	11.83	-
	2.66	7 3.26	5.750	7.07	8.833	1.09	11.92	-
	2.75	3.26	5.833	7.07	8.917	1.09	12.00	-
	2.83	3 3.26	5.917	7.07	9.000	1.09	12.08	-
	2.91	7 3.26	6.000	7.07	9.083	1.09	12.17	-
	3.00	3.26	6.083	7.07	9.167	1.09	12.25	-
	3.08	3 3.26	6.167	7.07	9.250	1.09	I	
Max.Eff.Ir	nten.(ı	mm/hr)=	25.02		15.31			
	over	(min)	10.00		25.00			
Storage Co	eff.	(min)=	11.33	(ii)	20.27 (ii)			
Unit Hyd.	Tpeak	(min)=	10.00		25.00			
Unit Hyd.	peak	(cms)=	0.10		0.05			
						T0	TALS	
PEAK FLOW		(cms)=	0.03		0.02	0	.049 (iii)	j
TIME TO PE	AK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOI	UME	(mm)=	52.38		24.05	3	7.07	
TOTAL RAIN	IFALL	(mm)=	54.38		54.38	5-	4.38	
RUNOFF COE	FFICI	ENT =	0.96		0.44		0.68	

DD HYD (0410)				
1 + 2 = 3	AREA	QPEAK		R.V.
		(cms)		
		0.049		
+ ID2= 2 (0120):	1.24	0.066	5.25	40.19
ID = 3 (0410):	2.24	0.115	5.25	38.80

ADD HYD (0420)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0405):	4.35	0.214	5.25	38.79
+ ID2= 2 (0410):	2.24	0.115	5.25	38.80
================	======		=======	

LangstaffRd_EA_Existing_HumberWatershed ID = 3 (0420): 6.59 0.329 5.25 38.79

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

***********	***
** SIMULATION:Run 06	**
*************	***

READ STORM	F:	ilename:	C:\Use	rs\ray.z	hao\AppD			
i	İ		ata\Lo	cal\Temp	\			
i	i					-Redff	20f5fb5\11	25e1d6
Ptotal= 62.71 mr	ni c	omments:						
1 COCA1- 02.71 IIII		Jillineires.	10112					
			TIME	RAIN	TIME	RAIN	TIME	RAIN
		n/hr		mm/hr '	hrs	mm/hr	hrs	mm/hr
(9.25 6	0.00	3.50	10.66	6.75	4.39	10.00	0.63
	0.50	0.63	3.75	10.66	7.00	4.39	10.25	0.63
	3.75	0.63	4.00	10.66	7.25	4.39	10.50	0.63
1	1.00 6	9.63 j	4.25	10.66 İ	7.50	2.51	10.75	0.63
1	1.25	9.63 İ	4.50	28.84 İ	7.75	2.51 İ	11.00	0.63
1	1.50	9.63 İ	4.75	28.84 İ	8.00	2.51 İ	11.25	0.63
	1.75	9.63 j	5.00	28.84	8.25	2.51	11.50	0.63
	2.00 (9.63 j	5.25	28.84	8.50	1.25	11.75	0.63
	2.25	9.63 j	5.50	8.15	8.75	1.25	12.00	0.63
	2.50	3.76	5.75	8.15	9.00	1.25	12.25	0.63
	2.75	3.76	6.00	8.15	9.25	1.25		
	3.00	3.76	6.25	8.15	9.50	0.63		
3	3.25	3.76 İ	6.50	4.39 İ	9.75	0.63 İ		

CALIB					
STANDHYD (0110)	Area	(ha)=	1.58		
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir. Conn.(%)=	57.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.9	0	0.68	
Dep. Storage	(mm)=	2.0	0	5.00	
4	' / 0/ \			2 00	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15	9.33	0.63
		3.250				9.42	
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63

Page 21

${\tt LangstaffRd_EA_Existing_HumberWatershed}$

CALIB				
STANDHYD (0105)	Area	(ha)= 1.63		
ID= 1 DT= 5.0 min		Imp(%)= 61.00		61.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.99	0.64	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	`(%)=	1.00	2.00	
Length	(m)=	650.00	25.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME	RAIN	TIME		HYETOGRA	RAIN		RAIN
hrs	mm/hr	hrs		l' hrs		hrs	mm/hr
0.083	0.00	3.167		6.250	8.15	9.33	0.63
0.167	0.00	3.250		6.333	4.39	9.33	0.63
0.250		3.333		6.417	4.39	9.42	0.63
0.333				6.500		9.58	0.63
0.417	0.63 0.63	3.417		6.583	4.39	9.56	0.63
0.500	0.63	3.583		6.667	4.39	9.07	0.63
0.583		3.667		6.750	4.39	9.75	0.63
0.667		3.750		6.833	4.39		0.63
0.750		3.833		6.917	4.39		0.63
0.833		3.917		0.917 7.000			0.63
0.917	0.63		10.66		4.39		
1.000	0.63	4.083	10.66		4.39		0.63
		4.063	10.66				
1.083		4.167	10.66	7.250 7.333	4.39		0.63
1.250		4.250	28.84		2.51		0.63
1.333		4.333	28.84	7.417	2.51		0.63
1.333		4.417	28.84		2.51		0.63
					2.51		0.63
1.500	0.63 0.63	4.583	28.84			10.75 10.83	0.63
				7.750	2.51		
1.667		4.750		7.833	2.51		0.63
1.750		4.833		7.917			0.63
1.833		4.917		8.000	2.51		0.63
1.917		5.000		8.083	2.51		
2.000	0.63	5.083	28.84		2.51		
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250		8.333	1.25	11.42	0.63
2.250	0.63	5.333		8.417	1.25	11.50	0.63
2.333		5.417	8.15	8.500	1.25	11.58	0.63
2.417		5.500	8.15	8.583	1.25	11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25		
2.583	3.76	5.667	8.15	8.750	1.25		0.63
2.667		5.750	8.15	8.833	1.25	11.92	0.63
2.750	3.76	5.833	8.15	8.917	1.25	12.00	0.63
			Page	23			

Lange	+>ffDd E	A Evict	ing HumberW	atonch	od	
0.333 0.63			1 6.500	4.39		0.63
0.417 0.63		10.66		4.39		0.63
	3.583	10.66		4.39		0.63
0.583 0.63		10.66		4.39		0.63
	3.750	10.66		4.39		0.63
0.750 0.63	3.833	10.66		4.39		0.63
0.833 0.63	3.917	10.66		4.39		0.63
	4.000	10.66		4.39		0.63
1.000 0.63	4.083	10.66		4.39		0.63
	4.167	10.66		4.39		0.63
1.167 0.63		10.66		2.51		0.63
	4.333	28.84		2.51		0.63
	4.417	28.84		2.51		0.63
	4.500	28.84		2.51		0.63
	4.583	28.84		2.51		0.63
	4.667	28.84		2.51		0.63
	4.750	28.84		2.51		0.63
	4.833	28.84		2.51		0.63
	4.917	28.84		2.51		0.63
1.917 0.63	5.000	28.84		2.51		0.63
	5.083	28.84		2.51		0.63
2.083 0.63		28.84		2.51		0.63
2.167 0.63		28.84		1.25		0.63
2.250 0.63		8.15		1.25		0.63
	5.417	8.15		1.25		0.63
2.417 3.76		8.15		1.25		0.63
	5.583	8.15		1.25		0.63
2.583 3.76		8.15		1.25		0.63
2.667 3.76	5.750	8.15		1.25		0.63
	5.833	8.15		1.25		0.63
2.833 3.76	5.917	8.15		1.25		0.63
2.917 3.76	6.000	8.15		1.25		0.63
3.000 3.76	6.083	8.15		1.25		0.63
3.083 3.76	6.167	8.15	9.250	1.25	l	
Max.Eff.Inten.(mm/hr)=	28.84		19.93			
over (min)	15.00		25.00			
Storage Coeff. (min)=	12.91	(ii)	23.06 (ii)			
Unit Hyd. Tpeak (min)=	15.00		25.00			
Unit Hyd. peak (cms)=	0.08		0.05	****	TALS*	
PEAK FLOW (cms)=	0.07		0.03		.100 (iii)	
TIME TO PEAK (hrs)=	5.25		5.33		.100 (111) 5.25	
RUNOFF VOLUME (mm)=	60.71		32.48		3.56	
TOTAL RAINFALL (mm)=	62.71		62.71		2.71	
RUNOFF COEFFICIENT =	0.97		0.52		2.71	
NUMUFF CUEFFICIENT =	0.9/		0.52	,	0.//	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 22

LangstaffRd_EA_Existing_HumberWatershed							
	2.83	3 3.76	5.917	8.15 9.000	1.25 12.08	0.63	
	2.91	7 3.76	6.000	8.15 9.083	1.25 12.17	0.63	
	3.000	3.76	6.083	8.15 9.167	1.25 12.25	0.63	
	3.08	3.76	6.167	8.15 9.250	1.25		
	Max.Eff.Inten.(r	nm/hr)=	28.84	20.82			
		(min)	15.00				
	Storage Coeff.	(min)=	12.91	(ii) 22.89 (ii)		
	Unit Hyd. Tpeak	(min)=	15.00	25.00			
	Unit Hyd. peak	(cms)=	0.08	0.05			
					TOTALS		
	PEAK FLOW	(cms)=	0.08	0.03	0.107 (iii)		
	TIME TO PEAK	(hrs)=	5.25	5.33	5.25		
	RUNOFF VOLUME	(mm)=	60.71	33.62	50.14		
	TOTAL RAINFALL	(mm)=	62.71	62.71	62.71		
	RUNOFF COEFFICIE	ENT =	0.97	0.54	0.80		

ADD HYD (0400)					
1 4 . 2 2 1	4054	ODEAN	TDEAK	D 1/	

R.V. (mm) 50.14 48.56 3.21 0.207 ID = 3 (0400): 5.25 49.36

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

STANDHYD (0125) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	2.27 53.00	Dir. Conn.(%)=	53.00
		IMPERVI	0US	PERVIOUS (i)	
Surface Area	(ha)=	1.2	0	1.07	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	800.0	0	20.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

	Lange	+>6604 5	A Evict	ing_HumberW	latonch	od	
TIME	RAIN	TIME	RAIN		RAIN		RAIN
hrs	mm/hr	l hrs	mm/hr	l' hrs	mm/hr		mm/hr
0.083	0.00		3.76	6.250	8.15		0.63
0.167		3.250	3.76	6.333	4.39		0.63
0.250	0.00		10.66		4.39		0.63
0.333	0.63		10.66		4.39		0.63
0.417	0.63		10.66		4.39	9.67	0.63
0.500		3.583	10.66		4.39		0.63
0.583	0.63		10.66		4.39		0.63
0.667	0.63		10.66		4.39	9.92	0.63
0.750	0.63		10.66		4.39	10.00	0.63
0.833	0.63		10.66		4.39		0.63
0.917	0.63		10.66		4.39		0.63
1.000	0.63		10.66		4.39		0.63
1.083	0.63		10.66		4.39		0.63
1.167	0.63		10.66		2.51		0.63
1.250		4.333	28.84		2.51	10.50	0.63
1.333	0.63		28.84		2.51	10.58	0.63
1.417	0.63		28.84		2.51	10.67	0.63
1.500	0.63		28.84		2.51	10.75	0.63
1.583	0.63		28.84		2.51	10.83	0.63
1,667		4.750	28.84		2.51	10.92	0.63
1.750	0.63		28.84	7.917	2.51	11.00	0.63
1.833	0.63	4.917	28.84		2.51	11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63
2.000	0.63		28.84		2.51	11.25	0.63
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25	11.50	0.63
2.333	3.76	5.417	8.15	8.500	1.25	11.58	0.63
2.417	3.76	5.500	8.15	8.583	1.25	11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25	11.75	0.63
2.583	3.76	5.667	8.15	8.750	1.25	11.83	0.63
2.667	3.76	5.750	8.15	8.833	1.25	11.92	0.63
2.750	3.76	5.833	8.15	8.917	1.25	12.00	0.63
2.833	3.76	5.917	8.15	9.000	1.25	12.08	0.63
2.917		6.000	8.15	9.083	1.25	12.17	0.63
3.000		6.083	8.15	9.167	1.25		0.63
3.083	3.76	6.167	8.15	9.250	1.25		
Max.Eff.Inten.(mm/		28.84		19.01			
over (m		15.00		25.00			
	in)=	14.63	(ii)	23.67 (ii)			
Unit Hyd. Tpeak (m		15.00		25.00			
Unit Hyd. peak (c	ms)=	0.08		0.05	*T01	ΓALS*	
PEAK FLOW (c	ms)=	0.09		0.04		.136 (iii)	
	rs)=	5.25		5.42		5.25	
	mm)=	60.71		30.35		5.43	
	mm)=	62.71		62.71		2.71	
RUNOFF COEFFICIENT	´=	0.97		0.48		3.74	

Page 25

Lar 2.417 3.7 2.590 3.7 2.583 3.7 2.583 3.7 2.750 3.7 2.750 3.7 2.833 3.7 2.917 3.7 3.000 3.7 3.083 3.7	RStaffRd_EA_Exist 6 5.500	ing_HumberWate 8.583 1.2 8.667 1.2 8.750 1.2 8.833 1.2 8.917 1.2 9.000 1.2 9.083 1.2 9.167 1.2	rshed 15 11.67
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	28.84 15.00 14.63 (ii) 15.00 0.08	19.01 25.00 23.67 (ii) 25.00 0.05	*TOTALS*
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.08 5.25 60.71 62.71 0.97	0.04 5.42 30.35 62.71 0.48	0.123 (iii) 5.25 45.83 62.71 0.73
(i) CN PROCEDURE SELE CN* = 83.0 (ii) TIME STEP (DT) SHI THAN THE STORAGE (iii) PEAK FLOW DOES NO	Ia = Dep. Storage DULD BE SMALLER OF COEFFICIENT. T INCLUDE BASEFLOR	(Above) R EQUAL	
ADD HYD (0405) 1 + 2 = 3 ID1= 1 (0125): + ID2= 2 (0130):	AREA QPEAK (ha) (cms) 2.27 0.136 2.08 0.123	TPEAK R.V. (hrs) (mm) 5.25 46.43 5.25 45.83	i
ID = 3 (0405): NOTE: PEAK FLOWS DO NO	4.35 0.259 T INCLUDE BASEFLO	5.25 46.14 NS IF ANY.	-
CALIB			- 57.00
	IMPERVIOUS PI 0.71 2.00 1.00 475.00 0.013	ERVIOUS (i) 0.53 5.00 2.00 17.00 0.250	

Page 27

- LangstaffRd_EA_Existing_HumberWatershed

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0130)	Area	(ha)=	2.08			
ID= 1 DT= 5.0 min		Imp(%)=		Dir.	Conn.(%)=	51.00
		IMPERVI	OUS	PERVIOL	JS (i)	
Surface Area	(ha)=	1.0	6	1.02	! ` ′	
Dep. Storage	(mm)=	2.0	0	5.00)	
Average Slope	(%)=	1.0	0	2.00)	
Length	(m)=	800.0	0	20.00)	
Mannings n	` ′=	0.01	3	0.250)	

	TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	3.76	6.250	8.15		0.63				
0.167	0.00	3.250	3.76	6.333	4.39	9.42	0.63				
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63				
0.333	0.63	3.417	10.66	6.500	4.39		0.63				
0.417	0.63	3.500	10.66	6.583	4.39		0.63				
0.500	0.63	3.583	10.66	6.667	4.39	9.75	0.63				
0.583	0.63	3.667	10.66	6.750	4.39		0.63				
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63				
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63				
0.833	0.63	3.917	10.66	7.000	4.39		0.63				
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63				
1.000	0.63	4.083	10.66	7.167	4.39	10.25	0.63				
1.083	0.63		10.66	7.250	4.39		0.63				
1.167	0.63	4.250	10.66	7.333	2.51	10.42	0.63				
1.250	0.63	4.333	28.84	7.417	2.51	10.50	0.63				
1.333	0.63	4.417	28.84	7.500	2.51	10.58	0.63				
1.417	0.63	4.500	28.84	7.583	2.51	10.67	0.63				
1.500	0.63	4.583	28.84	7.667	2.51	10.75	0.63				
1.583	0.63	4.667	28.84	7.750	2.51	10.83	0.63				
1.667	0.63	4.750	28.84	7.833	2.51	10.92	0.63				
1.750	0.63	4.833	28.84	7.917	2.51	11.00	0.63				
1.833	0.63	4.917	28.84	8.000	2.51	11.08	0.63				
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63				
2.000	0.63	5.083	28.84	8.167	2.51	11.25	0.63				
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63				
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63				
2.250	0.63	5.333	8.15	8.417	1.25	11.50	0.63				
2.333	3.76	5.417	8.15	8.500	1.25	11.58	0.63				

Page 26

${\tt LangstaffRd_EA_Existing_HumberWatershed}$

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	NOTE:	KAINI	ALL WAS II	MANSFURM	טו עב	D. WIIN. I	THE 211	· .	
				то.	NCFORM	D INCETOCOA			
		TIME	RAIN			D HYETOGRA			RAIN
					RAIN mm/hr		RAIN		mm/hr
		hrs		hrs 3.167		' hrs 6.250	mm/hr 8.15		
		0.083			3.76				0.63
		0.16		3.250	3.76		4.39		0.63
		0.25			10.66		4.39		0.63
		0.33		3.417	10.66		4.39		0.63
		0.41		3.500	10.66		4.39		0.63
		0.500		3.583		6.667	4.39		0.63
		0.583			10.66		4.39		0.63
		0.66		3.750		6.833	4.39		0.63
		0.75		3.833	10.66		4.39		0.63
		0.83		3.917	10.66		4.39		0.63
		0.91		4.000	10.66		4.39		0.63
		1.000		4.083	10.66		4.39		0.63
		1.08		4.167	10.66		4.39		0.63
		1.16		4.250	10.66		2.51		0.63
		1.250		4.333	28.84		2.51		0.63
		1.33		4.417	28.84		2.51		0.63
		1.41		4.500	28.84		2.51		0.63
		1.500		4.583	28.84			10.75	0.63
		1.58		4.667	28.84		2.51		0.63
		1.66		4.750	28.84		2.51		0.63
		1.75		4.833	28.84		2.51		0.63
		1.83		4.917	28.84		2.51		0.63
		1.91		5.000	28.84		2.51		0.63
		2.000		5.083	28.84		2.51		0.63
		2.08		5.167		8.250	2.51		0.63
		2.16			28.84		1.25		0.63
		2.25			8.15		1.25		0.63
		2.33			8.15		1.25		0.63
		2.41			8.15		1.25		0.63
		2.500			8.15		1.25		0.63
		2.583			8.15		1.25		0.63
		2.66				8.833	1.25		0.63
		2.75			8.15		1.25		0.63
		2.83			8.15			12.08	0.63
		2.91			8.15			12.17	0.63
		3.000				9.167		12.25	0.63
		3.083	3.76	6.167	8.15	9.250	1.25		
Max	.Eff.In			28.84		19.01			
	_		(min)	10.00		20.00			
	rage Co		(min)=	10.70	(11)	18.90 (ii)			
	t Hyd.			10.00		20.00			
Uni	t Hyd.	peak	(cms)=	0.11		0.06			
			, ,					TALS*	
	K FLOW		(cms)=	0.06		0.02		.079 (iii))
TIN	ME TO PE	AK	(hrs)=	5.25		5.33		5.25	

Page 28

$LangstaffRd_EA_Existing_HumberWatershed \\ RUNOFF VOLUME & (mm) = & 68.71 & 30.35 & 47.6 \\ TOTAL RAINFALL & (mm) = & 62.71 & 62.71 & 62.71 \\ RUNOFF COEFFICIENT & = & 0.97 & α ^ 40$ & 62.77 \\ RUNOFF COEFFICIENT & = & 0.97 & α ^ 40$ & 62.77 \\ RUNOFF COEFFICIENT & = & 0.97 & α ^ 40$ & 62.77 \\ RUNOFF COEFFICIENT & & 0.97 & α & 62.77 \\ RUNO$ 47.65 62.71

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0115)| |ID= 1 DT= 5.0 min | Area (ha)= 1.00 Total Imp(%)= 46.00 Dir. Conn.(%)= 46.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.46 2.00 1.00 475.00 Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

RAIN | TIME RAIN | TIME RM/hr | hrs | 0.00 | 3.167 | 3.76 | 6.250 | 8.15 | 9.33 | 0.00 | 3.250 | 3.76 | 6.250 | 8.15 | 9.33 | 0.66 | 6.417 | 4.39 | 9.50 | 0.63 | 3.417 | 10.66 | 6.417 | 4.39 | 9.50 | 0.63 | 3.583 | 10.66 | 6.580 | 4.39 | 9.57 | 0.63 | 3.583 | 10.66 | 6.667 | 4.39 | 9.57 | 0.63 | 3.583 | 10.66 | 6.667 | 4.39 | 9.57 | 0.63 | 3.583 | 10.66 | 6.667 | 4.39 | 9.75 | 0.63 | 3.583 | 10.66 | 6.673 | 4.39 | 9.57 | 0.63 | 3.583 | 10.66 | 6.673 | 4.39 | 9.75 | 0.63 | 3.583 | 10.66 | 6.578 | 4.39 | 9.75 | 0.63 | 3.583 | 10.66 | 6.750 | 4.39 | 9.83 | 0.63 | 3.750 | 10.66 | 6.750 | 4.39 | 10.00 | 0.63 | 3.350 | 10.66 | 6.917 | 4.39 | 10.00 | 0.63 | 3.917 | 10.66 | 7.083 | 4.39 | 10.00 | 0.63 | 4.000 | 10.66 | 7.083 | 4.39 | 10.17 | 0.63 | 4.083 | 10.66 | 7.083 | 4.39 | 10.17 | 0.63 | 4.408 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.66 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 0.63 | 4.250 | 10.65 | 7.250 | 4.39 | 10.35 | 10.45 | 0.65 | 1.250 | 10.250 | 0.63 | 4.250 | 0.250 | 10.25 hrs 0.083 0.167 mm/hr 0.63 0.63 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.63 0.917 1.000 1.083 1.167 1.250 1.333 0.63 0.63 0.63 0.63 0.63 1.417 0.63 1.583 1.667 1.750 1.833 1.917 0.63 0.63 0.63 0.63

Page 29

LangstaffRd_EA_Existing_HumberWater								
+ ID2= 2 (0410):	2.24	0.139	5.25	46.15			
ID = 3 (0420):	6.59	0.399	5.25	46.15			

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS TE ANY.

************ ** SIMULATION:Run 08 **

CALIB

READ STORM	Filer	name: C:\	Jsers\ray	.zhao\App	pD		
İ	ĺ	ata	\Local\Te	mp\			
i	i		50948-ccb		h92-Redft	F20f5fh5\	4f8285
Ptotal= 73.10 mm	Commo	nts: 25Y		C 4000 0	DJE OCUII	2013103	
FLUCAT- 73.10 IIIII	Comme	:111.5. 231.	12				
T:	IME RAIN		RAIN	' TIME	RAIN		RAI
	hrs mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/h
0	.25 0.00	3.50	12.43	6.75	5.12	10.00	0.73
0	.50 0.73	3.75	12.43	7.00	5.12	10.25	0.73
0	.75 0.73	4.00	12.43	7.25	5.12	10.50	0.73
1	.00 0.73	4.25	12.43	7.50	2.92	10.75	0.73
1	.25 0.73	4.50	33.63	7.75	2.92	11.00	0.73
1	.50 0.73	4.75	33.63	8.00	2.92	11.25	0.73
1.	.75 0.73	5.00	33.63	8.25	2.92	11.50	0.73
2.	.00 0.73	5.25	33.63	8.50	1.46	11.75	0.73
2	.25 0.73	5.50	9.50	8.75	1.46	12.00	0.73
2.	.50 4.39	5.75	9.50	9.00	1.46	12.25	0.73
2.	.75 4.39	6.00	9.50	9.25	1.46	İ	
3.	.00 4.39	6.25	9.50	9.50	0.73	i	

3.25 4.39 | 6.50 5.12 | 9.75 0.73 |

| CALIB | | STANDHYD (0110) | | ID= 1 DT= 5.0 min | Area (ha)= 1.58 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 PERVIOUS (i) (ha)= (mm)= (%)= (m)= Surface Area 0.90 2.00 1.00 0.68 5.00 2.00 Dep. Storage Average Slope Length Mannings n 25.00 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73			

Page 31

Lang	ctaffDd D	A Evict	ing Humb	erWatersh	nd.					
2 999 9 63	5 AR3	28 84 	1 8 167	2 51	11 25	0.63				
2.083 0.63	5.167	28.84	8.250	2.51	11.33	0.63				
2.167 0.63	5.250	28.84	8.333	1.25	11.42	0.63				
2.250 0.63	5.333	8.15	8.417	1.25	11.50	0.63				
2.333 3.76	5.417	8.15	8.500	1.25	11.58	0.63				
2.417 3.76	5.500	8.15	8.583	1.25	11.67	0.63				
2.500 3.76	5.583	8.15	8.667	1.25	11.75	0.63				
2.583 3.76	5.667	8.15	8.750	1.25	11.83	0.63				
2.667 3.76	5.750	8.15	8.833	1.25	11.92	0.63				
2.750 3.76	5.833	8.15	8.917	1.25	12.00	0.63				
2.833 3.76	5.917	8.15	9.000	1.25	12.08	0.63				
2.917 3.76	6.000	8.15	9.083	1.25	12.17	0.63				
3.000 3.76	6.083	8.15	9.16/	1.25	12.25	0.63				
3.083 3.76	6.16/	8.15	9.250	1.25						
Langstafffd EA_Existing_HumberWatershed										
oven (min)	10.04		20.01							
Storage Coeff (min)-	10.00	(11)	18 90 (1)						
Unit Hyd Theak (min)=	10.70	(11)	20.00	/						
Unit Hyd neak (cms)=	0.00		0 06							
					ALS*					
PFAK FLOW (cms)=	9.94		0.02	0.	060 (iii)				
TIME TO PEAK (hrs)=	5.25		5.33		25	,				
RUNOFF VOLUME (mm)=	60.71		30.35	44	1.30					
TOTAL RAINFALL (mm)=	62.71		62.71	62	.71					
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.97		0.48	6	.71					
(i) CN PROCEDURE SELECT CN* = 83.0 Iz (ii) TIME STEP (DT) SHOL THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT	a = Dep. JLD BE SM DEFFICIEN INCLUDE	Storage ALLER OF T. BASEFLOW	(Above) R EQUAL	1						
ADD HYD (0410)										
ADD HYD (0410) 1 + 2 = 3	AREA O	DEVR	TDEAK	P V						
((ha) (cms)	(hrs)	(mm)						
TD1= 1 (0115): 1	1.00 0.	969	5.25	44.30						
+ TD2= 2 (0120): 1	1.24 0.	079	5.25	47.65						
=======================================										
ID = 3 (0410): 2										
NOTE: PEAK FLOWS DO NOT	INCLUDE	BASEFLOV	S IF ANY	·.						
ADD HVD / Q42Q\I										
1 + 2 = 3	AREA O	PEAK	TPEAK	R.V.						
1 + 2 = 3 A 	(ha) (cms)	(hrs)	(mm)						
ID1= 1 (0405):	1.35 0.	259	5.25	46.14						

	Lange	taffRd F	Δ Fyist	ing HumberW	atersh	ed	
0.16		3.250		6.333	5.12		0.73
0.25					5.12		0.73
0.33		3.417			5.12		0.73
0.41					5.12		0.73
0.50	0 0.73	3.583			5.12		0.73
0.58					5.12		0.73
0.66	7 0.73	3.750	12.43		5.12	9.92	0.73
0.75	0 0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.83	3 0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.91	7 0.73	4.000	12.43	7.083	5.12	10.17	0.73
1.00	0 0.73	4.083	12.43	7.167	5.12	10.25	0.73
1.08	3 0.73	4.167	12.43	7.250	5.12	10.33	0.73
1.16	7 0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.25	0 0.73	4.333	33.63	7.417	2.92	10.50	0.73
1.33	3 0.73	4.417	33.63	7.500	2.92	10.58	0.73
1.41	7 0.73	4.500	33.63	7.583	2.92	10.67	0.73
1.50	0 0.73	4.583	33.63	7.667	2.92	10.75	0.73
1.58	3 0.73	4.667	33.63	7.750	2.92	10.83	0.73
1.66	7 0.73	4.750	33.63	7.833	2.92	10.92	0.73
1.75		4.833		7.917	2.92	11.00	0.73
1.83	3 0.73	4.917	33.63	8.000	2.92	11.08	0.73
1.91		5.000		8.083	2.92	11.17	0.73
2.00	0 0.73	5.083	33.63	8.167	2.92	11.25	0.73
2.08	3 0.73	5.167	33.63	8.250	2.92	11.33	0.73
2.16	7 0.73	5.250	33.63	8.333	1.46	11.42	0.73
2.25	0 0.73	5.333	9.50	8.417	1.46	11.50	0.73
2.33	3 4.39	5.417	9.50	8.500	1.46	11.58	0.73
2.41	7 4.39	5.500	9.50	8.583	1.46	11.67	0.73
2.50	0 4.39	5.583	9.50	8.667	1.46	11.75	0.73
2.58	3 4.39	5.667	9.50	8.750	1.46	11.83	0.73
2.66	7 4.39	5.750	9.50	8.833	1.46	11.92	0.73
2.75	0 4.39	5.833	9.50	8.917	1.46	12.00	0.73
2.83	3 4.39	5.917	9.50	9.000	1.46	12.08	0.73
2.91	7 4.39	6.000	9.50	9.083	1.46	12.17	0.73
3.00		6.083	9.50		1.46		0.73
3.08	3 4.39	6.167	9.50	9.250	1.46	l	
Max.Eff.Inten.(mm/hr)=	33.63		25.08			
over	(min)	10.00		25.00			
Storage Coeff.	(min)=	12.14	(ii)	21.40 (ii)			
Unit Hyd. Tpeak		10.00		25.00			
Unit Hyd. peak	(cms)=	0.10		0.05	****	TALS*	
PEAK FLOW	(cms)=	0.08		0.04		.121 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOLUME	(mm)=	71.10		41.07		3.18	
TOTAL RAINFALL	(mm)=	73.10		73.10		3.10	

Page 30

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 85.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

LangstaffRd_EA_Existing_HumberWatershed THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RATN	l' TTMF	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	i hrs	mm/hr		
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73		
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73		
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73		
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73		
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73		
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73		
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73		
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73		
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73		
0.833	0.73	3.917	12.43	7.000	5.12	10.08	0.73		
0.917	0.73	4.000	12.43	7.083	5.12	10.17	0.73		
1.000	0.73	4.083	12.43	7.167	5.12	10.25	0.73		
1.083	0.73	4.167	12.43	7.250	5.12	10.33	0.73		
1.167	0.73	4.250	12.43	7.333	2.92	10.42	0.73		
1.250	0.73	4.333	33.63	7.417	2.92	10.50	0.73		
1.333	0.73	4.417	33.63	7.500	2.92	10.58	0.73		
1.417	0.73	4.500	33.63	7.583	2.92	10.67	0.73		
1.500	0.73	4.583	33.63	7.667	2.92	10.75	0.73		
1.583	0.73	4.667	33.63	7.750	2.92	10.83	0.73		
1.667	0.73	4.750	33.63	7.833	2.92	10.92	0.73		
1.750	0.73	4.833	33.63	7.917	2.92	11.00	0.73		
1.833	0.73	4.917	33.63	8.000	2.92	11.08	0.73		
1.917	0.73	5.000	33.63	8.083	2.92	11.17	0.73		
2.000	0.73	5.083	33.63	8.167	2.92	11.25	0.73		
2.083	0.73	5.167	33.63	8.250	2.92	11.33	0.73		
2.167	0.73	5.250	33.63	8.333	1.46	11.42	0.73		
2.250	0.73	5.333	9.50	8.417	1.46	11.50	0.73		
2.333	4.39	5.417	9.50	8.500	1.46	11.58	0.73		
2.417	4.39	5.500	9.50	8.583	1.46	11.67	0.73		
2.500	4.39	5.583	9.50	8.667	1.46	11.75	0.73		
2.583	4.39	5.667	9.50	8.750	1.46	11.83	0.73		

Page 33

LangstaffRd EA Existing HumberWatershed

LangstaffRd_EA_Existing_HumberWatershed										
TRANSFORMED HYETOGRAPH										
	IN TIME	RAIN		RAIN		RAIN				
	hr hrs			mm/hr		mm/hr				
	00 3.167		6.250	9.50		0.73				
	00 3.250		6.333	5.12		0.73				
	00 3.333		6.417	5.12		0.73				
	73 3.417		6.500	5.12		0.73				
	73 3.500		6.583	5.12		0.73				
	73 3.583		6.667	5.12		0.73				
	73 3.667		6.750	5.12		0.73				
	73 3.750		6.833	5.12		0.73				
	73 3.833		6.917		10.00	0.73				
	73 3.917		7.000		10.08	0.73				
	73 4.000		7.083		10.17	0.73				
1.000 0.	73 4.083	12.43	7.167		10.25	0.73				
1.083 0.	73 4.167		7.250		10.33	0.73				
	73 4.250		7.333		10.42	0.73				
	73 4.333				10.50	0.73				
	73 4.417		7.500		10.58	0.73				
	73 4.500	33.63	7.583		10.67	0.73				
	73 4.583		7.667		10.75	0.73				
	73 4.667		7.750		10.83	0.73				
	73 4.750		7.833		10.92	0.73				
	73 4.833		7.917		11.00	0.73				
	73 4.917		8.000		11.08	0.73				
	73 5.000		8.083		11.17	0.73				
	73 5.083		8.167		11.25	0.73				
	73 5.167		8.250		11.33	0.73				
	73 5.250				11.42	0.73				
	73 5.333		8.417		11.50	0.73				
	39 5.417		8.500		11.58	0.73				
	39 5.500		8.583		11.67	0.73				
	39 5.583		8.667		11.75	0.73				
	39 5.667		8.750		11.83	0.73				
	39 5.750		8.833		11.92	0.73				
	39 5.833		8.917		12.00	0.73				
	39 5.917		9.000		12.08	0.73				
	39 6.000		9.083		12.17	0.73				
	39 6.083		9.167		12.25	0.73				
3.083 4.	39 6.167	9.50	9.250	1.46						
Max.Eff.Inten.(mm/hr)=			23.77							
over (min)	15.00		25.00							
Storage Coeff. (min)=			22.03 (ii)							
Unit Hyd. Tpeak (min)=			25.00							
Unit Hyd. peak (cms)=	0.08		0.05							
					ALS*					
PEAK FLOW (cms)=			0.06		165 (iii)					
TIME TO PEAK (hrs)=			5.33		. 25					
RUNOFF VOLUME (mm)=			38.61		.82					
TOTAL RAINFALL (mm)=			73.10		3.10					
RUNOFF COEFFICIENT =	0.97		0.53	6	76					

0.06 5.33 38.61 73.10 0.53 Page 35

	Langstaff	Rd_EA_Exist	ting_Humbe	rWatersh	ed	
2.66/	4.39 5.	750 9.50	8.833	1.46	11.92	0.73
2.730	4.39 5.0	17 9.50	0.917	1.40	12.00	0.73
2.055	4 39 6 6	9 9 9 9 9	9 083	1.46	12.00	0.73
3.000	4.39 6.0	9.50	9.167	1.46	12.25	0.73
3.083	4.39 5.3 4.39 5.3 4.39 5.3 4.39 6.0 4.39 6.0 4.39 6.0	167 9.50	9.250	1.46		0.75
Max.Eff.Inten.(mm/h over (mi Storage Coeff. (mi Unit Hyd. Tpeak (mi Unit Hyd. peak (cm	n) 10	9.00	25.00			
Storage Coeff. (mi	.n)= 1	2.14 (ii)	21.31 (i	i)		
Unit Hyd. Tpeak (mi	n)= 10	9.00	25.00			
Unit Hyd. peak (cm	ıs)= (0.10	0.05			
					TALS*	
PEAK FLOW (cm	ıs)= (0.09	0.04	0	.129 (iii)
PEAK FLOW (cm TIME TO PEAK (hr RUNOFF VOLUME (m TOTAL RAINFALL (m RUNOFF COEFFICIENT	's)= !	5.25	5.33		5.25	
RUNOFF VOLUME (m	ım)= 7:	1.10	42.37	59	9.89	
TOTAL RAINFALL (m	m)= /:	3.10	/3.10	/:	3.10	
RUNOFF COEFFICIENT	= (9.9/	0.58	•	0.82	
THAN THE STOR (iii) PEAK FLOW DOE 	S NOT INCLU	JDE BASEFLO				
ID1= 1 (0105):	1.63	0.129	5.25	59.89		
+ ID2= 2 (0110):	1.58	0.121	5.25	58.18		
ID = 3 (0400):						
NOTE: PEAK FLOWS D	O NOT INCL	JDE BASEFLO	WS IF ANY			
CALIB STANDHYD (0125) A ID= 1 DT= 5.0 min T	rea (ha otal Imp(%)= 2.27)= 53.00	Dir. Con	n.(%)= !	53.00	
Surface Area (h	IMPEI	1 30 (ATOO2 b	1 07 1 07	1)		
Den Storage (m	m)-	2 00	5 00			
Avenage Slone (,- %\-	1 00	2 00			
Length (m)= 800	9 00	20 00			
Surface Area (h Dep. Storage (m Average Slope (Length (Mannings n	= 0	.013	0.250			
NOTE: RAINFALL				TIME ST	EP.	

Page 34

${\tt LangstaffRd_EA_Existing_HumberWatershed}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB					
STANDHYD (0130)	Area	(ha)=	2.08		
ID= 1 DT= 5.0 min	Total	Imp(%)=	51.00	Dir. Conn.(%)=	51.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	1.0	6	1.02	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	800.0	0	20.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR) HYETOGRA		-	
TIME	RAIN		RAIN	' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs			mm/hr
0.083	0.00	3.167	4.39	6.250	9.50		0.73
0.167	0.00	3.250	4.39		5.12		0.73
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.833	0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.917		4.000			5.12		0.73
1.000	0.73		12.43	7.167	5.12		0.73
1.083	0.73		12.43		5.12	10.33	0.73
1.167	0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.250		4.333	33.63	7.417	2.92		0.73
1.333	0.73	4.417			2.92	10.58	0.73
1.417		4.500	33.63	7.583	2.92		0.73
1.500	0.73	4.583	33.63	7.667	2.92	10.75	0.73
1.583	0.73		33.63	7.750	2.92	10.83	0.73
1.667	0.73	4.750	33.63	7.833	2.92	10.92	0.73
1.750	0.73		33.63	7.917	2.92	11.00	0.73
1.833	0.73		33.63	8.000	2.92	11.08	0.73
1.917		5.000	33.63	8.083	2.92	11.17	0.73
2.000	0.73	5.083	33.63	8.167	2.92	11.25	0.73
2.083	0.73		33.63		2.92	11.33	0.73
2.167	0.73	5.250	33.63	8.333	1.46	11.42	0.73
			_				

Page 36

```
LangstaffRd_EA_Existing_HumberWatershed

0.73 | 5.333 | 9.50 | 8.417 | 1.46 | 1

4.39 | 5.600 | 9.50 | 8.580 | 1.46 | 1

4.39 | 5.500 | 9.50 | 8.583 | 1.46 | 1

4.39 | 5.583 | 9.50 | 8.667 | 1.46 | 1

4.39 | 5.667 | 9.50 | 8.750 | 1.46 | 1

4.39 | 5.667 | 9.50 | 8.833 | 1.46 | 1

4.39 | 5.750 | 9.50 | 8.917 | 1.46 | 1

4.39 | 5.917 | 9.50 | 9.000 | 1.46 | 1

4.39 | 5.900 | 9.50 | 9.000 | 1.46 | 1

4.39 | 6.000 | 9.50 | 9.000 | 1.46 | 1

4.39 | 6.003 | 9.50 | 9.167 | 1.46 | 1

4.39 | 6.167 | 9.50 | 9.250 | 1.46 |
                                                                                                                                                                             Natershed
1.46 | 11.50
1.46 | 11.58
1.46 | 11.67
1.46 | 11.75
1.46 | 11.83
1.46 | 11.92
1.46 | 12.00
1.46 | 12.01
                                    2.250
                                     2.333
                                    2.333
2.417
2.500
2.583
2.667
2.750
                                                                                                                                                                                                                                    0.73
0.73
0.73
0.73
0.73
                                     2.833
                                                                                                                                                                                                                                     0.73
                                     2.917
                                                                                                                                                                                                                                     0.73
                                                                                                                                                                                                    12.25
                                                                                             33.63
15.00
13.76 (ii)
15.00
                                                                                                                                    23.77
25.00
22.03 (ii)
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                 0.08
                                                                                                                                             0.05
                                                                                                                                                                                      *TOTALS*
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                              0.10
5.25
71.10
73.10
                                                                                                                                          0.05
5.33
38.61
73.10
0.53
                                                                                                                                                                                           0.150 (iii)
5.25
55.17
                                                                                                0.97
```

ADD HYD (0405)| 1 + 2 = 3 | ID1= 1 (0125): + ID2= 2 (0130): AREA (ha) 2.27 2.08 QPEAK (cms) 0.165 0.150 TPEAK (hrs) 5.25 5.25 R.V. (mm) 55.82 55.17 ID = 3 (0405): 4.35 0.315 5.25 55.51

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Area (ha)= 1.24 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)=

Page 37

	Lang	staffRd_EA_E	kisting_HumberN	Vatershed
PEAK FLOW	(cms)=	0.07	0.03	0.096 (iii)
TIME TO PEAK	(hrs)=	5.25	5.33	5.25
RUNOFF VOLUME	(mm)=	71.10	38.61	57.12
TOTAL RAINFALL	(mm)=	73.10	73.10	73.10
RUNOFF COEFFICI	ENT =	0.97	0.53	0.78

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

I CALTB I				
STANDHYD (0115)	Area (ha)-	1 00		
ID= 1 DT= 5.0 min	Total Imp(%)=	46.00	Dir. Conn.(%)=	46.00

		IMPERVIOUS	PERVIOUS	(i)
Surface Area	(ha)=	0.46	0.54	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGRA	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.833	0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.917	0.73	4.000	12.43	7.083	5.12	10.17	0.73
1.000	0.73	4.083	12.43	7.167	5.12	10.25	0.73
1.083	0.73	4.167	12.43	7.250	5.12	10.33	0.73
1.167	0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.250	0.73	4.333	33.63	7.417	2.92	10.50	0.73
1.333	0.73	4.417	33.63	7.500	2.92	10.58	0.73
1.417	0.73	4.500	33.63	7.583	2.92	10.67	0.73
1.500	0.73	4.583	33.63	7.667	2.92	10.75	0.73
1.583	0.73	4.667	33.63	7.750	2.92	10.83	0.73
1.667	0.73	4.750	33.63	7.833	2.92	10.92	0.73
1.750	0.73	4.833	33.63	7.917	2.92	11.00	0.73

Page 39

LangstaffRd_EA_Existing_HumberWatershed Length 475.00 0.013 Mannings n 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	ED HYETOGRA	PH	-	
TIM	E RAIN		RAIN		RAIN		RAIN
hr	s mm/hr	hrs	mm/hr	i' hrs	mm/hr	hrs	mm/hr
0.08	3 0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.16	7 0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.25	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.33	3 0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.41	7 0.73	3.500	12.43	6.583	5.12	9.67	0.73
0.50	0 0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.58	3 0.73	3.667	12.43	6.750	5.12	9.83	0.73
0.66	7 0.73	3.750	12.43	6.833	5.12	9.92	0.73
0.75	0 0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.83	3 0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.91	7 0.73	4.000	12.43	7.083	5.12	10.17	0.73
1.00	0 0.73	4.083			5.12		0.73
1.08		4.167	12.43	7.250	5.12	10.33	0.73
1.16	7 0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.25	0 0.73	4.333	33.63	7.417	2.92	10.50	0.73
1.33	3 0.73	4.417	33.63	7.500	2.92	10.58	0.73
1.41		4.500	33.63	7.583	2.92		0.73
1.50	0 0.73	4.583	33.63	7.667	2.92	10.75	0.73
1.58	3 0.73	4.667	33.63		2.92	10.83	0.73
1.66	7 0.73	4.750	33.63	7.833	2.92		0.73
1.75	0 0.73	4.833	33.63	7.917	2.92	11.00	0.73
1.83	3 0.73	4.917	33.63	8.000	2.92		0.73
1.91	7 0.73	5.000	33.63	8.083	2.92	11.17	0.73
2.00	0 0.73	5.083	33.63	8.167	2.92	11.25	0.73
2.08	3 0.73	5.167	33.63	8.250	2.92	11.33	0.73
2.16	7 0.73	5.250	33.63	8.333	1.46	11.42	0.73
2.25	0 0.73	5.333	9.50	8.417	1.46	11.50	0.73
2.33		5.417	9.50	8.500	1.46	11.58	0.73
2.41		5.500		8.583	1.46	11.67	0.73
2.50	0 4.39	5.583	9.50	8.667	1.46	11.75	0.73
2.58		5.667	9.50		1.46		0.73
2.66	7 4.39	5.750		8.833	1.46	11.92	0.73
2.75			9.50		1.46		0.73
2.83		5.917		9.000	1.46	12.08	0.73
2.91	7 4.39	6.000	9.50	9.083	1.46	12.17	0.73
3.00		6.083	9.50		1.46		0.73
3.08	3 4.39	6.167	9.50	9.250	1.46	l	
Max.Eff.Inten.(mm/hr)=	33.63		23.77			
over	(min)	10.00		20.00			
Storage Coeff.	(min)=	10.06	(ii)	17.57 (ii)			
Unit Hyd. Tpeak	(min)=	10.00		20.00			
Unit Hyd. peak	(cms)=	0.11		0.06			
					TO	τΔις	

Page 38

TOTALS

```
1.833
1.917
2.000
                                                                                                                      11.08
11.17
11.25
11.33
                                                                                                                                        0.73
0.73
                                                                                                          2.92
                             2.083
                                                                                                          2.92
                                                                                                                                        0.73
                             2.167
                                                                                                         1.46
                                                                                                                      11.42
11.50
                                                                                                                                        0.73
                             2 250
                                                                                                          1 46
                            2.250
2.333
2.417
2.500
2.583
                                                                                                         1.46
1.46
1.46
1.46
1.46
                                                                                                                      11.58
11.67
11.75
11.83
                             2.667
                                                                                                                      11.92
                                                                                                                                        0.73
                              2.750
                                                                                                          1.46
                                                                                                                      12.00
                                                                                                                                        0.73
                             2.833
2.917
                                                                                                          1.46
                                                                                                                      12.08
12.17
                                                                                                                                        0.73
0.73
                                                                                                         1.46
1.46
1.46
        Max.Eff.Inten.(mm/hr)=
                                                             33.63
                                                                                     23.77
        over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                             10.00
10.06 (ii)
                                                                                     20.00
17.57 (ii)
                                                             10.00
                                                                                     20.00
       PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                             0.04
5.25
71.10
                                                                                                                 0.073 (iii)
5.25
53.54
73.10
                                                                                     5.33
38.61
                                                             73.10
                                                                                     73.10
                                                              0.97
                                                                                                                   0.73
       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 | ADD HYD ( 0410)|
| 1 + 2 = 3 |
                                                                  QPEAK
(cms)
                                                                                                    (mm)
53.54
                                                     (ha)
1.00
                                                                                     (hrs)
5.25
          ID1= 1 ( 0115):
+ ID2= 2 ( 0120):
                                                                 0.073
0.096
                                                                                     5.25
                                                                                                    57.12
           ID = 3 ( 0410):
                                                    2.24
                                                                                     5.25
        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD ( 0420)|
| 1 + 2 = 3 |
```

AREA QPEAK TPEAK

LangstaffRd_EA_Existing_HumberWatershed (ha) (cms) (hrs) (mm) 4.35 0.315 5.25 55.51 2.24 0.168 5.25 55.52 ID1= 1 (0405): + ID2= 2 (0410): ID = 3 (0420): 6.59 0.483 5.25 55.52 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Ptotal= 80.82 mm RAIN ' TIME mm/hr ' hrs 13.74 | 6.75 | 6.75 | 6.75 | 7.60 | 7.75 | 7.75 | 7.77 | 8.90 | 7.77 | 8.25 | 7.17 | 7.17 | 8.25 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 RAIN | ' mm/hr | ' 13.74 | 13.74 | 13.74 | 13.74 | 37.17 | 37.17 | 37.17 | 37.17 | 10.50 | 10.50 | 10.50 | 5.66 | RAIN | TIME mm/hr | hrs | 0.00 | 3.50 | 0.81 | 3.75 | 0.81 | 4.00 | 0.81 | 4.50 | 0.81 | 4.50 | 0.81 | 4.50 | 0.81 | 4.50 | 0.81 | 4.50 | 0.81 | 5.50 | 0.81 | 5.50 | 4.85 | 5.75 | 4.85 | 6.60 | 4.85 | 6.50 | 4.85 | 6.50 RAIN | TIME mm/hr | hrs 5.66 | 10.00 5.66 | 10.25 5.66 | 10.50 3.23 | 11.75 3.23 | 11.50 1.62 | 11.75 1.62 | 12.25 1.62 | 0.81 | TIME hrs 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 3.00 0.81 3.25 0.81 TMPERVTOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= 0.90 2.00 1.00 650.00 0.68 5.00 2.00 25.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME RAIN | TIME

Page 41

LangstaffRd_EA_Existing_HumberWatershed

CN* = 85.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB					
STANDHYD (0105)	Area	(ha)=	1.63		
ID= 1 DT= 5.0 min	Total	Imp(%)=	61.00	Dir. Conn.(%)=	61.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.9	9	0.64	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	650.0	0	25.00	
Mannings n	` =	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81	
0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81	
0.250	0.00	3.333	13.74	6.417	5.66	9.50	0.81	
0.333	0.81	3.417	13.74	6.500	5.66	9.58	0.81	
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81	
0.500	0.81	3.583	13.74	6.667	5.66	9.75	0.81	
0.583	0.81	3.667	13.74	6.750	5.66	9.83	0.81	
0.667	0.81	3.750	13.74	6.833	5.66	9.92	0.81	
0.750	0.81	3.833	13.74	6.917	5.66	10.00	0.81	
0.833	0.81	3.917	13.74	7.000	5.66	10.08	0.81	
0.917	0.81	4.000	13.74	7.083	5.66	10.17	0.81	
1.000	0.81	4.083	13.74	7.167	5.66	10.25	0.81	
1.083	0.81	4.167	13.74	7.250	5.66	10.33	0.81	
1.167	0.81	4.250	13.74	7.333	3.23	10.42	0.81	
1.250	0.81	4.333	37.17	7.417	3.23	10.50	0.81	
1.333	0.81	4.417	37.17	7.500	3.23	10.58	0.81	
1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81	
1.500	0.81	4.583	37.17	7.667	3.23	10.75	0.81	
1.583	0.81	4.667	37.17	7.750	3.23	10.83	0.81	
1.667	0.81	4.750	37.17	7.833	3.23	10.92	0.81	
1.750	0.81	4.833	37.17	7.917	3.23	11.00	0.81	
1.833	0.81	4.917	37.17	8.000	3.23	11.08	0.81	
1.917	0.81	5.000	37.17	8.083	3.23	11.17	0.81	
2.000	0.81	5.083	37.17	8.167	3.23	11.25	0.81	
2.083	0.81	5.167	37.17	8.250	3.23	11.33	0.81	
2.167	0.81	5.250	37.17	8.333	1.62	11.42	0.81	
2.250	0.81	5.333	10.50	8.417	1.62	11.50	0.81	
2.333	4.85	5.417	10.50	8.500	1.62	11.58	0.81	
2.417	4.85	5.500	10.50	8.583	1.62	11.67	0.81	

Page 43

				ing_Humber			
hrs	mm/hr		mm/hr		mm/hr		mm/hi
0.083	0.00				10.50		0.81
0.167		3.250	4.85		5.66		0.81
0.250		3.333	13.74		5.66		0.81
0.333		3.417			5.66		0.81
0.417		3.500	13.74		5.66		0.81
0.500		3.583	13.74		5.66		0.81
0.583		3.667		6.750	5.66		0.81
0.667		3.750		6.833	5.66		0.81
0.750		3.833			5.66		0.81
0.833		3.917		7.000	5.66		0.81
0.917		4.000			5.66		0.81
1.000		4.083			5.66		0.81
1.083		4.167			5.66		0.81
1.167		4.250	13.74		3.23		0.81
1.250	0.81	4.333	37.17	7.417	3.23	10.50	0.81
1.333		4.417	37.17		3.23		0.81
1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81
1.500	0.81	4.583	37.17	7.667	3.23	10.75	0.81
1.583	0.81	4.667	37.17	7.750	3.23	10.83	0.81
1.667	0.81	4.750	37.17	7.833	3.23	10.92	0.81
1.750	0.81	4.833	37.17	7.917	3.23	11.00	0.81
1.833	0.81	4.917	37.17	8.000	3.23	11.08	0.81
1.917	0.81	5.000	37.17	8.083	3.23	11.17	0.81
2.000	0.81	5.083	37.17	8.167	3.23	11.25	0.81
2.083	0.81	5.167	37.17		3.23	11.33	0.81
2.167	0.81	5.250	37.17	8.333	1.62	11.42	0.81
2.250	0.81	5.333	10.50	8.417	1.62	11.50	0.81
2,333		5.417	10.50		1.62		0.81
2.417		5.500		8.583	1.62		0.81
2.500		5.583	10.50		1.62		0.81
2.583		5.667		8.750	1.62		0.81
2.667		5.750	10.50		1.62		0.81
2.750		5.833		8.917	1.62		0.81
2.833		5.917	10.50		1.62		0.81
2.917		6.000		9.083	1.62		0.81
3.000		6.083	10.50		1.62		0.81
3.083		6.167	10.50		1.62		
Max.Eff.Inten.(mm/	'hn\-	37.17		28.73			
over (m		10.00		25.00			
	iin)=	11.67	(44)	20.44 (ii)			
Unit Hyd. Tpeak (m		10.00		25.00			
	:ms)=	0.10		0.05			
, , (-	-,	,,			*T0T	TALS*	
PEAK FLOW (c	:ms)=	0.09		0.04		.136 (iii)	
	ırs)=	5.25		5.33		5.25	
	mm)=	78.82		47.65		5.41	
	mm)=	80.82		80.82	86	9.82	
RUNOFF COEFFICIENT		0.98		0.59	6	9.81	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

Lang	staffRd EA	Existing Humb	erWatersh	ed	
2.500 4.85	5.583	10.50 8.667	1.62	11.75	0.81
2.583 4.85	5.667	10.50 8.750	1.62	11.83	0.81
2.667 4.85	5.750	10.50 8.833	1.62	11.92	0.81
2.750 4.85	5.833	10.50 8.917	1.62	12.00	0.81
2.833 4.85	5.917	10.50 9.000	1.62	12.08	0.81
2.917 4.85	6.000	10.50 9.083	1.62	12.17	0.81
3.000 4.85	6.083	10.50 9.167	1.62	12.25	0.81
2.500 4.85 2.583 4.85 2.667 4.85 2.750 4.85 2.750 4.85 2.833 4.85 2.917 4.85 3.000 4.85 3.003 4.85	6.167	10.50 9.250	1.62		
over (min)	10 00	25.42			
Storage Coeff (min)=	11 67 (ii) 20 35 (i	ii)		
Unit Hvd. Tneak (min)=	10.00	25.00	/		
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	0.10	0.05			
			101	TALS	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)=	0.10	9.94		145 (iii)
TIME TO PEAK (hrs)=	5.25	5.33		5.25	,
RUNOFF VOLUME (mm)=	78.82	5.33 49.06 80.82	67	7.21	
TOTAL RAINFALL (mm)=	80.82	80.82	67 86	9.82	
RUNOFF COEFFICIENT =	0.98	0.61	6	9.83	
(ii) TIME STEP (DT) SHOL THAN THE STORAGE CC (iii) PEAK FLOW DOES NOT	DEFFICIENT. INCLUDE BA	SEFLOW IF ANY.			
ADD 11VD / Q4QQ\					
1 + 2 = 3	AREA OPE	AK TPEAK	R.V.		
· ((ha) (cm	s) (hrs)	(mm)		
ID1= 1 (0105): 1	i.63 0.14	5 5.25	67.21		
+ ID2= 2 (0110): 1	1.58 0.13	6 5.25	65.41		
ID = 3 (0400): 3	3.21 0.28	1 5.25	66.32		
NOTE: PEAK FLOWS DO NOT	INCLUDE BA	SEFLOWS IF ANY	<i>(</i> .		
Lourn					
CALIB STANDHYD (0125) Area ID= 1 DT= 5.0 min Total I	(ha)= 2 Imp(%)= 53	.27 .00 Dir. Cor	nn.(%)= 5	53.00	
	TMPERVTOUS	PERVIOUS ((i)		
Surface Area (ha)=	1.20	1.07	,		
Dep. Storage (mm)=	2.00	5.00			
Average Slope (%)=	1.00	2.00			
Length (m)=	800.00	20.00			
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	0.013	0.250			

LangstaffRd_EA_Existing_HumberWatershed NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

RANSFORMED HYETOGRAPH ---RAIN | TIME RAI TRANSFORMED HYETOGRAPH RAIN | mm/hr | 0.00 | 0.00 | TIME hrs 3.167 RAIN mm/hr 0.81 hrs 0.083 0.167 3.250 0.250 0.00 3.333 0.81 0.333 3.417 0.81 3.417 3.500 3.583 3.667 3.750 3.833 3.917 0.333 0.417 0.500 0.583 0.667 0.750 0.81 0.81 0.81 0.81 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.833 0.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 0.81 5.66 5.66 3.23 3.23 3.23 3.23 3.23 1.083 1.167 1.250 1.333 37.17 | 7.583 | 37.17 | 7.667 | 37.17 | 7.667 | 37.17 | 7.759 | 37.17 | 7.759 | 37.17 | 7.759 | 37.17 | 8.080 | 37.17 | 8.167 | 37.17 | 8.167 | 37.17 | 8.167 | 37.17 | 8.167 | 37.17 | 8.150 | 8.450 | 8.450 | 8.450 | 8.450 | 8.450 | 8.583 | 10.59 | 8.657 | 10.50 | 8.833 | 10.50 | 8.900 | 10.50 | 8.900 | 10.50 | 8.900 | 10.50 | 9.900 | 10.50 | 9.900 | 10.50 | 9.250 | 9.250 | 9.250 | 1.417 0.81 | 1.583 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 4.85 | 3.23 3.23 3.23 3.23 3.23 3.23 3.23 1.62 10.83 0.81 1.750 1.833 1.917 2.083 11.33 0.81 2.167 5.250 11.42 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 1.62 1.62 1.62 1.62 1.62 1.62 1.62 2.250 11.50 11.58 0.81 11.58 11.67 11.75 11.83 11.92 12.00 2.833 1.62 12.08 0.81 2.917 6.000 1.62 0.81 1.62 6.083 6.167 12.25 over (min)=
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 15.00 25.00 13.22 (ii) 21.04 (ii) 15.00 25.00 0.08 0.05 *TOTALS* PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= 0.187 (iii) 5.25 62.90 0.07 0.12 5.25 78.82

	Langs	taffRd_E	A_Existi	ing_Humbe	rWatersh	ed	
2.083	0.81	5.167	37.17	8.250	3.23	11.33	0.81
2.167	0.81	5.250	37.17	8.333	1.62	11.42	0.81
2.250	0.81	5.333	10.50	8.417	1.62	11.50	0.81
2.333	4.85	5.417	10.50	8.500	1.62	11.58	0.81
2.417	4.85	5.500	10.50	8.583	1.62	11.67	0.81
2.500	4.85	5.583	10.50	8.667	1.62	11.75	0.81
2.583	4.85	5.667	10.50	8.750	1.62	11.83	0.81
2.667	4.85	5.750	10.50	8.833	1.62	11.92	0.81
2.750	4.85	5.833	10.50	8.917	1.62	12.00	0.81
2.833	4.85	5.917	10.50	9.000	1.62	12.08	0.81
2.917	4.85	6.000	10.50	9.083	1.62	12.17	0.81
3.000	4.85	6.083	10.50	9.167	1.62	12.25	0.81
3.083	4.85	6.167	10.50	9.250	1.62	l	
Max.Eff.Inten.(mm/h	nr)=	37.17		27.36			
oven (mi		15 00		25 00			

Page 45

over	(min)	15.00	25.00	
Storage Coeff.	(min)=	13.22 (ii)	21.04 (ii)	
Unit Hyd. Tpeak	(min)=	15.00	25.00	
Unit Hyd. peak	(cms)=	0.08	0.05	
				TOTALS
PEAK FLOW	(cms)=	0.11	0.06	0.170 (iii)
TIME TO PEAK	(hrs)=	5.25	5.33	5.25
RUNOFF VOLUME	(mm)=	78.82	44.97	62.23
TOTAL RAINFALL	(mm)=	80.82	80.82	80.82
RUNOFF COEFFICIE	NT =	0.98	0.56	0.77

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COFFFICENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0405)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0125):	2.27	0.187	5.25	62.90
+ ID2= 2 (0130):	2.08	0.170	5.25	62.23
=======================================				
ID = 3 (0405):	4.35	0.357	5.25	62.58
NOTE: PEAK FLOWS DO I	NOT INCLU	DE BASEFL	OWS IF AN	NY.

CALIB							
STANDHYD (0120)	Area	(ha)=	1.24				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
		IMPERVI	OUS	PERVIO	IS (i)		
Surface Area	(ha)=	0.7		0.5			

Page 47

LangstaffRd_EA_Existing_HumberWatershed (mm)= 80.82 80.82 80.8 NT = 0.98 0.56 0.7 TOTAL RAINFALL RUNOFF COEFFICIENT

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	1.06	1.02
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	800.00	20.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81	
0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81	
0.250	0.00	3.333	13.74	6.417	5.66	9.50	0.81	
0.333	0.81	3.417	13.74	6.500	5.66	9.58	0.81	
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81	
0.500	0.81	3.583	13.74	6.667	5.66	9.75	0.81	
0.583	0.81	3.667	13.74	6.750	5.66	9.83	0.81	
0.667	0.81	3.750	13.74	6.833	5.66	9.92	0.81	
0.750	0.81	3.833	13.74	6.917	5.66	10.00	0.81	
0.833	0.81	3.917	13.74	7.000	5.66	10.08	0.81	
0.917	0.81	4.000	13.74	7.083	5.66	10.17	0.81	
1.000	0.81	4.083	13.74	7.167	5.66	10.25	0.81	
1.083	0.81	4.167	13.74	7.250	5.66	10.33	0.81	
1.167	0.81	4.250	13.74	7.333	3.23	10.42	0.81	
1.250	0.81	4.333	37.17	7.417	3.23	10.50	0.81	
1.333	0.81	4.417	37.17	7.500	3.23	10.58	0.81	
1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81	
1.500	0.81	4.583	37.17	7.667	3.23	10.75	0.81	
1.583	0.81	4.667	37.17	7.750	3.23	10.83	0.81	
1.667	0.81	4.750	37.17	7.833	3.23	10.92	0.81	
1.750	0.81	4.833	37.17	7.917	3.23	11.00	0.81	
1.833	0.81	4.917	37.17	8.000	3.23	11.08	0.81	
1.917	0.81	5.000	37.17	8.083	3.23	11.17	0.81	
2.000	0.81	5.083	37.17	8.167	3.23	11.25	0.81	

Page 46

LangstaffRd EA Existing HumberWatershed

Dan Channe	/\	2	5 00
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	475.00	17.00
Mannings n	=	0.013	0.250

NOTE: RATNEALL WAS TRANSFORMED TO 5 0 MIN TIME STEP

TRANSFORMED HYETOGRAPH ---ME RAIN | TIME RAIN | TIME
rs mm/hr | hrs hrs mm/hr | 0.00 | hrs 3.167 mm/hr hrs mm/hr | mm/hr 0.81 9.33 9.42 9.50 9.58 9.67 9.75 9.83 4.85 | 6.250 4.85 | 6.250 4.85 | 6.333 13.74 | 6.583 13.74 | 6.657 13.74 | 6.667 13.74 | 6.750 13.74 | 6.833 13.74 | 6.917 13.74 | 7.080 13.74 | 7.080 13.74 | 7.250 13.74 | 7.250 13.74 | 7.250 13.74 | 7.250 13.74 | 7.590 13.74 | 7.590 13.74 | 7.590 13.74 | 7.590 13.71 | 7.590 13.71 | 7.590 13.71 | 7.590 13.71 | 7.833 13.71 | 7.750 13.71 | 8.080 13.71 | 8.080 13.71 | 8.080 13.71 | 8.080 13.71 | 8.808 14.70 | 8.808 15.70 | 8.850 16.50 | 8.850 16.50 | 8.850 16.50 | 8.833 16.50 | 8.833 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 16.50 | 9.000 17.50 | 9.000 18.50 | 9.000 19.50 | 9.000 19.50 | 9.000 19.50 | 9.250 0.083 10.50 | 0.083 0.167 0.250 0.333 0.417 0.500 0.583 5.66 | 5.66 | 5.66 | 5.66 | 5.66 | 5.66 | 5.66 | 0.00 3.250 3.333 3.417 3.590 3.583 3.667 3.750 3.833 3.917 4.060 4.250 4.250 4.250 4.250 4.583 4.450 4.583 4.4750 4.583 5.667 5.250 5.333 5.417 5.583 5.583 0.81 0.81 0.81 0.81 0.81 0.667 0.81 9.92 0.81 10.00 0.750 0.81 5.66 0.81 0.750 0.833 0.917 1.000 1.083 1.167 0.81 0.81 0.81 0.81 0.81 5.66 5.66 5.66 5.66 3.23 3.23 10.00 10.08 10.17 10.25 10.33 10.42 10.50 0.81 0.81 1.250 0.81 1.333 0.81 3.23 10.58 0.81 1.417 0.81 10.67 0.81 1.500 1.583 1.667 1.750 1.833 0.81 0.81 0.81 0.81 3.23 3.23 3.23 3.23 10.07 10.75 10.83 10.92 11.00 11.08 0.81 0.81 0.81 0.81 0.81 3.23 0.81 1.917 0.81 3.23 11.17 0.81 2.000 0.81 3.23 11.25 0.81 2.083 0.81 3.23 11.33 0.81 2.167 2.250 2.333 2.417 2.500 2.583 0.81 0.81 4.85 4.85 4.85 4.85 1.62 1.62 1.62 1.62 11.42 11.50 11.58 11.67 0.81 11.75 1.62 0.81 5.667 1.62 11.83 0.81 5.667 5.750 5.833 5.917 6.000 6.083 6.167

Max.Eff.Inten.(mm/hr)= 37.17 27.36 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)= 10.00 20.00 9.67 (ii) 16.76 (ii) 10.00 20.00

4.85

4.85

4.85 | 4.85 | 4.85 | 4.85 |

2.667

2.750

2.833 2.917 3.000 3.083

1.62 11.92

1.62 12.00

12.08

1.62 1.62 1.62 1.62

0.81

0.81

0.81 0.81

Unit Hyd. peak	(cms)=	0.11	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.03	0.108 (iii)
TIME TO PEAK	(hrs)=	5.25	5.33	5.25
RUNOFF VOLUME	(mm)=	78.82	44.97	64.26
TOTAL RAINFALL	(mm)=	80.82	80.82	80.82
RUNOFF COEFFICI	ENT =	0.98	0.56	0.80

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0115)	Area	(ha)= 1.0	30	
ID= 1 DT= 5.0 min	Total	Imp(%)= 46.0	00 Dir. Conn.(%)=	46.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.46	0.54	
Dep. Storage	(mm) =	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n		0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81
0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81
0.250	0.00	3.333	13.74	6.417	5.66	9.50	0.81
0.333	0.81	3.417	13.74	6.500	5.66	9.58	0.81
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81
0.500	0.81	3.583	13.74	6.667	5.66	9.75	0.81
0.583	0.81	3.667	13.74	6.750	5.66	9.83	0.81
0.667	0.81	3.750	13.74	6.833	5.66	9.92	0.81
0.750	0.81	3.833	13.74	6.917	5.66	10.00	0.81
0.833	0.81	3.917	13.74	7.000	5.66	10.08	0.81
0.917	0.81	4.000	13.74	7.083	5.66	10.17	0.81
1.000	0.81	4.083	13.74	7.167	5.66	10.25	0.81
1.083	0.81	4.167	13.74	7.250	5.66	10.33	0.81
1.167	0.81	4.250	13.74	7.333	3.23	10.42	0.81
1.250	0.81	4.333	37.17	7.417	3.23	10.50	0.81
1.333	0.81	4.417	37.17	7.500	3.23	10.58	0.81
1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81
1.500	0.81	4.583	37.17	7.667	3.23	10.75	0.81
1.583	0.81	4.667	37.17	7.750	3.23	10.83	0.81

500	13.74	0.505	3.00)).0/	0.01	
583	13.74	6.667	5.66	9.75	0.81	
667	13.74	6.750	5.66	9.83	0.81	
750	13.74	6.833	5.66	9.92	0.81	ADD HYD (0410)
833	13.74	6.917	5.66	10.00	0.81	$\begin{vmatrix} 1+2=3 \end{vmatrix}$ AREA QPEAK TPEAK R.V.
917	13.74	7.000	5.66	10.08	0.81	(ha) (cms) (hrs) (mm)
000	13.74	7.083	5.66	10.17	0.81	ID1= 1 (0115): 1.00 0.083 5.25 60.53
083	13.74	7.167	5.66	10.25	0.81	+ ID2= 2 (0120): 1.24 0.108 5.25 64.26
167	13.74	7.250	5.66	10.33	0.81	
250	13.74	7.333	3.23	10.42	0.81	ID = 3 (0410): 2.24 0.190 5.25 62.59
333	37.17	7.417	3.23	10.50	0.81	
417	37.17	7.500	3.23	10.58	0.81	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
500	37.17	7.583	3.23	10.67	0.81	
583	37.17	7.667	3.23	10.75	0.81	
667	37.17	7.750	3.23	10.83	0.81	
	Page	49				Page 50

ADD HYD (0420)		staffRd_E	A_Existi	.ng_Humbe	rWatersh	ed	
1 + 2 = 3 ID1= 1 (04	A - (105): 4		ms) ((hrs) 5.25 (52.58		
+ ID2= 2 (04							
ID = 3 (04					52.58		
NOTE: PEAK FLO	DWS DO NOT	INCLUDE E	BASEFLOWS	S IF ANY			
*******	******	**					
** SIMULATION:Run 1	2	**					
***********	*******	**					
READ STORM	Filena	me: C:\Us			oD		
			ocal\Ten		.02 0-466	2045467	07225
Ptotal= 88.54 mm	l Common			e-4ce0-8t	92-veatt	20f5fb5\6	9Ca/235
FLUCAI- 00.34 IIIII	- Commen	15. 1001.	.2				
TI	4E RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hı	rs mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.2	25 0.00	3.50	15.05	6.75	6.20	10.00	0.89
0.5	0.89	3.75				10.25	
0.7	75 0.89	4.00	15.05	7.25	6.20	10.50	0.89
	0.89					10.75	
1.2	25 0.89	4.50	40.71	7.75	3.54	11.00	0.89
	0.89						
1.3	75 0.89	5.00	40.71	8.25	3.54	11.50	0.89
	0.89					11.75	
	25 0.89					12.00	
2.5	50 5.31	5.75	11.51	9.00	1.77	12.25	0.89
2.5	75 5.31	6.00	11.51	9.25	1.77		
3.6	90 5.31	6.25	11.51	9.50	0.89		
3.2	25 5.31	6.50	6.20	9.75	0.89		

3.25	5.31	6.50	6.20 9.	.75 0.89	
CALIB					
STANDHYD (0110)	Area	(ha)= 1	.58		
ID= 1 DT= 5.0 min	Total	Imp(%)= 57	.00 Dir.	Conn.(%)=	57.00
		IMPERVIOUS	PERVIOL	JS (i)	
Surface Area	(ha)=	0.90	0.68	3	
Dep. Storage	(mm)=	2.00	5.00	9	
Average Slope	(%)=	1.00	2.00	9	
Length	(m)=	650.00	25.00	9	
Mannings n	=	0.013	0.256	9	
NOTE: RAINF	ALL WAS	TRANSFORMED	TO 5.0 N	MIN. TIME ST	EP.

Page 51

La	ngstaffRd E	A Exist	ing Humber	Natersh	ed	
			D HYETOGRA			
TIME RAI		RAIN		RAIN	TIME	RAIN
hrs mm/h	r İ hrs	mm/hr	i' hrs	mm/hr	i hrs	mm/hr
0.083 0.0		5.31	6.250	11.51		0.89
0.167 0.0	0 3.250	5.31	6.333	6.20	9.42	0.89
0.250 0.0			6.417	6.20		0.89
0.333 0.8			6.500	6.20		0.89
0.417 0.8			6.583	6.20		0.89
0.500 0.8	9 3.583	15.05	6.667	6.20	9.75	0.89
0.583 0.8			6.750	6.20		0.89
0.667 0.8			6.833	6.20	9.92	0.89
0.750 0.8		15.05	6.917	6.20		0.89
0.833 0.8	9 3.917	15.05	7.000	6.20	10.08	0.89
0.917 0.8		15.05	7.083	6.20		0.89
1.000 0.8		15.05	7.167	6.20		0.89
1.083 0.8		15.05	7.250	6.20	10.33	0.89
1.167 0.8		15.05	7.333	3.54		0.89
1.250 0.8		40.71	7.417	3.54		0.89
1.333 0.8		40.71	7.500	3.54		0.89
1.417 0.8		40.71	7.583	3.54		0.89
1.500 0.8		40.71	7.667	3.54		0.89
1.583 0.8		40.71	7.750	3.54		0.89
1.667 0.8		40.71	7.833	3.54		0.89
1.750 0.8			7.917	3.54	11.00	0.89
1.833 0.8		40.71	8.000	3.54		0.89
1.917 0.8		40.71	8.083	3.54		0.89
2.000 0.8			8.167	3.54	11.25	0.89
2.083 0.8	9 5.167	40.71	8.250	3.54	11.33	0.89
2.167 0.8	9 5.250	40.71	8.333	1.77	11.42	0.89
2.250 0.8	9 5.333	11.51	8.417	1.77	11.50	0.89
2.333 5.3	1 5.417	11.51	8.500	1.77	11.58	0.89
2.417 5.3	1 5.500	11.51	8.583	1.77	11.67	0.89
2.500 5.3	1 5.583	11.51	8.667	1.77	11.75	0.89
2.583 5.3	1 5.667	11.51	8.750	1.77	11.83	0.89
2.667 5.3	1 5.750	11.51	8.833	1.77	11.92	0.89
2.750 5.3	1 5.833	11.51	8.917	1.77	12.00	0.89
2.833 5.3	1 5.917	11.51	9.000	1.77	12.08	0.89
2.917 5.3	1 6.000	11.51	9.083	1.77	12.17	0.89
3.000 5.3	1 6.083	11.51	9.167	1.77	12.25	0.89
3.083 5.3	1 6.167	11.51	9.250	1.77		
Max.Eff.Inten.(mm/hr)=	40.71		32.40			
over (min)	10.00		20.00			
Storage Coeff. (min)=	11.25	(ii)	19.61 (ii)			
Unit Hyd. Tpeak (min)=	10.00		20.00			
Unit Hyd. peak (cms)=	0.10		0.06			
					TALS*	
PEAK FLOW (cms)=	0.10		0.05		.153 (iii)	
TIME TO PEAK (hrs)=	5.25		5.33		. 25	
RUNOFF VOLUME (mm)=	86.54		54.37		2.70	
TOTAL RAINFALL (mm)=	88.54		88.54		3.54	
RUNOFF COEFFICIENT =	0.98		0.61	(9.82	

LangstaffRd EA Existing HumberWatershed 0.81 | 4.750 | 37.17 | 7.833 | 3.23 | 16 |
0.81 | 4.833 | 37.17 | 7.917 | 3.23 | 11 |
0.81 | 4.917 | 37.17 | 8.080 | 3.23 | 11 |
0.81 | 5.000 | 37.17 | 8.083 | 3.23 | 12 |
0.81 | 5.160 | 37.17 | 8.167 | 3.23 | 11 |
0.81 | 5.160 | 37.17 | 8.263 | 3.23 | 12 |
0.81 | 5.167 | 37.17 | 8.253 | 3.23 | 12 |
0.81 | 5.250 | 37.17 | 8.333 | 1.62 | 12 |
0.81 | 5.333 | 10.50 | 8.417 | 1.62 | 12 |
4.85 | 5.5417 | 10.50 | 8.583 | 1.62 | 12 |
4.85 | 5.583 | 10.50 | 8.583 | 1.62 | 12 |
4.85 | 5.583 | 10.50 | 8.750 | 1.62 | 1 |
4.85 | 5.5750 | 10.50 | 8.750 | 1.62 | 1 |
4.85 | 5.833 | 10.50 | 8.917 | 1.62 | 1 |
4.85 | 5.833 | 10.50 | 8.917 | 1.62 | 1 |
4.85 | 5.833 | 10.50 | 8.917 | 1.62 | 1 |
4.85 | 5.833 | 10.50 | 8.917 | 1.62 | 1 |
4.85 | 5.833 | 10.50 | 9.083 | 1.62 | 1 |
4.85 | 6.000 | 10.50 | 9.083 | 1.62 | 1 |
4.85 | 6.167 | 10.50 | 9.083 | 1.62 | 1 |
4.85 | 6.167 | 10.50 | 9.083 | 1.62 | 1 |
4.85 | 6.167 | 10.50 | 9.083 | 1.62 | 1 |
4.85 | 6.167 | 10.50 | 9.083 | 1.62 | 1 |
4.85 | 6.167 | 10.50 | 9.083 | 1.62 | 1 |

27.36 20.00 16.76 (ii) 20.00 0.06

0.04 5.33 44.97 80.82 0.56

37.17 10.00 9.67 (ii) 10.00 0.11

0.05 5.25 78.82 80.82 0.98

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917

3.000

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

Ratershed
3.23 | 10.92
3.23 | 11.00
3.23 | 11.00
3.23 | 11.00
3.23 | 11.00
3.23 | 11.17
3.23 | 11.25
3.23 | 11.25
3.23 | 11.33
1.62 | 11.42
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 11.50
1.62 | 12.00
1.62 | 12.00
1.62 | 12.05
1.62 | 12.25
1.62 | 12.25

TOTALS

0.083 (iii) 5.25 60.53 80.82 0.75

0.81 0.81 0.81 0.81 0.81 0.81

0.81 0.81 0.81

0.81 0.81 0.81 0.81 0.81 0.81 0.81

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | STANDHYD (0105) | Area (ha)= 1.63 |ID= 1 DT= 5.0 min | Total Imp(%)= 61.00 Dir. Conn.(%)= 61.00

ID=	1 DT= 5.0 min	Total	Imp(%)=	61.00	Dir.	Conn.
			IMPERVI	ous	PERVIOL	JS (i)
	Surface Area	(ha)=	0.9	9	0.64	
	Dep. Storage	(mm)=	2.0	0	5.00)
	Average Slope	(%)=	1.0	0	2.00)
	Length	(m)=	650.0	0	25.00)
	Mannings n	=	0.01	3	0.250)

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89
2.250	0.89	5.333	11.51	8.417	1.77	11.50	0.89

Page 53

LangstaffRd_EA_Existing_HumberWatershed = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMFI	HYETOGR	APH		
TIME	RAIN	l TIME		' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr		mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89
2.250	0.89	5.333	11.51	8.417	1.77	11.50	0.89
2.333	5.31	5.417	11.51	8.500	1.77	11.58	0.89
2.417	5.31	5.500	11.51	8.583	1.77	11.67	0.89
2.500	5.31	5.583	11.51	8.667	1.77	11.75	0.89
2.583	5.31	5.667	11.51	8.750	1.77	11.83	0.89
2.667	5.31	5.750	11.51	8.833	1.77	11.92	0.89
2.750	5.31	5.833	11.51	8.917	1.77	12.00	0.89
2.833	5.31	5.917	11.51	9.000	1.77	12.08	0.89
2.917	5.31	6.000	11.51	9.083	1.77	12.17	0.89
3.000	5.31	6.083	11.51	9.167	1.77	12.25	0.89
3.083	5.31	6.167	11.51	9.250	1.77		

40.71 15.00 12.74 (ii) 30.98 25.00 20.18 (ii) over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 15.00 25.00 0.08 0.05 *TOTALS* (cms)= 0.13 0.08 0.209 (iii)

Page 55

Max.Eff.Inten.(mm/hr)=

PEAK FLOW

LangstaffRd_EA_Existing_HumberWatershed 5.31 | 5.417 | 11.51 | 8.500 | 1.77 | 1 5.31 | 5.500 | 11.51 | 8.563 | 1.77 | 1 5.31 | 5.583 | 11.51 | 8.667 | 1.77 | 1 5.31 | 5.667 | 11.51 | 8.750 | 1.77 | 1 5.31 | 5.333 | 11.51 | 8.833 | 1.77 | 1 5.31 | 5.333 | 11.51 | 8.917 | 1.77 | 1 5.31 | 5.917 | 11.51 | 9.000 | 1.77 | 1 5.31 | 6.000 | 11.51 | 9.083 | 1.77 | 1 5.31 | 6.083 | 11.51 | 9.167 | 1.77 | 1 5.31 | 6.167 | 11.51 | 9.250 | 1.77 | 2.417 2.500 2.583 2.667 2.750 2.833 11.67 11.75 11.83 11.92 12.00 12.08 12.17 0.89 0.89 0.89 0.89 0.89 2.917 0.89 3.000 12.25 0.89 3.083 Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 40.71 10.00 11.25 (ii) 10.00 0.10 33.12 20.00 19.53 (ii) 20.00 0.06 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.11 5.25 86.54 88.54 0.98 0.162 (iii) 5.25 74.58 88.54 0.84 0.05 5.33 55.88 88.54 0.63 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) ON PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 86.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0400)| | 1 + 2 = 3 | AREA (ha) 1.63 1.58 QPEAK (cms) 0.162 0.153 TPEAK (hrs) 5.25 5.25 R.V. (mm) 74.58 72.70 ID1= 1 (0105): + ID2= 2 (0110): ID = 3 (0400): 5.25 73.65 3.21 0.315 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Area (ha)= 2.27 Total Imp(%)= 53.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= 1.20 2.00 1.00 800.00 1.07 5.00 2.00 20.00 Page 54

1.77 | 11.58 1.77 | 11.67

0.89

2.333

LangstaffRd_EA_Existing_HumberWatershed)= 5.25 5.33 5.2)= 86.54 51.48 70.0)= 88.54 88.54 88.5 TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 5.25 70.06 88.54 0.98 0.79

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0130) | |ID= 1 DT= 5.0 min | Area (ha)= 2.08 Total Imp(%)= 51.00 Dir. Conn.(%)= 51.00 IMPERVIOUS PERVIOUS (i) Surface Area 1.06 2.00 1.00 800.00 0.013 1.02 5.00 2.00 (ha)= Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)=

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89

				ing_HumberW			
1.917				8.083		11.17	0.89
2.000	0.89	5.083	40.71	8.167		11.25	0.89
2.083	0.89	5.167	40.71	8.250		11.33	0.89
2.167				8.333		11.42	0.89
				8.417		11.50	0.89
				8.500		11.58	0.89
				8.583		11.67	0.89
2.500		5.583		8.667	1.77		0.89
	5.31			8.750		11.83	0.89
				8.833		11.92	0.89
2.750				8.917		12.00	0.89
				9.000		12.08	0.89
2.917	5.31	6.000	11.51	9.083		12.17	0.89
3.000				9.167		12.25	0.89
3.083	5.31	6.167	11.51	9.250	1.77	l	
Max.Eff.Inten.(mm,				30.98			
over (r	in)	15.00		25.00			
Storage Coeff. (r Unit Hyd. Tpeak (r	in)=	12.74	(ii)	20.18 (ii)			
Unit Hyd. peak (d	:ms)=	0.08		0.05			
					T01	ΓALS	
PEAK FLOW (d	:ms)=	0.12		0.07	0.	.190 (iii)	
TIME TO PEAK (H	ırs)=	5.25		5.33		5.25	
RUNOFF VOLUME (mm)=	86.54		51.48	69	9.36	
TOTAL RAINFALL (mm)=	88.54		88.54	88	3.54	
RUNOFF COEFFICIENT	=	0.98		0.58	6	3.78	
(i) CN PROCEDURE	SELECTE	D FOR PE	RVTOUS	LOSSES.			
CN* = 83.							
(ii) TIME STEP (E							
THAN THE STO							
(1111) =================================							

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0405) 1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.	
ID1= 1 (0125): + ID2= 2 (0130):	(ha) 2.27 2.08	(cms) 0.209 0.190	(hrs) 5.25 5.25	(mm) 70.06 69.36	
ID = 3 (0405):	4.35	0.399	5.25	69.72	
NOTE: PEAK FLOWS DO N	OT INCLU	DE BASEFL	OWS IF A	NY.	

| CALIB | STANDHYD (0120) |ID= 1 DT= 5.0 min | Area (ha)= 1.24 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00

Page 57

TOTALS

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.08 5.25 86.54 88.54 0.98 0.04 5.25 51.48 88.54 0.58 *TOTALS* 0.120 (iii) 5.25 71.46 88.54 0.81

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT:

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0115)	Area	(ha)= 1.00		
ID= 1 DT= 5.0 min	Total Imp	0(%)= 46.00	Dir. Conn.(%)=	46.00
	I	MPERVIOUS	PERVIOUS (i)	

		IMPERVIOUS	PERVIOUS (i
Surface Area	(ha)=	0.46	0.54
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	475.00	17.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89

Page 59

LangstaffRd_EA_Existing_HumberWatershed IMPERVIOUS PERVIOUS (i)

		THEFUATORS	FEKA1003 (1)
Surface Area	(ha)=	0.71	0.53
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	475.00	17.00
Mannings n	- =	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89
2.250	0.89	5.333	11.51	8.417	1.77	11.50	0.89
2.333	5.31	5.417	11.51	8.500	1.77	11.58	0.89
2.417	5.31	5.500	11.51	8.583	1.77	11.67	0.89
2.500	5.31	5.583	11.51	8.667	1.77	11.75	0.89
2.583	5.31	5.667	11.51	8.750	1.77	11.83	0.89
2.667	5.31	5.750	11.51	8.833	1.77	11.92	0.89
2.750	5.31	5.833	11.51	8.917	1.77	12.00	0.89
2.833	5.31	5.917	11.51	9.000	1.77	12.08	0.89
2.917	5.31	6.000	11.51	9.083	1.77	12.17	0.89
3.000	5.31	6.083	11.51	9.167	1.77	12.25	0.89
3.083	5.31	6.167	11.51	9.250	1.77		

Max.Eff.Inten.(mm/hr)= over (min)

Page 58

	Langs	taffRd E	A Existi	ng_Humber	Watersh	ed	
1.500	0.89				3.54		0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89
2.250	0.89	5.333	11.51	8.417	1.77	11.50	0.89
2.333	5.31	5.417	11.51	8.500	1.77	11.58	0.89
2.417	5.31	5.500	11.51	8.583	1.77	11.67	0.89
2.500	5.31	5.583	11.51	8.667	1.77	11.75	0.89
2.583	5.31	5.667	11.51	8.750	1.77	11.83	0.89
2.667	5.31	5.750	11.51	8.833	1.77	11.92	0.89
2.750	5.31	5.833	11.51	8.917	1.77	12.00	0.89
2.833	5.31	5.917	11.51	9.000	1.77	12.08	0.89
2.917	5.31	6.000	11.51	9.083	1.77	12.17	0.89
3.000	5.31	6.083	11.51	9.167	1.77	12.25	0.89
3.083	5.31	6.167	11.51	9.250	1.77	ĺ	

Max.Eff.Inten.(r	nm/hr)=	40.71	30.98	
over	(min)	10.00	20.00	
Storage Coeff.	(min)=	9.32 (ii)	16.07 (ii)	
Unit Hyd. Tpeak	(min)=	10.00	20.00	
Unit Hyd. peak	(cms)=	0.12	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.04	0.093 (iii)
TIME TO PEAK	(hrs)=	5.25	5.25	5.25
RUNOFF VOLUME	(mm)=	86.54	51.48	67.60
TOTAL RAINFALL	(mm)=	88.54	88.54	88.54
RUNOFF COEFFICIE	ENT =	0.98	0.58	0.76

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0410)| | 1 + 2 = 3 | | ID1= 1 (0115): + ID2= 2 (0120): AREA (ha) 1.00 1.24 QPEAK (cms) 0.093 0.120 ID = 3 (0410): 2.24 0.212 5.25 69.73

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0420)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
ID1= 1 (0405):	(ha) 4.35	(cms) 0.399	(hrs) 5.25	(mm) 69.72	
+ ID2= 2 (0410):	2.24	0.212	5.25	69.73	
=======================================					
ID = 3 (0420):	6.59	0.611	5.25	69.73	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Don River Watershed Visual OTTHYMO Summary - Existing

LangstaffRd_EA_Existing_WestDonWatershd

*	¥	1	S	Ι	M	U	L	Α	Т	Ι	0	N	:	R	u	n	0	2						*	*	

** SIMULATION:Run	02 **	
************	**********	

READ STORM	F4lenes	(.)!!													
KEAD STURM	ata\Local\Temp\ 278a4b54-8409-4519-9819-1b44900a1c25\e8708d30														
j j					19-1b449	00a1c25\	e8708d30								
Ptotal= 42.93 mm	Comment	s: 2yr-1	L2hrSCS												
TIME	RAIN		RAIN	' TIME	RAIN	TIME	RAIN								
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr								
0.25	0.00	3.50	1.02	6.75	8.13	10.00	1.02								
0.50	1.02	3.75	2.03	7.00	3.05	10.25	1.02								
0.75	1.02	4.00	2.03	7.25	3.05	10.50	1.02								
1.00	1.02	4.25	1.02	7.50	3.05	10.75	1.02								
1.25	0.00	4.50	3.05	7.75	2.03	11.00	1.02								
1.50	1.02	4.75	3.05	8.00	3.05	11.25	1.02								
1.75	1.02	5.00	3.05	8.25	2.03	11.50	0.00								
2.00	1.02	5.25	3.05	8.50	2.03	11.75	1.02								
2.25	1.02	5.50	5.08	8.75	2.03	12.00	1.02								
2.50	1.02	5.75	5.08	9.00	1.02	12.25	1.02								
2.75	2.03	6.00	38.61	9.25	2.03										
3.00	2.03	6.25	38.61	9.50	1.02										
3.25	2.03	6.50	8.13	9.75	2.03										

	 -	 	 	 	 	-																

CALIB STANDHYD (0145) ID= 1 DT= 5.0 min	Area Total	(ha)= 3.05 Imp(%)= 62.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)=	1.89 2.00 1.00 531.00 0.013	PERVIOUS (i) 1.16 5.00 2.00 40.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02

62.00

Page 1

$LangstaffRd_EA_Existing_WestDonWatershd \\ | STANDHYD (0140)| Area (ha)= 1.27$

ID= 1 DT= 5.0 min	Total	Imp(%)=	52.00	Dir.	Conn.(%)=	52.0
		IMPERVI	ous	PERVIOU	IS (i)	
Surface Area	(ha)=	0.6	6	0.61		
Dep. Storage	(mm)=	2.0	0	5.00	1	
Average Slope	(%)=	1.0	0	2.00	1	
Length	(m)=	503.0	0	25.00	1	
Mannings n	` =	0.01	3	0.250)	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TP	ANS EORMEI	D HYETOGR	ADH	_	
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03	l	

Page 3

		ing_WestDon		hd	
3.750		6.833	3.05		1.02
3.833		6.917		10.00	1.02
3.917	2.03		3.05		1.02
4 000	2.03				1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					0.00
					0.00
5.333	5.08				0.00
5.41/	5.08				1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
					1.02
6.16/	38.61	9.250	2.03	l	
38.61					
10.00		25.00			
10.18	(ii)	23.34 (ii)			
10.00		25.00			
0.11		0.05			
42.93		42.93		2.93	
0.95		0.42		3.75	
	4.080 4.167 4.250 4.353 4.4167 4.590 4.431 4.590 4.450 4.590 6.475 6.883 5.083 5.083 5.167 6.083 6.167 8.168 6.167 8.168 6.167 8.168 6.167 8.168 6.167 8.168 6.169	4.000 2.03 4.167 1.02 4.167 1.02 4.167 1.02 4.333 3.05 4.590 3.05 4.590 3.05 4.593 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.083 3.05 5.084 3.05 5.085 3.05 5.086 3.05 5.087 3.05 5.088 3.05 5.089 3.05 5.088 3.05 5.089 3.05 5.089 3.05 5.089 3.05 5.089 3.05 5.080 3.05 5.080 3.05 5.080 3.05 5.080 3.05 6.083 3.05	4.000 2.03 7.083 4.083 1.02 7.167 4.167 1.02 7.250 4.167 1.02 7.250 4.250 1.02 7.590 4.590 3.05 7.417 4.667 3.05 7.583 4.583 3.05 7.583 4.583 3.05 7.583 4.583 3.05 7.583 4.583 3.05 7.833 4.583 3.05 7.833 4.583 3.05 8.000 5.000 3.05 7.833 5.000 3.05 8.000 5.000 3.05 8.000 5.000 3.05 8.000 5.000 3.05 8.000 5.000 3.05 8.167 5.000 3.05 8.333 5.083 3.05 8.167 5.167 3.05 8.825 5.250 3.05 8.333 5.583 5.08 8.417 5.417 5.08 8.583 5.583 5.08 8.583 5.583 5.08 8.583 5.583 3.61 8.500 5.600 38.61 9.083 6.083 38.61 9.083 6.083 38.61 9.083 6.083 38.61 9.083 6.083 38.61 9.083 6.083 38.61 9.083 6.083 38.61 9.083 6.083 38.61 9.250 38.61 9.000 10.18 (ii) 23.34 (ii) 10.00 25.00 10.19 0.04 6.25 6.50	4.000 2.03 7.083 3.05 4.167 1.02 7.167 3.05 4.167 1.02 7.250 3.05 4.167 1.02 7.250 3.05 4.333 3.05 7.417 3.05 4.590 3.05 7.583 2.03 4.583 3.05 7.560 3.05 4.590 3.05 7.583 2.03 4.583 3.05 7.567 2.03 4.750 3.05 7.750 2.03 4.750 3.05 7.750 2.03 4.750 3.05 7.750 2.03 4.750 3.05 7.750 2.03 4.750 3.05 7.750 2.03 4.750 3.05 7.750 2.03 4.750 3.05 7.750 2.03 4.750 3.05 8.000 3.05 5.000 3.05 8.003 2.03 5.083 3.05 8.167 2.03 5.083 3.05 8.167 2.03 5.500 5.08 8.850 2.03 5.550 5.08 8.8.167 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.550 5.08 8.8.500 2.03 5.560 3.05 8.500 2.03 5.667 5.08 8.8.500 2.03 5.560 5.08 8.8.500 2.03 5.560 5.08 8.8.500 2.03 5.560 5.08 8.8.500 2.03 5.560 5.08 8.8.500 2.03 5.560 5.08 8.8.500 2.03 5.570 5.08 8 8.8.750 2.03 5.833 3.66 8 8.917 1.02 5.917 3.66 1 9.083 2.03 6.167 3.8.61 9.083 2.03 6.167 3.8.61 9.050 2.03 38.61 2.04 6.090 38.61 9.050 2.03 38.61 2.04 6.090 25.00 10.18 (ii) 23.34 (ii) 10.00 25.00 10.18 (iii) 23.34 (iii) 10.00 25.00 10.18 (iii) 23.34 (iii) 10.00 25.00 10.19 0.04 0.04 6.25 6.50 0.04 6.25 6.50 0.04 6.25 6.50 0.04 6.293 18.14 33	4.000 2.03 7.083 3.05 10.17 4.083 4.084 4.083 1.02 7.167 3.05 10.25 4.167 1.02 7.7.50 3.05 10.33 4.250 1.02 7.7.50 3.05 10.33 3.05 10.42 4.333 3.05 7.417 3.05 10.50 4.417 3.05 7.583 3.05 10.50 4.500 3.05 7.583 3.05 10.50 4.500 3.05 7.750 2.03 10.67 4.583 3.05 7.750 2.03 10.67 4.583 3.05 7.750 2.03 10.67 4.833 3.05 7.783 3.05 10.92 4.833 3.05 7.783 3.05 10.92 4.917 3.05 8.060 3.05 11.08 4.917 3.05 8.060 3.05 11.08 4.917 3.05 8.060 3.05 11.08 5.063 3.05 8.863 2.03 11.75 5.083 3.05 8.167 2.03 11.55 5.167 3.05 8.8250 2.03 11.55 5.333 5.08 8.472 2.03 11.55 5.333 5.08 8.500 2.03 11.55 5.500 5.08 8.583 2.03 11.55 5.500 5.08 8.583 2.03 11.55 5.500 5.08 8.583 2.03 11.55 5.500 5.08 8.583 2.03 11.55 5.500 5.08 8.500 2.03 11.55 5.667 5.08 8.850 2.03 11.55 5.667 5.08 8.850 2.03 11.55 5.667 5.08 8.850 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 11.55 5.667 5.08 8.500 2.03 12.17 5.688 8.61 9.060 1.02 12.08 5.000 1.02 12.08 5.000 1.02 12.08 5.000 1.02 12.08 5.000 1.02 12.05 5.000 1.02 12.55 5.000 1.02 12.55 5.000 1.02 12.55 5.000 1.02 12.55 5.000 1.02 12.55 5.000 1.02 12.55 5.000 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.500 1.02 12.55 5.5

Page 2

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

Max.Eff.Inten.(mm/hr)=	38.61	18.46		
over	(min)	10.00	25.00		
Storage Coeff.	(min)=	9.85	(ii) 20.32	(ii)	
Unit Hyd. Tpeak	(min)=	10.00	25.00		
Unit Hyd. peak	(cms)=	0.11	0.05		
				TOTALS	*
PEAK FLOW	(cms)=	0.07	0.02	0.081	(iii)
TIME TO PEAK	(hrs)=	6.25	6.50	6.25	
RUNOFF VOLUME	(mm)=	40.93	15.99	28.95	
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93	
RUNOFF COEFFICI	ENT =	0.95	0.37	0.67	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0135) |ID= 1 DT= 5.0 min | Area (ha)= 1.43 Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00 IMPERVIOUS 0.57 2.00 1.00 503.00 0.013 PERVIOUS (i) (ha)= (mm)= (%)= (m)= Surface Area 0.86 5.00 2.00 30.00 0.250 Dep. Storage Average Slope Length Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMFI	HYFTOGR	APH	_	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02

Page 4

	Langs	taffRd_E	A_Existi	ng_WestDo	onWaters	hd	
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03		
ten.(mm/	hr)-	38.61		19.27			
· · · · (IIIII /	, -	55.01					

Max.Eff.Inten.(r	mm/hr)=	38.61	19.27	
over	(min)	10.00	25.00	
Storage Coeff.	(min)=	9.85 (ii)	21.33 (ii)	
Unit Hyd. Tpeak	(min)=	10.00	25.00	
Unit Hyd. peak	(cms)=	0.11	0.05	
				TOTALS
PEAK FLOW	(cms)=	0.06	0.03	0.078 (iii)
TIME TO PEAK	(hrs)=	6.25	6.50	6.25
RUNOFF VOLUME	(mm)=	40.93	16.67	26.36
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COFFFTCTI	FNT =	0.95	0.39	0.61

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 84.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0420) | 1 + 2 = 3 | QPEAK (cms) 0.078 0.081 R.V. (mm) 26.36 28.95 AREA TPEAK (ha) 1.43 1.27 (hrs) 6.25 6.25 ID1= 1 (0135): + ID2= 2 (0140): ======= ID = 3 (0420): 0.158 6.25

Page 5

LangstaffRd EA_Existing_WestDonWatershull 1.02 | 4.833 | 3.05 | 7.917 | 3.05 | 12 1.02 | 4.917 | 3.05 | 8.000 | 3.05 | 12 1.02 | 5.000 | 3.05 | 8.080 | 2.03 | 12 1.02 | 5.1600 | 3.05 | 8.167 | 2.03 | 12 1.02 | 5.167 | 3.05 | 8.250 | 2.03 | 12 1.02 | 5.250 | 3.05 | 8.250 | 2.03 | 12 1.02 | 5.250 | 3.05 | 8.333 | 2.03 | 12 1.02 | 5.333 | 5.08 | 8.417 | 2.03 | 12 1.02 | 5.533 | 5.08 | 8.500 | 2.03 | 12 1.02 | 5.500 | 5.08 | 8.500 | 2.03 | 12 1.02 | 5.500 | 5.08 | 8.500 | 2.03 | 12 1.02 | 5.583 | 5.08 | 8.650 | 2.03 | 12 1.02 | 5.583 | 5.08 | 8.650 | 2.03 | 12 1.02 | 5.583 | 5.08 | 8.650 | 2.03 | 12 1.03 | 5.667 | 5.08 | 8.650 | 2.03 | 12 1.03 | 5.060 | 3.61 | 9.000 | 1.02 | 12 1.03 | 5.060 | 38.61 | 9.083 | 2.03 | 12 1.03 | 6.060 | 38.61 | 9.083 | 2.03 | 12 1.03 | 6.060 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.060 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.060 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.060 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.067 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.067 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.067 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.067 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.067 | 38.61 | 9.167 | 2.03 | 12 1.03 | 6.067 | 38.61 | 9.167 | 2.03 | 12 1.04 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 1.05 | 6.167 | 38.61 | 9.167 | 2.03 | 12 nWatershd 3.65 | 11.00 3.65 | 11.08 2.03 | 11.08 2.03 | 11.17 2.03 | 11.3 2.03 | 11.42 2.03 | 11.50 2.03 | 11.50 2.03 | 11.50 2.03 | 11.50 2.03 | 11.50 2.03 | 11.50 2.03 | 12.03 1.02 | 12.03 1.02 | 12.03 1.02 | 12.03 1.03 | 12.03 2.03 | 12.05 2.03 | 12.05 2.03 | 12.05 2.03 | 12.25 2.03 | 12.25 1.750 1.833 1.917 2.083 0.00 0.00 1.02 1.02 1.02 2 167 2.167 2.250 2.333 2.417 2.500 2.583 2.667 1.02 2.750 1.02 2.833 2.917 3.000 3.083 Max.Eff.Inten.(mm/hr)= 38.61 19.37 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 10.00 20.00 9.46 (ii) 18.44 (ii) 10.00 20.00 0.12 0.06

- *TOTALS*
 0.058 (iii)
 6.25
 26.95
 42.93 PEAK FLOW (cms)=
 TIME TO PEAK (hrs)=
 RUNOFF VOLUME (mm)=
 TOTAL RAINFALL (mm)=
 RUNOFF COEFFICIENT = 0.04 6.25 40.93 42.93 6.42 15.99 42.93 0.95
- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(111) 1 1 1 1 1 1 1 1 1	5025 110	. 11102002	<i>D</i> , <i>S E</i>	2011			
CALIB							
STANDHYD (0205) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.11 38.00	Dir.	Conn.(%)=	38.00	
		IMPERVI	ous	PERVIOU	S (i)		
Surface Area	(ha)=	0.4	2	0.69			
Dep. Storage	(mm)=	2.0	0	5.00			
Average Slope	(%)=	1.0	0	2.00			
Length	(m)=	470.0	0	20.00			
Mannings n	=	0.01	3	0.250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Existing_WestDonWatershd

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| ADD HYD (0425)| | 1 + 2 = 3 | QPEAK R.V. (mm) 32.26 27.58 (ha) (cms) 3.05 0.218 2.70 0.158 (hrs) 6.25 6.25 ID1= 1 (0145): + ID2= 2 (0420): ID = 3 (0425): 5.75 0.377 6.25 30.06

CALTB					
STANDHYD (0210)	Area	(ha)=	0.96		
ID= 1 DT= 5.0 min	Total	Imp(%)=	44.00	Dir. Conn.(%)=	44.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.4	2	0.54	
Dep. Storage	(mm)=	2.0	Э	5.00	
Average Slope	(%)=	1.0	9	2.00	
Length	(m)=	470.0	9	20.00	
Mannings n	=	0.01		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02

Page 6

LangstaffRd EA Existing WestDonWatershd							
TRANSFORMED HYETOGRAPH							
TIME	RAIN	TIME	RAIN		RAIN		RAIN
hrs m	m/hr j	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00 j	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00 j	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00 j	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03		3.05	10.08	1.02
	1.02	4.000	2.03		3.05		1.02
		4.083	1.02		3.05		1.02
	0.00		1.02		3.05		1.02
		4.250	1.02		3.05		1.02
	0.00		3.05	7.417	3.05		1.02
		4.417	3.05	7.500	3.05		1.02
		4.500	3.05		2.03		1.02
	1.02		3.05	7.667	2.03		1.02
		4.667	3.05	7.750	2.03		1.02
	1.02	4.750	3.05	7.833	3.05		1.02
	1.02		3.05		3.05		1.02
	1.02	4.917	3.05		3.05		1.02
	1.02	5.000	3.05	8.083	2.03		1.02
	1.02	5.083		8.167	2.03		1.02
	1.02	5.167	3.05		2.03		0.00
	1.02	5.250	3.05		2.03		0.00
	1.02	5.333	5.08		2.03		0.00
	1.02	5.417	5.08		2.03		1.02
	1.02	5.500		8.583	2.03		1.02
	1.02	5.583	5.08		2.03		1.02
	2.03 2.03	5.667 5.750	5.08 5.08		2.03		1.02
	2.03 2.03	5.833	38.61	8.917	1.02		1.02
	2.03	5.917		9.000	1.02		1.02
		6.000		9.083	2.03		1.02
	2.03			9.167	2.03		1.02
		6.167		9.250	2.03		1.02
3.003	2.05	0.107	30.01	7.230	2.05		
Max.Eff.Inten.(mm/hr) =	38.61		19.37			
over (min		10.00		20.00			
Storage Coeff. (min		9.46		18.44 (ii))		
Unit Hyd. Tpeak (min		10.00		20.00 ` ′			
Unit Hyd. peak (cms		0.12		0.06			
,, (aa					*T01	ΓALS*	
PEAK FLOW (cms)=	0.04		0.02		.062 (iii)	
TIME TO PEAK (hrs		6.25		6.42		5.25	
RUNOFF VOLUME (mm		40.93	:	15.99		.46	
TOTAL RAINFALL (mm		42.93		42.93		2.93	
RUNOFF COEFFICIENT	=	0.95		0.37	6	9.59	

LangstaffRd_EA_Existing_WestDonWatershd

| ADD HYD (0460)| | 1 + 2 = 3 | QPEAK (cms) 0.062 0.058 ΔRFΔ TΡΕΔΚ (ha) 1.11 0.96 ID1= 1 (0205): + ID2= 2 (0210): 6.25 26.95 ID = 3 (0460): 2.07 0.120 6.25 26.15

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Area (ha)= 0.70 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00

TMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.30 5.00 2.00 25.00 Surface Area Dep. Storage Average Slope Length Mannings n 0.013 0.290

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs 3.167 2.03 | 6.250 38.61 | 9.33 RAIN | mm/hr | MAIN | 1...mm/hr | hrs. mm/hr | hrs. mm/hr | hrs. mm/hr | hrs. 2.63 | 6.250 | 2.63 | 6.331 | 6.20 | 6.417 | 1.02 | 6.583 | 2.03 | 6.657 | 2.03 | 6.750 | 2.03 | 6.917 | 2.03 | 7.080 | 1.02 | 7.167 | 1.02 | 7.263 | 1.02 | 7.333 | 3.65 | 7.417 mm/hr 1.02 hrs 0.083 0.00 0.167 0.00 3.250 8.13 8.13 9.42 1.02 0.250 3.333 1.02 1.02 1.02 1.02 1.02 1.02 1.02 8.13 8.13 8.13 8.13 8.13 3.05 3.05 2.03 2.03 2.03 1.02 0.333 3.417 9.58 0.333 0.417 0.500 0.583 0.667 0.750 9.67 9.75 9.83 9.92 3.583 3.667 3.750 3.833 1.02 1.02 0.833 1.02 3.917 3.05 10.08 1.02 0.917 1.02 4.000 3.05 10.17 1.02 1.02 | 0.00 | 0.00 | 0.00 | 4.083 4.167 4.250 4.333 3.05 3.05 3.05 3.05 3.05 10.25 10.33 1.02

Page 9

LangstaffRd_EA_Existing_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH -RAIN | mm/hr | 0.00 | 0.00 | TIME hrs 3.167 3.250 RAIN |' mm/hr |' 2.03 | 6 RAIN | TIME mm/hr | hrs 38.61 | 9.33 8.13 | 9.42 8.13 | 9.50 8.13 | 9.58 1 TIME hrs 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 hrs 0.083 0.167 0.250 0.00 3.333 1.02 1.02 0.333 3.417 1.02 2.03 1.02 1.02 1.02 1.02 1.02 1.02 8.13 8.13 8.13 8.13 3.05 3.05 3.05 3.05 0.417 3.500 1.02 9.67 2.03 2.03 2.03 2.03 2.03 2.03 3 583 0.583 0.667 0.750 0.833 3.583 3.667 3.750 3.833 3.917 0.917 1.02 4.000 2.03 10.17 1.02 7.167 7.250 7.333 7.417 7.500 7.583 7.667 4.083 1.000 1.02 1.02 3.05 1.02 1.02 1.02 1.02 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 2.03 2.03 0.00 0.00 0.00 1.02 1.083 10.33 1.02 4.167 4.250 4.333 4.417 4.500 4.583 1 167 1.250 1.333 1.417 1.02 1.02 1.02 1.02 1.02 1.583 1.02 4.667 3.05 7.750 2.03 10.83 1.02 1.667 1.02 4.750 3.05 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 3.05 10.92 1.02 1.02 1.02 1.02 1.02 4.833 4.917 5.000 5.083 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 3.05 2.03 2.03 2.03 1.02 1.02 1.02 1.02 1.750 11.00 11.08 11.17 11.25 11.33 1.02 5.167 1.02 5.250 3.05 2.03 11.42 2.250 1.02 5.333 5.08 2.03 11.50 0.00 2.333 1.02 5,417 5.08 2.03 1.02 5.417 5.500 5.583 5.667 5.750 5.833 1.02 1.02 2.03 2.03 5.08 5.08 5.08 5.08 2.03 2.03 2.03 1.02 1.02 11.67 11.75 11.83 11.92 12.00 2.417 1.02 2.03 38.61 2.750 8.917 1.02 9.000 9.083 9.167 2.833 2.03 5.917 38.61 1.02 12.08 1.02 2.917 2.03 6.000 38.61 2.03 12.17 1.02 2.03 6.083 38.61 2.03 12.25 38.61 | 9.250 3.083 2.03 | 6.167 2.03

over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= 10.00 20.00 7.51 (ii) 17.98 (ii) 20.00 Unit Hyd. peak (cms)= 0.13 0.06 *TOTALS* 0.05 0.01 PEAK FLOW (cms)= 0.062 (iii)

Page 11

4.417 4.500 4.583 4.667 4.750 4.833 4.917 1.333 1.02 3.05 | 10.58 2.03 | 10.67 1.417 1.02 1.02 1.02 1.02 1.02 1.02 1.500 1.583 1.667 1.750 7.667 7.750 7.833 7.917 2.03 2.03 3.05 3.05 10.75 10.83 10.92 11.00 1.02 1.833 1.02 8.000 3.05 11.08 1.917 1.02 5.000 5.083 3.05 8.083 8.167 2.03 11.17 2.000 1.02 3.05 2.03 11.25 1.02 2.083 1.02 5.167 3.05 8.250 2.03 11.33 2.167 2.250 2.333 2.417 5.250 5.333 5.417 5.500 5.583 3.05 5.08 5.08 5.08 2.03 2.03 2.03 2.03 2.03 0.00 0.00 1.02 1.02 1.02 8.333 8.417 8.500 8.583 8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250 11.42 2.500 2.583 1.02 5.08 2.03 11.75 1.02 2.03 5.667 5.08 2.03 11.83 1.02 5.667 5.750 5.833 5.917 6.000 6.083 6.167 2.667 2.03 5.08 1.02 11.92 1.02 2.750 2.03 38.61 12.00 1.02 2.833 2.917 3.000 3.083 2.03 2.03 2.03 2.03 2.03 38.61 38.61 38.61 38.61 1.02 2.03 2.03 2.03 12.08 12.17 12.25 1.02 1.02 1.02 Max.Eff.Inten.(mm/hr)= 16.97 38.61 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 10.00 7.51 (ii) 10.00 0.13 20.00 19.34 (ii) *TOTALS* 0.049 (iii) PEAK FLOW TIME TO PEAK (hrs)= 6.25 6.42 14.75 6.25 RUNOFF VOLUME (mm)= (mm)= NT = 40.93 TOTAL RATNEALL 42.93 42.93 42.93 RUNOFF COEFFICIENT

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Area (ha)= 0.90 Total Imp(%)= 53.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) 0.48 2.00 1.00 320.00 0.42 5.00 2.00 Surface Area Dep. Storage Average Slope Length (mm)= (%)= (m)= 25.00

Page 10

LangstaffRd_EA_Existing_WestDonWatershd
TIME TO PEAK (hrs)= 6.25 6.42 6.2
RUNOFF VOLUME (mm)= 40.93 15.99 29.2
TOTAL RAINFALL (mm)= 42.93 42.93 42.9
RUNOFF COEFFICIENT = 0.95 0.27 42.93

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0475) | 1 + 2 = 3 | (mm) 29.20 (cms) (hrs) 6.25 ID1= 1 (0225): + ID2= 2 (0230): 0.062 0.70 0.049 6.25 29.66 ID = 3 (0475): 1.60 0.111 6.25 29 40

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

STANDHYD (0220) Area (ha)= 0.65 Total Imp(%)= 46.00 Dir. Conn.(%)= 46.00 |ID= 1 DT= 5.0 min | IMPERVIOUS PERVIOUS (i) 0.30 2.00 1.00 0.35 5.00 (mm)= (%)= (m)= Dep. Storage Average Slope 2.00 Length 260.00 20.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02

	Langs	taffRd F	A Fxist	ing_WestDon	Waters	hd	
0.917		4.000		7.083	3.05		1.02
1.000		4.083	1.02		3.05		1.02
1.083		4.167	1.02			10.33	1.02
1.167		4.250			3.05		1.02
1.250		4.333	3.05		3.05		1.02
1.333		4.417		7.500		10.58	1.02
1.417		4.500		7.583	2.03		1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583		4.667		7.750		10.83	1.02
1.667		4.750		7.833	3.05		1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03		1.02
2.083	1.02	5.167		8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833		8.917	1.02	12.00	1.02
2.833	2.03	5.917		9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03	l	
Max.Eff.Inten.(mm/h		38.61		19.37			
over (m		5.00		20.00			
	in)=	6.63		15.61 (ii)			
Unit Hyd. Tpeak (m:		5.00		20.00			
Unit Hyd. peak (cr	1S)=	0.18		0.07			
						TALS*	
	1s)=	0.03		0.01		.042 (iii)	
	`s)=	6.25		6.42		5.25	
	ım)=	40.93		15.99		7.45	
	ım)=	42.93		42.93		2.93	
RUNOFF COEFFICIENT	=	0.95		0.37	(0.64	
(i) CN PROCEDURE							

(1) CN PROCEDURE SCLECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0215)| |ID= 1 DT= 5.0 min | Area (ha)= 0.58 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00

Page 13

TOTALS 0.04 6.25 40.93 42.93 0.95 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 0.042 (iii) 6.25 30.19 42.93 0.70 0.01 6.42 15.99 42.93 0.37 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN* HOLDER SELECTED FOR FEATURES LOSSES() (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0470)| | 1 + 2 = 3 | QPEAK (cms) 0.042 0.042 R.V. (mm) 30.19 27.45 AREA TPEAK (ha) 0.58 0.65 (hrs) 6.25 6.25 ID1= 1 (0215): + ID2= 2 (0220): ID = 3 (0470): 1.23 0.084 6.25 28.74 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0480)| 1 + 2 = 3 | AREA QPEAK TPEAK R.V. (ha) 1.23 (cms) 0.084 (hrs) 6.25 (mm) 28.74

| CALIB | | STANDHYD (0160)| |ID= 1 DT= 5.0 min | Area (ha)= 0.43 Total Imp(%)= 56.00 Dir. Conn.(%)= 56.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.24 2.00 1.00 0.19 5.00 2.00 (mm)= (%)= (m)= Dep. Storage Average Slope Length Mannings n 260 00 20 00 0.013 0.250

1.60 0.111

2.83 0.195 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ID1= 1 (0470): + ID2= 2 (0475):

ID = 3 (0480):

Page 15

6.25

29.40

LangstaffRd_EA_Existing_WestDonWatershd IMPERVIOUS PERVIOUS (i)

		THE LIVETOUS	1 5 0000 (1	,
Surface Area	(ha)=	0.33	0.25	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	260.00	30.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03		3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167		5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02		5.08	8.500	2.03	11.58	1.02
2.417	1.02		5.08	8.583	2.03	11.67	1.02
2.500	1.02		5.08	8.667	2.03	11.75	1.02
2.583	2.03		5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03		

Max.Eff.Inten.(mm/hr)= over (min)

Page 14

 ${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs				hrs			
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333 0.417	1.02	3.333 3.417 3.500	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583 3.667	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833			
0.750 0.833	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000				7.167			1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
	0.00	4.333	3.05	7.417 7.500 7.583 7.667	3.05		
1.333	1.02	4.417	3.05	7.500	3.05	10.58	
1.417	1.02	4.500	3.05	7.583		10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583 1.667	1.02	4.667	3.05	7.750	2.03	10.83	1.02
	1.02	4.750	3.05				
1.750	1.02	4.833	3.05	7.917		11.00	
1.833 1.917		4.917		8.000		11.08	1.02
1.91/	1.02	5.000	3.05	8.083 8.167 8.250	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083 2.167	1.02	5.167	3.05	8.333	2.03		
2.16/						11.42	0.00
2.250 2.333	1.02	5.333	5.08	8.417	2.03	11.50 11.58	1.02
2.333	1.02	J 5.41/	5.00	8.583	2.03	11.56	1.02
2.417 2.500	1.02	5.500	5.00	8.667	2.03	11.0/	1.02
2.583	2 02	5.667		i		11.75	
2.667	2.03	5.750	5.00	8.750 8.833 8.917	1 02	11.03	1.02
2.750	2.03	5.730	20 61	8.917	1.02	12.00	1.02
2.833		5.917		9.000		12.08	
2.917	2.03	6.000	38 61	9.083		12.00	1.02
3.000	2.03	6.000	38 61	9.167	2.03	12.25	1.02
3.083	2.03			9.250		1 12.25	1.02
3.003	2.03	0.107	50.01	1 3.230	2.03	1	
ff.Inten.(mm/	/hr)=	38.61		25.09			
over (n	nin)	5.00		15.00			
ge Coeff. (n	nin)=	6.63	(ii)	14.73 (ii)		
2 (. /		,		

Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 0.18 0.08 *TOTALS* PEAK FLOW TIME TO PEAK g g1 0.034 (iii) 6.25

LangstaffRd_EA_Existing_WestDonWatershd 1) = 40.93 20.75 32.6 1) = 42.93 42.93 42.9 RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 32.03 0.95 0.48

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 89.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Length Mannings n

| CALIB | | STANDHYD (0155)| |ID= 1 DT= 5.0 min | Area (ha)= 0.56 Total Imp(%)= 45.00 Dir. Conn.(%)= 45.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.25 2.00 1.00 0.31 5.00 2.00 Surface Area Dep. Storage Average Slope

0.013 NOTE: RATNEAU WAS TRANSFORMED TO 5.0 MTN. TIME STEP.

---- TRANSFORMED HYETOGRAPH RAIN | TIME RAIN | TIME I mm/hr | hrs mm/hr | hrs m hrs 0.083 0.167 mm/hr hrs 3.167 mm/hr | mm/hr 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 9.33 0.00 2.03 38.61 1.02 3.250 2.03 8.13 İ 9.42 1.02 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 1.02 1.02 1.02 2.03 2.03 2.03 2.03 9.42 9.50 9.58 9.67 9.75 9.83 9.92 0.00 1.02 1.02 1.02 1.02 1.02 8.13 8.13 8.13 8.13 8.13 3.05 3.05 3.05 1.02 0.833 1.02 3.917 2.03 10.08 1.02 0.917 1.02 4.000 2.03 3.05 10.17 1.02 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 1.02 0.00 0.00 0.00 1.02 1.02 1.02 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 2.03 10.17 10.25 10.33 10.42 10.50 10.58 1.000 1.02 1.167 1.250 1.333 1.02 1.02 1.417 1.02 10.67 1.02 3.05 | 7.583 3.05 | 7.667 3.05 | 7.750 3.05 | 7.833 3.05 | 7.917 3.05 | 8.000 3.05 | 8.083 1.500 1.02 2.03 10.75 1.02 1.02 | 4.667 1.02 | 4.667 1.02 | 4.750 1.02 | 4.833 1.02 | 4.917 1.02 | 5.000 1.583 2.03 10.83 1.02 3.05 | 3.05 | 3.05 | 2.03 | 1.667 1.750 10.92 1.02 11.00 11.08 11.17

0.290

Page 17

LangstaffRd_EA_Existing_WestDonWatershd

Surface Area	(ha)=	3.58	0.23
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	150.00	40.00
Mannings n		0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000		11.08	1.02
1.917	1.02	5.000		8.083		11.17	1.02
2.000	1.02	5.083	3.05			11.25	1.02
2.083	1.02	5.167	3.05		2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08		2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03		

23.99 38.61 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= 10 00 4.77 (ii) 8.20 (ii)

```
LangstaffRd_EA_Existing_WestDonWatershd

1.02 | 5.083 | 3.05 | 8.167 | 2.03 | 1

1.02 | 5.167 | 3.05 | 8.250 | 2.03 | 1

1.02 | 5.250 | 3.05 | 8.333 | 2.03 | 1

1.02 | 5.333 | 5.08 | 8.417 | 2.03 | 1

1.02 | 5.417 | 5.08 | 8.500 | 2.03 | 1

1.02 | 5.560 | 5.08 | 8.583 | 2.03 | 1

1.02 | 5.588 | 5.08 | 8.583 | 2.03 | 1

1.02 | 5.580 | 5.08 | 8.583 | 2.03 | 1

1.02 | 5.588 | 5.08 | 8.667 | 2.03 | 1
                                  2.000
                                                      1.02
                                                                                                                            2.03 | 11.25
2.03 | 11.33
                                                                                                                                                                1.02
                                  2.083
                                  2.083
2.167
2.250
2.333
2.417
2.500
2.583
                                                                                                                                           11.42
11.50
11.58
11.67
11.75
                                                                                                                                                                0.00
0.00
1.02
1.02
                                                                     5.250
5.333
5.417
5.500
5.583
5.667
5.750
5.833
5.917
6.000
6.083
6.167
                                                      1.02
1.02
1.02
1.02
                                                                                          5.08
                                                                                                         8.667
8.750
                                                                                                                             2.03
                                                      2.03
                                                                                          5.08
                                                                                                                             2.03
                                                                                                                                           11.83
                                                                                                                                                                 1.02
                                                                                                       8.750
8.833
8.917
9.000
9.083
9.167
9.250
                                  2.667
                                                      2.03
                                                                                          5.08
                                                                                                                             1.02
                                                                                                                                           11.92
                                                                                                                                                                 1.02
                                  2.750
                                                      2.03
                                                                                        38.61
                                                                                                                             1.02
                                                                                                                                           12.00
                                                                                                                                                                 1.02
                                                     2.03 |
2.03 |
2.03 |
2.03 |
                                                                                       38.61 |
38.61 |
38.61 |
38.61 |
                                                                                                                                                                1.02
1.02
1.02
                                  2.833
                                                                                                                             1.02
                                                                                                                                           12.08
                                  2.833
2.917
3.000
3.083
         Max.Eff.Inten.(mm/hr)=
                                                                        38.61
                                                                                                     22.02
         over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                         5.00
6.63 (ii)
                                                                                                    20.00
17.29 (ii)
                                                                         5.00
                                                                                                                                  *TOTALS*
0.038 (iii)
         PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                        6.25
40.93
                                                                                                       6.42
                                                                                                                                        6.25
                                                                                                     18.96
                                                                                                                                     28.83
                                                                        42.93
0.95
                                                                                                     42.93
                                                                                                                                      42.93
              (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
         CN* = 87.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 | ADD HYD ( 0430)|
| 1 + 2 = 3 |
                                                               AREA
                                                               (ha)
0.56
                                                                                (cms)
                                                                                                    (hrs)
                                                                                                                      (mm)
28.83
           ID1= 1 ( 0155):
+ ID2= 2 ( 0160):
                                                                             0.038
                                                                                                    6.25
                                                               0.43
                                                                              0.034
                                                                                                     6.25
                                                                                                                      32.03
            ID = 3 ( 0430):
                                                              0.99
                                                                                                    6.25
                                                                                                                      30.22
         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| STANDHYD ( 0150)|
|ID= 1 DT= 5.0 min |
                                                 Area (ha)= 3.81
Total Imp(%)= 94.00 Dir. Conn.(%)= 94.00
                                                                 IMPERVIOUS PERVIOUS (i)
                                                                                           Page 18
```

LangstaffRd_EA_Existing_WestDonWatershd

Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.22	0.13	
				TOTALS
PEAK FLOW	(cms)=	0.38	0.01	0.397 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	40.93	19.82	39.66
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COEFFICIE	ENT =	0.95	0.46	0.92

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* FINCEDORE SELECT FOR FEATURES LOSSES.

 (N* = 88.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0440)| | 1 + 2 = 3 | QPEAK (cms) 0.397 0.072 ΔRFΔ (hrs) 6.25 6.25 (mm) 39.66 30.22 (ha) 3.81 0.99 ID1= 1 (0150): + ID2= 2 (0430): ID = 3 (0440): 4.80 0.469 6.25 37.71

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Mannings n

| CALIB | | STANDHYD (0185) | | ID= 1 DT= 5.0 min | Area (ha)= 0.47 Total Imp(%)= 48.00 Dir. Conn.(%)= 48.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.23 2.00 1.00 240.00 0.24 5.00 2.00 20.00 Surface Area Dep. Storage Average Slope Length

0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN TIME	RAIN TIME	RAIN			
hrs	mm/hr	hrs	mm/hr hrs	mm/hr hrs	mm/hr			
0.083	0.00	3.167	2.03 6.250	38.61 9.33	1.02			
0.167	0.00	3.250	2.03 6.333	8.13 9.42	1.02			
0.250	0.00	3.333	1.02 6.417	8.13 9.50	1.02			
0.333	1.02	3.417	1.02 6.500	8.13 9.58	2.03			
0.417	1.02	3.500	1.02 6.583	8.13 9.67	2.03			
0.250 0.333	0.00 1.02	3.333	1.02 6.417 1.02 6.500	8.13 9.50 8.13 9.58	1.02			

Page 20

0.350

	Lange	taffRd F	Δ Fyist	ing WestDor	Waters	hd	
0.500		3.583		6.667	8.13		2.0
0.583		3.667	2.03		8.13		1.0
0.667	1.02		2.03		3.05		1.0
0.750		3.833		6.917	3.05		1.0
0.833		3.917		7.000	3.05		1.0
0.917		4.000		7.083	3.05		1.0
1.000		4.083	1.02		3.05		1.0
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.0
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.0
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.0
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.0
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.0
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.0
1.583		4.667	3.05		2.03		1.0
1.667		4.750		7.833	3.05		1.0
1.750		4.833		7.917	3.05		1.0
1.833		4.917	3.05		3.05		1.0
1.917		5.000		8.083	2.03		1.0
2.000		5.083		8.167	2.03		1.0
2.083		5.167		8.250	2.03		0.0
2.167	1.02		3.05		2.03		0.0
2.250		5.333		8.417	2.03		0.00
2.333		5.417		8.500	2.03		1.0
2.417		5.500		8.583	2.03		1.0
2.500		5.583		8.667		11.75	1.0
2.583	2.03			8.750	2.03		1.0
2.667		5.750		8.833		11.92	1.0
2.750 2.833	2.03	5.833		8.917	1.02	12.00 12.08	1.0
2.833	2.03			9.000	2.03		1.0
3.000		6.083		9.167	2.03		1.0
3.083		6.167		9.250	2.03		1.0.
		0.107	30.01	7 3.230	2.03	'	
Max.Eff.Inten.(mm/		38.61		15.64			
over (m		5.00		20.00			
	in)=			18.29 (ii)			
Unit Hyd. Tpeak (m		5.00		20.00			
Unit Hyd. peak (c	ms)=	0.19		0.06			
						TALS*	
	ms)=	0.02		0.01		.030 (iii)
	rs)=	6.25		6.42		5.25	
	mm)= mm)=	40.93		13.64		5.71	
TOTAL RAINFALL (RUNOFF COEFFICIENT		42.93 0.95		42.93 0.32		2.93 2.62	
NONOFF CUEFFICIENT	=	0.95		0.32	,	0.02	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 21

LangstaffRd_EA_Existing_WestDonWatershd 2.03 | 6.083 | 38.61 | 9.167 | 2.03 | 12.25 2.03 | 6.167 | 38.61 | 9.250 | 2.03 | Max.Eff.Inten.(mm/hr)= 38.61 18.46 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 2.91 (ii) 5.00 0.28 20.00 16.78 (ii) 20.00 0.06 *TOTALS* 0.036 (iii) 6.25 24.20 (cms)= (hrs)= (mm)= (mm)= 0.02 6.25 40.93 PEAK FLOW TIME TO PEAK 6.42 15.99 RUNOFF VOLUME TOTAL RAINFALL 42.93 42.93 42.93 RUNOFF COEFFICIENT 0.95 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0445)| 1 + 2 = 3 | QPEAK TPEAK (hrs) 6.25 6.25 ID = 3 (0445): 1.12 0.065 6.25 25.26 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | CALIB | | STANDHYD (0165)| |ID= 1 DT= 5.0 min | Area (ha)= 0.60 Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00 IMPERVIOUS PERVIOUS (i) 0.36 5.00 2.00 20.00 Surface Area (ha)= 0.24 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= 1.00 0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

- TRANSFORMED HYETOGRAPH -IME RAIN | TIME RA

RAIN | TIME

RAIN | TIME

LangstaffRd	FΑ	Fxisting	WestDonWatershd

	-			
Area	(ha)=	0.65		
Total	Imp(%)=	33.00	Dir. Conn.(%)=	33.00
	IMPERVI	OUS	PERVIOUS (i)	
(ha)=	0.2	1	0.44	
(mm) =	2.0	0	5.00	
(%)=	1.0	0	2.00	
(m)=	65.8	3	40.00	
=	0.01	3	0.250	
			5.0 MTN. TTMF (
	(ha)= (mm)= (%)= (m)=	Total Imp(%)= IMPERVI (ha)= 0.2 (mm)= 2.0 (%)= 1.0 (m)= 65.8 = 0.01	Total Imp(%) = 33.00 IMPERVIOUS (ha) = 0.21 (mm) = 2.00 (%) = 1.00 (m) = 65.83	Total Imp(%) = 33.00 Dir. Conn.(%) = IMPERVIOUS PERVIOUS (1) (ha) = 0.21 0.44 (mm) = 2.00 5.00 (%) = 1.00 2.00 (m) = 65.83 40.00 = 0.013 0.250

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1 250	0 00	1 222	2 05	7 417	2 05	10 50	1 02

---- TRANSFORMED HYETOGRAPH ----

1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 0.00 1.02 1.02 1.02 1.02 1.02 4.333 4.417 4.500 4.583 4.667 4.750 4.833 7.417 7.500 7.583 7.667 7.750 7.833 7.917 3.05 | 7.917 3.05 | 8.083 3.05 | 8.083 3.05 | 8.167 3.05 | 8.159 3.05 | 8.333 5.08 | 8.450 5.08 | 8.583 5.08 | 8.683 5.08 | 8.683 38.61 | 9.000 38.61 | 9.000 1.02 4.917 5.000 3.05 2.03 11.08 11.17 1.02 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 1.02 5.000 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.667 1.02 1.02 1.02 1.02 1.02 1.02 2.03 2.03 2.03 2.03 11.25 11.33 11.42 11.50 11.58 1.02 0.00 0.00 0.00 1.02 2.03 11.67 2.500 1.02 2.03 11.75 1.02 2.03 2.03 11.83 2.667 2.750 2.833 2.917 2.03 2.03 2.03 2.03 2.03 5.750 5.833 5.917 6.000 1.02 1.02 1.02 2.03 11.92 12.00 12.08 12.17 1.02 1.02 1.02 1.02

Lan	rctoffEd EA	. Evict	ing WestDor	Waters	hd	
hrs mm/hr		mm/hr		mm/hr		mm/hr
0.083 0.00		2.03		38.61		1.02
0.167 0.00		2.03		8.13		1.02
	3.333	1.02		8.13		1.02
	3.417		6.500	8.13		2.03
0.417 1.02		1.02		8.13		2.03
	3.583		6.667	8.13		2.03
0.583 1.02			6.750	8.13		1.02
	3.750		6.833	3.05		1.02
	3.833	2.03		3.05		1.02
	3.917	2.03		3.05		1.02
	4.000		7.083	3.05		1.02
	4.083	1.02		3.05		1.02
	4.167		7.250	3.05		1.02
	4.250	1.02		3.05		1.02
	4.333	3.05		3.05		1.02
	4.417	3.05		3.05		1.02
	4.500	3.05		2.03		1.02
	4.583	3.05		2.03		1.02
	4.667	3.05		2.03		1.02
	4.750	3.05		3.05		1.02
	4.833	3.05		3.05		1.02
	4.917	3.05	8.000	3.05	11.08	1.02
	5.000	3.05		2.03		1.02
2.000 1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083 1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167 1.02		3.05	8.333	2.03	11.42	0.00
2.250 1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333 1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417 1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500 1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583 2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667 2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750 2.03			8.917	1.02	12.00	1.02
2.833 2.03	5.917	38.61	9.000	1.02		1.02
2.917 2.03	6.000	38.61	9.083	2.03		1.02
3.000 2.03				2.03		1.02
3.083 2.03	6.167	38.61	9.250	2.03		
Max.Eff.Inten.(mm/hr)=	38.61		19.37			
over (min)	5.00		20.00			
Storage Coeff. (min)=	6.48	(ii)	15.46 (ii)			
Unit Hyd. Tpeak (min)=	5.00		20.00			
Unit Hyd. peak (cms)=	0.18		0.07			
PEAK FLOW (cms)=	0.03		0.01		ΓALS* .036 (iii)	
TIME TO PEAK (hrs)=	6.25		6.42		5.25	
RUNOFF VOLUME (mm)=	40.93		15.99		5.95	
TOTAL RAINFALL (mm)=	42.93		42.93		2.93	
RUNOFF COEFFICIENT =	0.95		0.37		0.60	
	0.55			,		

LangstaffRd_EA_Existing_WestDonWatershd
CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length Mannings n (ha)= (mm)= (%)= (m)= 0.25 2.00 1.00 250.00 0.18 5.00 2.00 20.00

0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02		
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02		
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02		
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03		
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03		
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03		
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02		
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02		
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02		
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02		
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02		
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02		
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02		
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02		
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02		
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02		
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02		
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02		
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02		
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02		
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02		
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02		
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02		
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02		
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00		
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00		
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00		
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02		
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02		

0.250

Page 25

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

CALIB					
STANDHYD (0190)	Area	(ha)=	0.86		
ID= 1 DT= 5.0 min	Total	Imp(%)=	42.00	Dir. Conn.(%)=	42.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.3	5	0.50	
Dep. Storage	(mm)=	2.0	3	5.00	
Average Slope	(%)=	1.0	3	2.00	
Length	(m)=	340.0	3	50.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TP	VNZEUBWEI	D HYETOGR	ΛDH	_	
TIME	RAIN	l TIME	RAIN	l' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02

Page 27

2 500 1	92 I 5 5	Rd_EA_Exis 83 5.08	1 8 667	2 03	l 11 75	1 0
2 583 2	03 5.6	67 5.08	8 8 750	2.03	111.73	1.0
2.583 2. 2.667 2.	.03 5.7	50 5.08	8 8.833	1.02	11.92	1.0
2.750 2	.03 5.8	33 38.61	8.917	1.02	12.00	1.0
2.833 2.	.03 5.9	17 38.61	9.000	1.02	12.08	1.0
2.917 2.	.03 6.0	00 38.61	9.083	2.03	12.17	1.0
3.000 2.	.03 6.0	83 38.61	9.167	2.03	12.25	1.0
2.750 2 2.833 2 2.917 2 3.000 2 3.083 2	.03 6.1	67 38.61	9.250	2.03	1	
Max.Eff.Inten.(mm/hr): over (min) Storage Coeff. (min): Unit Hyd. Tpeak (min): Unit Hyd. peak (cms):	= 38	.61	25.09			
over (min)	5	.00	15.00			
Storage Coett. (min):	= 6	.48 (11)	14.5/ (11)		
Unit Hyd neak (min)	- 3	18	0 08			
					TALS*	
PEAK FLOW (cms):	= A	.03	0.01	9	.035 (iii)
TIME TO PEAK (hrs):	= 6	.25	6.33		6 25	,
RUNOFF VOLUME (mm):	= 40	.93	20.75	3	2.23	
PEAK FLOW (cms): TIME TO PEAK (hrs): RUNOFF VOLUME (mm): TOTAL RAINFALL (mm):	= 42	.93	42.93	4	2.23	
RUNOFF COEFFICIENT =	= 0	.95	0.48		0.75	
ADD HYD (0450) 1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.		
	(ha)	(cms)	(hrs)	(mm)		
ID1= 1 (0165):	0.60	0.036	6.25	25.95		
+ ID2= 2 (0170):	0.43	0.035	6.25	32.23		
ID = 3 (0450):						
NOTE: PEAK FLOWS DO N						
ADD HYD (0450)						
3 + 2 = 1	AREA	QPEAK	TPEAK	R.V.		
TD4 2 (0450)	(ha)	(cms)	(hrs)	(mm)		
ID1= 3 (0450): + ID2= 2 (0445):	1.03	0.0/1	6.25	28.57		
+ 1D2= 2 (0445):	1.12	0.065	6.25	25.26		
ID = 1 (0450):						
NOTE: PEAK FLOWS DO N						
		Pag	e 26			

Page 26

LangstaffRd EA Existing WestDonWatershd

3.00	0 2.03	6.083	38.61 9.167	2.03 12.25	1.02
3.08	3 2.03	6.167	38.61 9.250	2.03	
Max.Eff.Inten.(mm/hr)=	38.61	17.44		
over	(min)	10.00	25.00		
Storage Coeff.	(min)=	7.79	(ii) 24.01 (ii)		
Unit Hyd. Tpeak	(min)=	10.00	25.00		
Unit Hyd. peak	(cms)=	0.13	0.05		
				TOTALS	
PEAK FLOW	(cms)=	0.04	0.01	0.048 (iii)	
TIME TO PEAK	(hrs)=	6.25	6.50	6.25	
RUNOFF VOLUME	(mm)=	40.93	15.99	26.45	
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93	
RUNOFF COEFFICI	ENT =	0.95	0.37	0.62	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Area (ha)= 0.79 Total Imp(%)= 42.00 Dir. Conn.(%)= 42.00

IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length Mannings n 0.33 2.00 1.00 340.00 0.013 9.46 5.00 2.00 20.00 0.250 (ha)= (mm)= (%)= (m)=

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH											
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02				
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02				
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02				
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03				
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03				
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03				
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02				
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02				
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02				
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02				
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02				
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02				
Page 28											

```
LangstaffRd_EA_Existing_WestDonWatershd
0.00 | 4.167 | 1.02 | 7.250 | 3.05 | 14
0.00 | 4.250 | 1.02 | 7.333 | 3.05 | 14
0.00 | 4.350 | 1.02 | 7.333 | 3.05 | 14
0.00 | 4.333 | 3.05 | 7.447 | 3.05 | 14
1.02 | 4.417 | 3.05 | 7.590 | 3.05 | 14
1.02 | 4.500 | 3.05 | 7.583 | 2.03 | 14
1.02 | 4.583 | 3.05 | 7.667 | 2.03 | 14
1.02 | 4.583 | 3.05 | 7.750 | 2.03 | 14
1.02 | 4.583 | 3.05 | 7.750 | 2.03 | 14
1.02 | 4.333 | 3.05 | 7.750 | 2.03 | 14
1.02 | 4.750 | 3.05 | 7.833 | 3.05 | 17
1.02 | 4.917 | 3.05 | 8.000 | 3.05 | 12
1.02 | 5.083 | 3.05 | 8.167 | 2.03 | 12
1.02 | 5.083 | 3.05 | 8.167 | 2.03 | 12
1.02 | 5.167 | 3.05 | 8.250 | 2.03 | 12
1.02 | 5.533 | 5.08 | 8.417 | 2.03 | 12
1.02 | 5.533 | 5.08 | 8.417 | 2.03 | 12
1.02 | 5.583 | 5.08 | 8.667 | 2.03 | 12
1.02 | 5.583 | 5.08 | 8.667 | 2.03 | 12
1.02 | 5.583 | 5.08 | 8.667 | 2.03 | 12
1.02 | 5.583 | 5.08 | 8.667 | 2.03 | 12
1.02 | 5.590 | 5.08 | 8.590 | 2.03 | 12
1.02 | 5.575 | 5.08 | 8.833 | 2.03 | 12
1.02 | 5.583 | 5.08 | 8.167 | 2.03 | 12
1.03 | 5.675 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.675 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.675 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 12
1.03 | 5.667 | 5.08 | 8.833 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2.03 | 2
                                                                                      1.083
                                                                                                                                                                                                                                                                                                                                                                                                                   3.05 | 10.33
3.05 | 10.42
                                                                                         1.167
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                      1.250
1.333
1.417
1.500
1.583
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.02
1.02
1.02
1.02
1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          10.50
                                                                                         1.667
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                         1.750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                         1.833
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11.08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
1.02
0.00
0.00
0.00
1.02
                                                                                         1.917
2.000
2.083
2.167
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11.50
                                                                                         2.250
                                                                                         2.333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11.58
                                                                                         2.417
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11.67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11.83
11.92
12.00
12.08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
1.02
1.02
1.02
                                                                                         2.583
                                                                                         2.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12.25
                                                                                         3.083
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                                                                                         38.61
10.00
7.79 (ii)
10.00
                                                                                                                                                                                                                                                                                                                                 19.37
                                                                                                                                                                                                                                                                                                                             19.37
20.00
16.77 (ii)
20.00
                                                                                                                                                                                                                               0.13
                                                                                                                                                                                                                                                                                                                                     0.06
                                                                                                                                                                                                                                                                                                                                                                                                                                     *TOTALS*
  PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                                                                           0.03
6.25
40.93
42.93
0.95
                                                                                                                                                                                                                                                                                                                                                                                                                                                TOTALS*

0.048 (iii)

6.25

26.45

42.93

0.62
                                                                                                                                                                                                                                                                                                                                     0.02
                                                                                                                                                                                                                                                                                                                               6.42
15.99
42.93
0.37
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0455)| 1 + 2 = 3 | ARFA OPFAK TPFAK (cms) 0.048 0.048 (hrs) 6.25 6.25

Page 29

LangstaffRd EA Existing WestDonWaters 1.02 | 4.667 | 3.05 | 7.750 | 2.03 1.02 | 4.750 | 3.05 | 7.833 | 3.05 1.02 | 4.833 | 3.05 | 7.833 | 3.05 1.02 | 4.833 | 3.05 | 7.917 | 3.05 1.02 | 5.083 | 3.05 | 8.060 | 3.65 1.02 | 5.083 | 3.05 | 8.167 | 2.03 1.02 | 5.253 | 3.05 | 8.250 | 2.03 1.02 | 5.253 | 3.05 | 8.250 | 2.03 1.02 | 5.250 | 3.05 | 8.333 | 2.03 1.02 | 5.250 | 3.05 | 8.333 | 2.03 1.02 | 5.250 | 3.05 | 8.333 | 2.03 1.02 | 5.353 | 5.08 | 8.417 | 2.03 1.02 | 5.583 | 5.08 | 8.500 | 2.03 1.02 | 5.583 | 5.08 | 8.500 | 2.03 1.02 | 5.583 | 5.08 | 8.500 | 2.03 1.02 | 5.583 | 5.08 | 8.853 | 2.03 1.02 | 5.333 | 5.08 | 8.850 | 2.03 1.02 | 5.583 | 5.08 | 8.850 | 2.03 1.02 | 5.583 | 5.08 | 8.850 | 2.03 1.03 | 5.750 | 5.08 | 8.833 | 1.02 2.03 | 5.060 | 3.661 | 9.000 | 1.02 2.03 | 6.000 | 38.61 | 9.083 | 2.03 2.03 | 6.063 | 38.61 | 9.167 | 2.03 2.03 | 6.167 | 38.61 | 9.250 | 2.03 1.583 1.667 1.750 1.02 1.02 1.02 11.00 1.833 1.917 11.17 1.02 1 02 2.083 2.167 2.250 2.333 11.25 11.33 11.42 11.50 11.58 2.417 11.67 1.02 1.02 2.583 11.83 1.02 2 667 2.03 | 5.750 2.03 | 5.833 2.03 | 5.917 2.03 | 6.000 2.03 | 6.083 2.03 | 6.167 2.750 2.833 2.917 12.00 12.08 12.17 12.25 1.02 1.02 1.02 1.02 3.083 Max.Eff.Inten.(mm/hr)= 38.61 15.64 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 6.60 (ii) 5.00 0.18 25.00 21.43 (ii) 25.00 0.05 0.85 6.25 41.93 42.93 0.98 0.886 (iii) 6.25 0.05 (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 6.50 13.64 42.93 0.32 36.27

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0350)| |ID= 1 DT= 5.0 min |

Area (ha)= 0.90 Total Imp(%)= 70.00 Dir. Conn.(%)= 70.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.63 1.00 1.00 0.27 5.00 2.00 Surface Area Dep. Storage Average Slope Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Existing_WestDonWatershd

ID = 3 (0455): 1.65 0.096 6.25 26.45

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| ADD HYD (0458)| | 1 + 2 = 3 | AREA QPEAK TPEAK R.V. (ha) 2.15 1.65 (cms) 0.136 0.096 (hrs) 6.25 6.25 (mm) 26.84 26.45 6.25

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

I CALTB | STANDHYD (0300)| |ID= 1 DT= 5.0 min | Area (ha)= 10.00 Total Imp(%)= 80.00 Dir. Conn.(%)= 80.00 IMPERVIOUS PERVIOUS (i) 8.00 1.00 1.00 Surface Area (ha)= 2.00 5.00 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= 2 00 258.20 0.013

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYFTOGRAPH NSFORMED HYETOGR RAIN | TIME mm/hr | hrs 2.03 | 6.250 2.03 | 6.333 1.02 | 6.417 1.02 | 6.500 1.02 | 6.583 2.03 | 6.667 2.03 | 6.667 TIME hrs 3.167 3.250 3.333 3.417 APH ---
RAIN | TIME

mm/hr | hrs

38.61 | 9.33

8.13 | 9.42

8.13 | 9.50 TIME RAIN | RATN 71ME hrs 0.083 0.167 0.250 0.333 71ME hrs 9.33 9.42 9.50 9.58 1.02 8.13 0.417 1.02 3.500 8.13 9.67 9.75 2.03 0.500 0.583 0.667 0.750 0.833 0.917 1.02 2.03 | 6.667 2.03 | 6.750 2.03 | 6.833 2.03 | 6.917 2.03 | 7.000 2.03 | 7.083 1.02 | 7.167 1.02 | 7.250 1.02 | 7.333 3.05 | 7.417 3.05 | 7.500 3.05 | 7.583 3.05 | 7.667 8.13 2.03 1.02 1.02 1.02 1.02 1.02 1.02 8.13 8.13 3.05 3.05 3.05 3.05 3.05 9.83 9.92 10.00 10.08 10.17 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 1.02 1.02 1.02 1.02 1.02 1.000 10.25 1.02 1.083 0.00 3.05 10.33 1.02 1.167 0.00 3.05 10.42 1.02 1.250 1.333 1.417 1.500 0.00 1.02 1.02 1.02 3.05 | 3.05 | 2.03 | 2.03 | 10.50 10.58 10.67 10.75 1.02 1.02 1.02 1.02

Page 30

LangstaffRd EA Existing WestDonWatershd

Langstaffkd_EA_EXisting_westDonwatersnd											
TRANSFORMED HYETOGRAPH											
TIME	RAIN	TIME	RAIN	' TIME	RAIN		RAIN				
hrs	mm/hr	hrs		' hrs	mm/hr						
0.083		3.167	2.03	6.250	38.61 8.13		1.02				
0.167	0.00				8.13						
0.250				6.417			1.02				
0.333 0.417		3.417		6.500	8.13		2.03				
0.417		3.583		6.667	8.13		2.03				
0.583		3.667		6.750	8.13		1.02				
0.667		3.750		6.833	3.05		1.02				
0.750				6.917		10.00	1.02				
0.833		3.917		7.000	3.05		1.02				
0.917	1.02	4.000	2.03	7.083		10.00	1.02				
1.000		4.083	1 02	1 7 107	3.05		1.02				
1.083	0.00	4.167	1.02	7.250		10.23	1.02				
1.167			1 02	7.333	3.05		1.02				
1 250	0 00	1 222	3 05	7.417		10.50	1.02				
1.333	1.02	4.333	3.05	7.500	3.05		1.02				
1.417	1 02	4.500		7.583		10.67	1.02				
1.500	1.02	4.500	3.05		2.03		1.02				
1.583	1 02	4.667		7.750		10.73	1.02				
1.667	1.02	4.007	3.05		3.05		1.02				
1.750	1 02	4.833		7.917		11.00	1.02				
	1.02		3.05		3.05		1.02				
1.917		5.000		8.083	2.03		1.02				
2.000		5.083		8.167			1.02				
2.083		5.167		8.250	2.03		0.00				
2.167		5.250		8.333	2.03		0.00				
2.250		5.333		8.417	2.03		0.00				
2.333				8.500	2.03		1.02				
2.417	1.02	5.500	5.08	i 8.583	2.03		1.02				
2.500	1.02	5.583	5.08	8.667		11.75	1.02				
2.583		5.667		8.750	2.03	11.83	1.02				
2.667		5.750		8.833		11.92	1.02				
2.750				8.917	1.02	12.00	1.02				
2.833	2.03	5.833 5.917	38.61	9.000		12.08	1.02				
2.917	2.03	6.000	38.61	9.083	2.03		1.02				
3.000	2.03	6.000	38.61	9.167		12.25	1.02				
3.083		6.167			2.03						
Max.Eff.Inten.(mm/	/hr)=	38.61		15.64							
over (m		5.00		20.00							
	nin)=	3.21	(ii)	18.03 (ii)							
Unit Hyd. Tpeak (m	nin)=	5.00		20.00							
	ms)=	0.27		0.06							
					****	TALC*					

TOTALS 0.07 0.01 0.074 (iii) 6.25 6.42 6.25 41 93 42.93 42.93

Page 32

PEAK FLOW

TIME TO PEAK

RUNOFF VOLUME

TOTAL RAINFALL

(cms)=

(hrs)= (mm)= (mm)=

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0375)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0300):	10.00	0.886	6.25	36.27
+ ID2= 2 (0350):	0.90	0.074	6.25	33.43
=======================================				
ID = 3 (0375):	10.90	0.960	6.25	36.03

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. OU NO. APOCOUL DASCILUNG IF ANY.

READ STORM	Filenar			.zhao\App	D		
!			Local\Te				
Ptotal= 55.37 mm	Comment	278a :s: 5yr-		9-4519-98	19-16449	000a1c25\	526be1
	Commerri	.s. 5yı -	12111 303				
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/h
0.25	0.00	3.50	3.05	6.75	10.16	10.00	2.03
0.50	1.02	3.75	2.03	7.00	5.08	10.25	1.02
0.75	1.02	4.00	2.03	7.25	4.06	10.50	1.02
1.00	1.02	4.25	2.03	7.50	3.05	10.75	1.02
1.25	1.02	4.50	4.06	7.75	3.05	11.00	2.03
1.50	1.02	4.75	4.06	8.00	4.06	11.25	1.02
1.75	2.03	5.00	4.06	8.25	3.05	11.50	1.02
2.00	1.02	5.25	3.05	8.50	2.03	11.75	1.02
2.25	1.02	5.50	7.11	8.75	2.03	12.00	1.02
2.50	2.03	5.75	7.11	9.00	3.05	12.25	1.02
2.75	2.03	6.00	49.78	9.25	2.03		
3.00	2.03	6.25	49.78	9.50	1.02		
3.25	2.03	6.50	9.14	9.75	2.03		

Page 33

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

Max.Eff.Inten.(r	mm/hr)=	49.78	31.75	
over	(min)	10.00	25.00	
Storage Coeff.	(min)=	9.20 (ii)	20.36 (ii)	
Unit Hyd. Tpeak	(min)=	10.00	25.00	
Unit Hyd. peak	(cms)=	0.12	0.05	
				TOTALS
PEAK FLOW	(cms)=	0.25	0.06	0.299 (iii)
TIME TO PEAK	(hrs)=	6.25	6.50	6.25
RUNOFF VOLUME	(mm)=	53.37	27.66	43.60
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37
RUNOFF COFFETCTI	FNT =	a 96	0 50	a 79

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= 1.27 Imp(%)= 52.00		52.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.66 2.00 1.00 503.00 0.013	PERVIOUS (i) 0.61 5.00 2.00 25.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02	
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02	
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02	
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03	
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03	
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03	
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03	
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03	
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03	
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02	
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02	
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02	
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02	
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02	

Page 35

LangstaffRd_EA_Existing_WestDonWatershd

STANDHYD (0145)	area	(na)=	3.05			
ID= 1 DT= 5.0 min	Total	Imp(%)=	62.00	Dir. Conn.(%)=	62.00	
		IMPERVI	OUS	PERVIOUS (i)		
Surface Area	(ha)=	1.8	9	1.16		
Dep. Storage	(mm)=	2.0	0	5.00		
Average Slope	(%)=	1.0	0	2.00		
Length	(m)=	531.0	0	40.00		
Mannings n	` ′=	0.01	3	0.250		

NOTE: RAINFALL WAS TRANSFORMED TO $\,$ 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750		3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083		4.167	2.03	7.250	4.06		1.02
1.167		4.250	2.03	7.333	3.05	10.42	1.02
1.250		4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583		4.667	4.06	7.750	3.05	10.83	2.03
1.667		4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03		4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917		5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11 7.11	8.417	2.03	11.50 11.58	1.02
2.333	2.03	5.417	7.11	8.500	2.03		1.02
2.417	2.03			8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11 7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667		8.750	2.03	11.83	1.02
2.667 2.750	2.03	5.750 5.833	7.11 49.78	8.833 8.917	3.05	11.92	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000 6.083	49.78 49.78	9.083 9.167	2.03	12.17	
3.000 3.083	2.03	6.167	49.78		2.03		1.02
5.083	2.03	0.16/	49.78	9.250	2.03	l	

Page 34

		Langs	taffRd_E		ing_WestD		hd	
	1.256				7.417			1.02
	1.333							1.02
	1.417		4.500	4.06	7.583			1.02
	1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
	1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
	1.667	7 2.03	4.750	4.06	7.833	4.06	10.92	2.03
	1.756	2.03	4.833	4.06	7.917	4.06	11.00	2.03
	1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
	1.917	7 1.02	5.000	4.06	8.083	3.05	11.17	1.02
	2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
	2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
	2.167	7 1.02	5.250	3.05	8.333	2.03	11.42	1.02
	2.256	1.02	5.333	7.11	8.417	2.03	11.50	1.02
	2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
	2.417	7 2.03	5.500	7.11	8.583	2.03	11.67	1.02
	2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
	2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
	2.667	7 2.03	5.750	7.11	8.833	3.05	11.92	1.02
	2.756	2.03	5.833	49.78	8.917	3.05	12.00	1.02
	2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
	2.917	7 2.03	6.000	49.78	9.083	2.03	12.17	1.02
	3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
	3.083	2.03	6.167	49.78	9.250	2.03	İ	
ax.Ett.Ir		nm/hr)=			29.56			
		(min)	10.00		20.00			
torage Co				(ii)	17.57 (i	1)		
nit Hyd.			10.00		20.00			
		(cmc)-	a 12		0 06			

over	(min)	10.00	20.00	
Storage Coeff.	(min)=	8.90 (ii	i) 17.57 (ii)	
Unit Hyd. Tpeak	(min)=	10.00	20.00	
Unit Hyd. peak	(cms)=	0.12	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.09	0.03	0.115 (iii)
TIME TO PEAK	(hrs)=	6.25	6.42	6.25
RUNOFF VOLUME	(mm)=	53.37	24.78	39.64
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37
RUNOFF COEFFICIE	ENT =	0.96	0.45	0.72

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0135)	Area	(ha)=	1.43				
ID= 1 DT= 5.0 min	Total	Imp(%)=	40.00	Dir.	Conn.(%)=	40.00	
		IMPERVI	OUS	PERVIO	JS (i)		
Surface Area	(ha)=	0.5	7	0.86	5		
Dep. Storage	(mm)=	2.0	0	5.00	9		
Average Slope	(%)=	1.0	0	2.00	9		

LangstaffRd_EA_Existing_WestDonWatershd)= 503.00 30.00 = 0.013 0.250 Length (m)= 503.00 = 0.013 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGRA	APH	-	
TIMI	E RAIN						
hr				' hrs			
0.08		3.167		6.250			1.02
0.16		3.250		6.333			1.02
0.250	0.00	3.333	3.05	6.417	9.14		1.02
0.33	3 1.02	3.417	3.05	6.500	9.14		2.03
0.41	1.02	1 3.300	5.05	6.583			2.03
0.500	0 1.02	3.583	2.03	6.667			2.03
0.58		3.667	2.03	6.750	10.16	9.83	
0.66		3.750	2.03	6.833	5.08	9.92	2.03
0.75	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.83	3 1.02	3.917	2.03	7.000	3.00	10.00	1.02
0.91	7 1.02	4.000	2.03			10.17	
1.000	1.02	4.083	2.03	7.167		10.25	
1.08	3 1.02	4.167	2.03	7.250		10.33	1.02
1.16	7 1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.33	3 1.02	4.417	4.06	7.500		10.58	1.02
1.41		4.500		7.583		10.67	
1.500		4.583		7.667		10.75	1.02
1.58		4.667	4.06	7.750	3.05	10.83	2.03
1.66		4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917		11.00	2.03
1.83		4.917		8.000		11.08	
1.91	/ 1.02	5.000		8.083 8.167		11.17	1.02
2.000	1.02	5.083	3.05	8.16/	3.05	11.25	1.02
2.08	3 1.02	5.16/	5.05	1 0.230	5.05	11.33	1.02
2.16						11.42	1.02
2.250		5.333		8.417		11.50	
2.33		5.417		8.500 8.583		11.58 11.67	1.02
2.50		5.583	7.11	8.583 8.667 8.750	2.03	11.07	1.02
			7.11	8.750	2.03	11.75	1.02
2.58		5.667				11.03	
2.750		5.833		8.833		12.00	1.02
2.73						12.00	1.02
2.91	2.03	0.917	49.76	9.000	2.02	12.00	1.02
3.00	2.03	0.000	49.76	9.000 9.083 9.167	2.03	12.17	1.02
				9.167			1.02
3.08	2.03	0.10/	49.78	9.250	2.03	l	
Max.Eff.Inten.(r	mm/hr)=	49.78		30.62			
	(min)	10.00		20.00			
Storage Coeff.	(min)=	8.90	(ii)	18.44 (ii)		
Unit Hyd. Tpeak		10.00		20.00			
Unit Hyd. peak		0.12		0.06			
,	. ,				*TO	TΔI S*	

TOTALS

Page 37

	Langs			ing_WestDo			
TIMI	E RAIN		RAIN		RAIN		RAIN
hr			mm/hr		mm/hr		
0.08				6.250	49.78		1.02
0.16		3.250		6.333	9.14		1.02
0.25		3.333		6.417	9.14		1.02
0.33		3.417		6.500	9.14		2.03
0.41		3.500		6.583	10.16		2.03
0.500		3.583		6.667	10.16		2.03
0.58		3.667		6.750	10.16		2.03
0.66		3.750		6.833	5.08		2.03
0.75		3.833		6.917		10.00	2.03
0.83		3.917		7.000	5.08		1.02
0.03		4.000		7.083		10.17	1.02
1.000		4.083		7.167		10.25	1.02
1.08		4.167		7.250	4.06		1.02
1.16		4.250	2.03			10.42	1.02
1.250		4.333	4.06			10.50	1.02
1.33		4.417		7.500	3.05		1.02
1.41		4.500	4.06			10.67	1.02
1.500		4.583		7.667		10.75	1.02
1.58		4.667		7.750		10.73	2.03
1.66		4.750	4.06			10.03	2.03
1.750		4.833		7.917	4.06		2.03
1.83		4.917		8.000		11.08	1.02
1.91		5.000		8.083		11.17	1.02
2.000		5.083		8.167		11.25	1.02
2.08		5.167		8.250		11.33	1.02
2.16		5.250		8.333		11.42	1.02
2.250		5.333		8.417	2.03		1.02
2.33		5.417		8.500		11.58	1.02
2.41		5.500		8.583		11.67	1.02
2.500				8.667		11.75	1.02
2.58		5.667		8.750		11.83	1.02
2.66		5.750		8.833	3.05		1.02
2.750		5.833		8.917		12.00	1.02
2.83		5.917		9.000		12.08	1.02
2.91		6.000		9.083		12.17	1.02
3.000				9.167		12.25	1.02
3.08	3 2.03	6.167		9.250	2.03		
Max.Eff.Inten.(r	mm/hr)=	49.78		29.56			
over	(min)	10.00		20.00			
Storage Coeff.	(min)=	8.55	(ii)	16.13 (ii)		
Unit Hyd. Tpeak		10.00		20.00			
Unit Hyd. peak	(cms)=	0.12		0.06			
						TALS*	
PEAK FLOW	(cms)=	0.06		0.03		.082 (iii)
TIME TO PEAK	(hrs)=	6.25		6.42		5.25	
RUNOFF VOLUME	(mm) =	53.37		24.78		7.35	
TOTAL RAINFALL	(mm) =	55.37		55.37		5.37	
RUNOFF COEFFICI	ENT =	0.96		0.45	(9.67	

LangstaffRd_EA_Existing_WestDonWatershd :)= 0.08 0.05 0.11 :)= 6.25 6.42 6.2 :)= 53.37 25.69 36.7 :)= 55.37 55.37 55.3 = 0.96 0.46 0.6 La
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = ershd 0.116 (iii) 6.25 36.76 55.37 0.66 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 84.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0420)| | 1 + 2 = 3 | QPEAK (cms) 0.116 0.115 R.V. (mm) 36.76 39.64 AREA TPEAK ID = 3 (0420): 2.70 0.231 6.25 38.11 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0425) | 1 + 2 = 3 | QPEAK (cms) 0.299 0.231 R.V. (mm) 43.60 (ha) 3.05 (hrs) 6.25 ID1= 1 (0145): + ID2= 2 (0420): 6.25 38.11 ID = 3 (0425): 5.75 0.530 6.25 41.02 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Area (ha)= 0.96 Total Imp(%)= 44.00 Dir. Conn.(%)= 44.00 IMPERVIOUS 0.42 2.00 1.00 PERVIOUS (i) 0.54 5.00 2.00 Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= 470.00 20.00 Mannings n 0.013 0.250

Page 38

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* PROCEDURE SELECTED FOR FEXTURES 103 L035-5.

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0205)	Area	(ha)=	1.11			
ID= 1 DT= 5.0 min	Total	Imp(%)=	38.00	Dir.	Conn.(%)=	38.00
		IMPERVI	OUS	PERVIOU	S (i)	
Surface Area	(ha)=	0.4	2	0.69		
Dep. Storage	(mm)=	2.0	0	5.00		
Average Slope	(%)=	1.0	0	2.00		
Length	(m)=	470.0	0	20.00		
Mannings n	=	0.01	3	0.250		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02

Page 40

```
LangstaffRd EA Existing WestDonWatershd
2.03 | 5.417 | 7.11 | 8.500 | 2.03 | 1
2.03 | 5.500 | 7.11 | 8.500 | 2.03 | 1
2.03 | 5.583 | 7.11 | 8.667 | 2.03 | 1
2.03 | 5.675 | 7.11 | 8.750 | 2.03 | 1
2.03 | 5.750 | 7.11 | 8.833 | 3.05 | 1
2.03 | 5.833 | 49.78 | 8.917 | 3.05 | 1
2.03 | 5.917 | 49.78 | 9.000 | 3.05 | 1
2.03 | 5.030 | 49.78 | 9.003 | 2.03 | 1
2.03 | 6.000 | 49.78 | 9.003 | 2.03 | 1
2.03 | 6.0167 | 49.78 | 9.250 | 2.03 |
                                                                                                                                                  nWatershd
2.03 | 11.58
2.03 | 11.67
2.03 | 11.75
2.03 | 11.83
3.05 | 11.92
3.05 | 12.00
3.05 | 12.08
2.03 | 12.25
2.03 |
                                        2.333
                                        2.417
                                                                                                                                                                                              1.02
                                        2.583
2.667
2.750
2.833
                                                                                                                                                                                             1.02
1.02
1.02
1.02
1.02
                                        2.917
                                                                                                                                                                                              1.02
                                        3.000
                                        3.083
         Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                   49.78
10.00
8.55 (ii)
10.00
0.12
                                                                                                                      29.56
20.00
16.13 (ii)
20.00
0.06
                                                                                                                                                          *TOTALS*
           PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                     0.06
6.25
53.37
55.37
0.96
                                                                                                                                                             0.089 (iii)
6.25
35.64
55.37
0.64
                                                                                                                         0.04
                                                                                                                       6.42
24.78
55.37
0.45
           ADD HYD ( 0460)|
1 + 2 = 3 |
                                                                         AREA
(ha)
1.11
0.96
                                                                                            QPEAK
(cms)
0.089
0.082
                                                                                                                      TPEAK
(hrs)
6.25
6.25
                                                                                                                                           R.V.
(mm)
35.64
37.35
             ID1= 1 ( 0205):
+ ID2= 2 ( 0210):
                ID = 3 ( 0460):
                                                                        2.07
                                                                                         0.171
                                                                                                                     6.25
                                                                                                                                            36.43
          NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
Area (ha)= 0.70
Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00
                                                                             IMPERVIOUS
                                                                                                                 PERVIOUS (i)
           Surface Area
Dep. Storage
Average Slope
Length
                                                        (ha)=
(mm)=
(%)=
(m)=
                                                                                  0.40
2.00
1.00
320.00
                                                                                                                      0.30
5.00
2.00
25.00
```

	Lang:	LangstaffRd_EA_Existing_WestDonWatershd					
TIME TO PEAK	(hrs)=	6.25	6.42	6.25			
RUNOFF VOLUME	(mm)=	53.37	23.08	40.33			
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37			
RUNOFF COEFFICE	ENT =	0.96	0.42	0.73			

Page 41

I CALTB					
STANDHYD (0225)	Area	(ha)=	0.90		
ID= 1 DT= 5.0 min	Total	Imp(%)=	53.00	Dir. Conn.(%)=	53.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.4	В	0.42	
Dep. Storage	(mm)=	2.0	а	5.00	
Average Slope	(%)=	1.0	a	2.00	
Length	(m)=	320.0	а	25.00	
Mannings n	` =	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02

Page 43

LangstaffRd_EA_Existing_WestDonWatershd = 0.013 0.290 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	ED HYETOGRA	ΔPH		
TIME	RAIN		RAIN		RAIN		RAIN
hrs			mm/hr	' hrs	mm/hr		mm/hr
0.083		3.167	2.03	6.250	49.78 l		1.02
0.167	7 0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.256	0.00	3.333	3.05	6.417	9.14		1.02
0.333	3 1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	7 1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.506	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	3 1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	7 1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.756	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	3 1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917		4.000		7.083	4.06		1.02
1.000		4.083		7.167	4.06		1.02
1.083	3 1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167		4.250		7.333	3.05		1.02
1.256		4.333		7.417	3.05		1.02
1.333		4.417	4.06		3.05		1.02
1.417		4.500	4.06		3.05		1.02
1.500		4.583	4.06		3.05		1.02
1.583		4.667	4.06		3.05		2.03
1.667		4.750		7.833	4.06		2.03
1.756		4.833		7.917	4.06		2.03
1.83		4.917		8.000	4.06		1.02
1.917		5.000	4.06		3.05		1.02
2.000		5.083		8.167	3.05		1.02
2.083		5.167	3.05		3.05		1.02
2.167		5.250		8.333	2.03		1.02
2.256		5.333		8.417	2.03		1.02
2.333 2.417		5.417	7.11	8.500	2.03		1.02
2.506		5.583		8.667	2.03		1.02
2.583		5.667		8.750	2.03		1.02
2.667		5.750		8.833	3.05		1.02
2.756		5.833		8.917	3.05		1.02
2.833			49.78		3.05		1.02
2.917		6.000		9.083	2.03		1.02
3.000				9.167	2.03		1.02
3.083		6.167		9.250	2.03		1.02
Max.Eff.Inten.(nm/hr)=	49.78		27.57			
over	(min)	5.00		20.00			
Storage Coeff.	(min)=	6.79	(ii)	16.53 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		20.00			
Unit Hyd. peak	(cms)=	0.18		0.06			
DEAK FLOW	(ama)	0.05		0.01		TALS*	
PEAK FLOW	(cms)=	0.05		0.01	0.	.068 (iii)	
			Page	42			

Lang	staffRd E	A Exist:	ing_WestDon	Waters	hd	
1.917 1.02	I 5.000	4.06		3.05	11.17	1.02
2.000 1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083 1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167 1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250 1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333 2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417 2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500 2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583 2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667 2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750 2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833 2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917 2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000 2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.083 2.03	6.167	49.78	9.250	2.03		
Max.Eff.Inten.(mm/hr)=	49.78		29.56			
over (min)	5.00		20.00			
Storage Coeff. (min)=			15.45 (ii)			
Unit Hyd. Tpeak (min)=	5.00		20.00			
Unit Hyd. peak (cms)=	0.18		0.07			
onic nya. peak (cms)=	0.10		0.07	*T01	TALS*	
PEAK FLOW (cms)=	0.07		0.02	0.	.086 (iii)	
TIME TO PEAK (hrs)=	6.25		6.42		5.25	
RUNOFF VOLUME (mm)=	53.37		24.78	39	9.92	
TOTAL RAINFALL (mm)=	55.37		55.37	55	5.37	
RUNOFF COEFFICIENT =	0.96		0.45	6	9.72	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0475)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0225):	0.90	0.086	6.25	39.92
+ ID2= 2 (0230):	0.70	0.068	6.25	40.33
ID = 3 (0475):	1.60	0.154	6.25	40.10

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB					
STANDHYD (0220)	Area (ha)= 0.	65		
ID= 1 DT= 5.0 min	Total Imp	(%)= 46.	00 Dir.	Conn.(%)=	46.00

LangstaffRd_EA_Existing_WestDonWatershd IMPERVIOUS PERVIOUS (i)

Surface Area	(ha)=	0.30	0.35
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	260.00	20.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03		

Page 45

Max.Eff.Inten.(mm/hr)= over (min)

	Lange	+~EED4 F	A F., dated	na Heat	Danilahana	L al	
4 500	Langs	LATTRU_E	W_EXIZE	ing_west	DonWaters	10 75	4 00
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.66/	4.06	/./50	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03 İ	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2 500	2 03	5 583	7 11	8 667	2 03	11 75	1 02
2 583	2 03	5 667	7 11	8 750	2 03	11 83	1 02
2.505	2.03	5.007 E 7EA	7 11	0.750	2.05	11.03	1.02
2.007	2.03	E 000	40.70	0.033	3.05	12.00	1.02
2.730	2.03	5.033	40.70	0.517	3.03	12.00	1.02
2.033	2.03	5.917	49.76	9.000	3.05	12.00	1.02
2.91/	2.03	6.000	49.78	9.083	2.03	12.1/	1.02
3.000	2.03	6.083	49.78	9.16/	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	DonWatersi 3.05 3.05 3.05 4.06 4.06 4.06 3.05 3.05 3.05 3.05 3.05 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03		
Max.Eff.Inten.(mm/ over (m Storage Coeff. (m Unit Hyd. Tpeak (m Unit Hyd. peak (co	hr)=	49.78		29.56			
over (m	in)	5.00		20.00			
Storage Coeff (m	in)=	5 99	(ii)	15 66 (i	ii)		
Unit Hyd Theak (m	in)-	5 00	(11)	20.00 (2	/		
Unit Hyd. Tpeak (m	mc)-	0.10		0.00			
						ALS*	
DEAK FLOW (a)		0.05		0.01	101	ALS /iii	`
TIME TO DEAK (L	ms)-	6.05		6.01	٠.	058 (iii	,
TIME TO PEAK (II	1.2)=	0.25		0.42		0.25	
KUNUFF VULUME (mm)=	53.37		24./8	41	1.06	
PEAK FLOW (CI TIME TO PEAK (h RUNOFF VOLUME (I TOTAL RAINFALL (I RUNOFF COEFFICIENT	mm) =	55.37		55.3/	55	3.37	
RUNOFF COEFFICIENT	=	0.96		0.45	6	1.74	
(i) CN PROCEDURE CN* = 83. (ii) TIME STEP (D THAN THE STO (iii) PEAK FLOW DO	0 Ia T) SHOUL RAGE COE	= Dep. S D BE SMA FFICIENT	storage ALLER OR	(Above) EQUAL			
(111) . E.M LOW DO	1						
ADD HVD (9479)							
1 + 2 = 3	ΛR	FΔ OF	PFΔK .	TΡΕΔΚ	R V		
ID1= 1 (0215)	An /h	12) (c	ruc)	(hre)	(mm)		
TD1= 1 (031E)		10 p	.1115 /	(111.2)	41 06		
101= 1 (0215)	. 0.	50 0.0	100	0.25	41.00		
+ ID2= 2 (0220)							
ID = 3 (0470)							
NOTE: DEAK TOOLS	DO NOT -	NCLUBE -		c	,		
NOTE: PEAK FLOWS	DO NOT I	NCLUDE B	SASEFLOW:	> 1F AN	r. 		

Page 47

	Langst	affRd_EA_Exis	ting_WestDonW	latershd
Storage Coeff.	(min)=	5.99 (ii)	13.57 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.19	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.04	0.02	0.061 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	53.37	24.78	37.92
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37
RUNOFF COEFFICIE	ENT =	0.96	0.45	0.68

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COFFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0215)	Area	(ha)=	0.58				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
		IMPERVI	OUS	PERVIO	JS (i)		
Surface Area	(ha)=	0.3	3	0.2	5		
Dep. Storage	(mm)=	2.0	0	5.00	9		
Average Slope	(%)=	1.0	0	2.00	9		
Length	(m)=	260.0	0	30.00	9		
Mannings n	` =	0.01	3	0.25	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

			NCFORME	LIVETOCE			
				HYETOGR			
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02

Page 46

 ${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

ADD HYD (0480)	AREA	QPEAK	TPEAK	R.V.
1 + 2 = 3	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0470):	1.23	0.119	6.25	39.40
+ ID2= 2 (0475):	1.60	0.154	6.25	40.10
ID = 3 (0480):	2.83	0.272	6.25	39.80

NOTE: PEAK FLOW	טעו טע פ	INCLUDE	DASEFI	LOWS IF ANT.		
CALIB STANDHYD (0160) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.43 56.00	Dir. Conn.(%)=	56.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIO 0.2- 2.00 1.00 260.00 0.01	4 0 0	PERVIOUS (i) 0.19 5.00 2.00 20.00 0.250		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02

Page 48

	Langs	taffRd_E	A_Exist	ing_WestDon	Waters	hd	
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03	ĺ	
Max.Eff.Inten.(m	m/hn)_	49.78		36.58			
over		5.00		15.00			
	(min)=		(ii)	12.95 (ii)			
Unit Hyd. Tpeak		5.00	(11)	15.00			
	(mii)-	0.19		0.08			
onite nyu. peak	(CIIIS)-	0.15		0.00	****	TALS*	
PEAK FLOW	(cms)=	0.03		0.01		.047 (iii)	
	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	53.37		31.03		3.53	
TOTAL RAINFALL	(mm)=	55.37		55.37		5.37	
RUNOFF COEFFICIE		0.96		0.56		0.79	
NUMBER COEFFICIE	IV I =	0.96		0.30	,	0.75	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Area (ha)= 0.56 Total Imp(%)= 45.00 Dir. Conn.(%)= 45.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope 0.25 2.00 1.00 260.00 0.013 0.31 5.00 2.00 25.00 0.290 (mm)= (%)= (m)= Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---RAIN | TIME RAIN | TIME RAIN | TIME
mm/hr | hrs mm/hr | hrs mm/hr | hrs

Page 49

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

AREA (ha) 0.56 QPEAK (cms) 0.055 0.047 TPEAK (hrs) 6.25 R.V. (mm) 39.80 ID1= 1 (0155): + ID2= 2 (0160): 0.43 6.25 43.53 ID = 3 (0430): 0.99 0.102 6.25 41.42

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB ' STANDHYD (0150) Area (ha)= 3.81 Total Imp(%)= 94.00 Dir. Conn.(%)= 94.00 |ID= 1 DT= 5.0 min | IMPERVIOUS 3.58 2.00 1.00 PERVIOUS (i) 0.23 5.00 2.00 (ha)= (mm)= (%)= (m)= Surface Area Dep. Storage Average Slope Length 150.00 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH ---
IME RAIN TIME RAIN TIME

INS mm/hr mes mm/hr hrs

167 2.03 6.259 49.78 9.33

250 2.03 6.333 9.14 9.42

333 3.05 6.417 9.14 9.59

417 3.05 6.590 9.14 9.58

500 3.05 6.583 10.16 9.67 RAIN | TIME TIME MAIN | 1...mm/hr | hrs.mm/hr | hrs.mm/hr | hrs.mm/hr | hrs.mm/hr | hrs.mm/hr | hrs.mm/hr | hrs.m mm/hr | 0.00 | 0.00 | 0.00 | 1.02 | 1.02 | hrs 0.083 hrs 3.167 mm/hr 1.02 0.167 0.250 0.333 0.417 0.500 0.583 9.33 9.42 9.50 9.58 9.67 9.75 9.83 3.250 3.333 3.417 3.500 3.583 1.02 1.02 2.03 2.03 2.03 10.16 10.16 1.02 3.667 3.750 2.03 0.667 1.02 5.08 9.92 2.03 0.750 3.833 2.03 1.02 | 3.833 1.02 | 3.917 1.02 | 4.000 1.02 | 4.083 1.02 | 4.167 1.02 | 4.250 1.02 | 4.417 1.02 | 4.500 1.02 | 4.583 5.08 5.08 4.06 4.06 4.06 3.05 3.05 | 3.05 | 3.05 | 0.833 0.917 1.000 1.083 1.02 1.02 1.02 1.02 1.02 1.167 10.42 1.250 10.50 1.02 1.333 10.58 1.02 1 417 1 02

				ing_WestDo			
0.083					49.78		1.02
0.16		3.250	2.03		9.14		1.02
0.250					9.14		1.02
0.33		3.417	3.05		9.14		2.03
0.41		3.500	3.05		10.16		2.03
0.500		3.583	2.03		10.16		2.03
0.583			2.03		10.16		2.03
0.66			2.03		5.08		2.03
0.750			2.03		5.08		2.03
0.83			2.03		5.08		1.02
0.91		4.000	2.03		4.06		1.02
1.000		4.083	2.03		4.06		1.02
1.08			2.03		4.06		1.02
1.16		4.250	2.03		3.05		1.02
1.250		4.333	4.06		3.05		1.02
1.33		4.417	4.06		3.05		1.02
1.41		4.500	4.06		3.05		1.02
1.500		4.583	4.06		3.05		1.02
1.58		4.667	4.06		3.05		2.03
1.66		4.750	4.06		4.06		2.03
1.750		4.833	4.06		4.06		2.03
1.83		4.917	4.06		4.06		1.02
1.91		5.000	4.06		3.05		1.02
2.000			3.05		3.05		1.02
2.08			3.05		3.05		1.02
2.16			3.05		2.03		1.02
2.256			7.11 7.11	8.417	2.03		1.02
2.41			7.11		2.03		1.02
2.500		5.500	7.11		2.03		1.02
2.58		5.667	7.11		2.03		1.02
2.66		5.750		8.833	3.05		1.02
2.756			49.78		3.05		1.02
2.83		5.917	49.78		3.05		1.02
2.91		6.000	49.78		2.03		1.02
3.000		6.083				12.17	1.02
3.08		6.167	49.78		2.03		1.02
5.00.	2.03	0.107	45.70	7 3.230	2.03	'	
Max.Eff.Inten.(r	nm/hr)=	49.78		34.06			
	(min)	5.00		15.00			
Storage Coeff.	(min)=	5.99	(ii)	14.94 (ii)			
Unit Hyd. Tpeak	(min)=	5.00	. ,	15.00			
Unit Hyd. peak	(cms)=	0.19		0.08			
					T0	TALS	
PEAK FLOW	(cms)=	0.03		0.02	0	.055 (iii)	1
TIME TO PEAK	(hrs)=	6.25		6.33		5.25	
RUNOFF VOLUME	(mm)=	53.37		28.73		9.80	
TOTAL RAINFALL	(mm)=	55.37		55.37		5.37	
RUNOFF COEFFICIE	NT =	0.96		0.52	(3.72	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 87.0$ Ia = Dep. Storage (Above)

```
LangstaffRd_EA_Existing_WestDd
2.03 | 4.667 | 4.06 | 7.750
2.03 | 4.750 | 4.06 | 7.833
2.03 | 4.833 | 4.06 | 7.917
                                    1.583
1.667
1.750
                                                                                                                                    4.06
                                                                                                                                                                         2.03
                                                                                                                                                   11.00
                                     1.833
                                                          1.02
                                                                         4.917
                                                                                                               8.000
                                    1.833
1.917
2.000
2.083
2.167
2.250
2.333
2.417
                                                          1.02
                                                                         5.000
                                                                                               4.06
                                                                                                               8.083
8.167
                                                                                                                                    3.05
                                                                                                                                                   11.17
                                                                                                                                                                         1.02
                                                          1 02
                                                                          5 083
                                                                                               3 05
                                                         1.02
1.02
1.02
1.02
2.03
2.03
2.03
                                                                         5.167
5.250
5.333
5.417
                                                                                                              8.167
8.250
8.333
8.417
8.500
8.583
                                                                                                                                                   11.25
11.33
11.42
11.50
11.58
                                                                                                                                                                         1.02
1.02
1.02
1.02
1.02
                                                                          5.500
5.583
                                                                                               7.11
                                                                                                                                    2.03
                                                                                                                                                    11.67
                                     2.500
                                                                                               7.11
                                                                                                               8.667
                                                                                                                                    2.03
                                                                                                                                                                         1.02
                                     2.500
2.583
2.667
2.750
2.833
2.917
                                                         2.03
2.03
2.03
2.03
2.03
2.03
2.03
                                                                         5.583
5.667
5.750
5.833
5.917
6.000
6.083
                                                                                                             8.667
8.750
8.833
8.917
9.000
9.083
9.167
9.250
                                                                                                                                   2.03
3.05
3.05
3.05
2.03
2.03
                                                                                                                                                   11.75
11.83
11.92
12.00
12.08
12.17
12.25
                                                                                                                                                                         1.02
1.02
1.02
1.02
1.02
1.02
                                                                                               7.11
                                                                                            7.11
7.11
49.78
49.78
49.78
49.78
                                    3.083
                                                                         6.167
                                                                                            49.78
          Max.Eff.Inten.(mm/hr)=

over (min)

Storage Coeff. (min)=

Unit Hyd. Tpeak (min)=

Unit Hyd. peak (cms)=
                                                                            49.78
                                                                                                           35.30
                                                                              5.00
4.31 (ii)
5.00
0.23
                                                                                                          10.00
7.41 (ii)
10.00
                                                                                                            0.13
                                                                                                                                         *TOTALS*
                                                                                                                                            0.515 (iii)
6.25
51.96
55.37
                                                                              0.49
           PEAK FLOW
                                                                                                            0.02
6.25
                                                (cms)=
           TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                              6.25
                                                                            53.37
55.37
0.96
                                                                                                          29.85
55.37
0.54
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
           (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 88.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
AREA
(ha)
3.81
0.99
              ID = 3 ( 0440):
                                                                4.80 0.617
                                                                                                        6.25
                                                                                                                            49.79
           NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

LangstaffRd_EA_Existing_WestDonWatershd

CALIB STANDHYD (0185) ID= 1 DT= 5.0 min		(ha)= Imp(%)= 4	0.47 8.00	Dir. Conn.(%)=	48.00
		IMPERVIOU:	S P	PERVIOUS (i)	
Surface Area	(ha)=	0.23		0.24	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	240.00		20.00	
Mannings n	=	0.013		0.350	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02

Page 53

	Langst	affRd_E	A_Exist	ing_WestDon	Waters	hd	
1.083	1.02	4.167	2.03		4.06		1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03	j	
M FSS T ((b	- \	40.70		20. 42			
Max.Eff.Inten.(mm/h		49.78 5.00		28.42			
over (min				15.00			
Storage Coeff. (min		2.63 5.00	(11)	14.30 (ii) 15.00			
Unit Hyd. Tpeak (min		9 20		0 08			

Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS*
0.054 (iii)
6.25
34.20
55.37 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.03 6.25 53.37 55.37 0.96 0.03 6.33 24.78 55.37 0.45

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0445)| | 1 + 2 = 3 | AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 0.65 0.054 6.25 34.20 ID1= 1 (0180):

Page 55

	Langs	taffRd E	A Exist	ing WestDon	Watershd	
3.000	2.03	6.083	49.78	9.167	2.03 12.25	1.02
3.083	3 2.03	6.167	49.78	9.250	2.03	
Max.Eff.Inten.(m	nm/hn)_	49.78		25.73		
over	(min)	5.00		20.00		
Storage Coeff.	(min)=	5.71	(ii)	15.52 (ii)		
Unit Hyd. Tpeak	(min)=	5.00		20.00		
Unit Hyd. peak	(cms)=	0.20		0.07		
					TOTALS	
PEAK FLOW	(cms)=	0.03		0.01	0.041 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.42	6.25	
RUNOFF VOLUME	(mm)=	53.37		21.52	36.79	
TOTAL RAINFALL	(mm)=	55.37		55.37	55.37	
RUNOFF COEFFICIE	ENT =	0.96		0.39	0.66	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB					
STANDHYD (0180)	Area	(ha)=	0.65		
ID= 1 DT= 5.0 min	Total	Imp(%)=	33.00	Dir. Conn.(%)=	= 33.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.2	1	0.44	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	65.8	3	40.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02		
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02		
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02		
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03		
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03		
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03		
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03		
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03		
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03		
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02		
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02		
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02		

Page 54

			Langstaff	Rd_EA_Ex	isting_Wes	tDonWater	shd
+	- ID2= 2 (0185):	0.47	0.041	6.25	36.79	
	ID = 3 (0445):	1.12	0.095	6.25	35.29	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0165) ID= 1 DT= 5.0 min	Area Total	(ha)= 0.6 Imp(%)= 40.0		40.00
		1 ()		
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.24	0.36	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	250.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

:	KAINFAL	L WAS I	KANSFURME	: טוט	o.0 MIN.	ITME SIE	:Р.			
	TRANSFORMED HYETOGRAPH									
	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
	0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02		
	0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02		
	0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02		
	0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03		
	0.417	1.02		3.05		10.16	9.67	2.03		
	0.500	1.02		2.03		10.16		2.03		
	0.583	1.02		2.03		10.16	9.83	2.03		
	0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03		
	0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03		
	0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02		
	0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02		
	1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02		
	1.083	1.02		2.03	7.250	4.06	10.33	1.02		
	1.167	1.02		2.03	7.333	3.05	10.42	1.02		
	1.250	1.02		4.06	7.417	3.05	10.50	1.02		
	1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02		
	1.417	1.02		4.06	7.583	3.05	10.67	1.02		
	1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02		
	1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03		
	1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03		
	1.750	2.03		4.06	7.917	4.06	11.00	2.03		
	1.833	1.02	4.917	4.06		4.06	11.08	1.02		
	1.917	1.02	5.000	4.06		3.05		1.02		
	2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02		
	2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02		
	2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02		
	2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02		
	2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02		
	2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02		

	Langs	taffRd_E	A_Exist:	ing_WestDon			
2.500	0 2.03	5.583	7.11	8.667	2.03 11	1.75	1.02
2.58	3 2.03	5.667	7.11	8.750	2.03 11	1.83	1.02
2.66	7 2.03	5.750	7.11	8.833	3.05 11	1.92	1.02
2.75	0 2.03	5.833	49.78	8.917	3.05 12	2.00	1.02
2.83	3 2.03	5.917	49.78	9.000	3.05 12	2.08	1.02
2.91	7 2.03	6.000	49.78	9.083	2.03 12	2.17	1.02
3.000			49.78			2.25	1.02
3.08		6.167			2.03		
3100.	2.03	01207	43170	1 31230	2.05		
Max.Eff.Inten.(r	mm/hr)=	49.78		29.56			
over	(min)	5.00		15.00			
Storage Coeff.	(min)=	5.85	(ii)	13.43 (ii)			
Unit Hyd. Tpeak		5.00		15.00			
Unit Hyd. peak		0.20		0.08			
onize nyar peak	(63)	0.20		0.00	*TOTALS	*	
PEAK FLOW	(cms)=	0.03		0.02	0.054	(iii)	
TIME TO PEAK	(hrs)=	6.25		6.33	6.25		
RUNOFF VOLUME	(mm)=	53.37		24.78	36.26		
TOTAL RAINFALL	(mm)=	55.37		55.37	55.37		
RUNOFF COEFFICI		0.96		0.45	0.65		
KUNOFF CUEFFICI	LINI -	0.50		0.43	0.0.	,	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0170)	Area	(ha)=	0.43				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
		IMPERVI	0US	PERVIOL	JS (i)		
Surface Area	(ha)=	0.2	5	0.18	3		
Dep. Storage	(mm)=	2.0	0	5.00)		
Average Slope	(%)=	1.0	a	2.00			
Length	(m)=	250.0	U	20.00	,		
Mannings n	=	0.01	3	0.250)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02			
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02			
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02			
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03			

Page 57

LangstaffRd_	EA_	Existing	WestDonWatershd

ADD HYD (0450) 1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
ID1= 1 (0165):	(ha) 0.60	(cms) 0.054	(hrs) 6.25	(mm) 36.20
+ ID2= 2 (0170):	0.43	0.048	6.25	43.75
TD = 3 (0450):	1 03	a 101	6 25	30 35

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0450) 3 + 2 = 1 	AREA (ha) 1.03 1.12	QPEAK (cms) 0.101 0.095	TPEAK (hrs) 6.25 6.25	R.V. (mm) 39.35 35.29
ID = 1 (0450):	2.15	0.197	6.25	37.24

NOTE: PEAK FLOW	5 DO NO1	INCLUDE BA	SEFLOWS IF ANY.	
CALIB	Area Total	(ha)= 6 Imp(%)= 42	0.86 2.00 Dir. Conn.(%)=	42.00
Surface Area Dep. Storage Average Slope Length	(ha)= (mm)= (%)= (m)=	IMPERVIOUS 0.36 2.00 1.00 340.00	PERVIOUS (i) 0.50 5.00 2.00 50.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02	
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02	
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02	
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03	
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03	
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03	
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03	
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03	
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03	
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02	
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02	
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02	

Page 59

0.583		3.667		ing_WestDo	10.16		
0.667		3.750		6.833	5.08		
0.750		3.833		6.917		10.00	
0.833		3.917	2.03		5.08		
0.917		4.000		7.083		10.00	
1.000		4.083		7.167		10.25	
1.083		4.167		7.250		10.33	
1.167		4.250		7.333	3.05		
1.250		4.333		7.417		10.50	
1.333		4.417		7.500		10.58	
1.417		4.500		7.583		10.67	
1.500		4.583		7.667		10.75	
1.583		4.667		7.750	3.05		
1.667		4.750		7.833		10.92	
1.750		4.833		7.917		11.00	
1.833		4.917		8.000		11.08	
1.917		5.000		8.083		11.17	
2.000		5.083		8.167		11.25	
2.083		5.167		8.250		11.33	
2.167		5.250		8.333		11.42	
2.250		5.333		8.417		11.50	
2.333		5.417		8.500		11.58	
2.417		5.500		8.583		11.67	
2,500		5.583		8.667		11.75	
2.583		5.667	7.11	8.750	2.03	11.83	
2.667	2.03	5.750	7.11	8.833	3.05	11.92	
2.750	2.03	5.833	49.78	8.917	3.05	12.00	
2.833	2.03	5.917	49.78	9.000	3.05	12.08	
2.917	2.03	6.000	49.78	9.083	2.03	12.17	
3.000	2.03	6.083	49.78	9.167	2.03	12.25	
3.083	2.03	6.167	49.78	9.250	2.03	İ	
Max.Eff.Inten.(mm,	/hr)=	49.78		36.58			
over (r	nin)	5.00		15.00			
	nin)=	5.85	(ii)	12.81 (ii)			
Unit Hyd. Tpeak (r	nin)=	5.00		15.00			
Unit Hyd. peak (ms)=	0.20		0.08			
						TALS*	
	:ms)=	0.03		0.01		.048 (iii	.)
	ırs)=	6.25		6.33		6.25	
	(mm)=	53.37		31.03		3.75	
	(mm)=	55.37		55.37		5.37	
RUNOFF COEFFICIEN	=	0.96		0.56	•	0.79	
//\ a ======							
(i) CN PROCEDURI CN* = 89		= Dep. S					

Page 58

THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
LangstaffRd_EA_Existing_WestDonWatershd
1.02 | 4.167 | 2.03 | 7.250 | 4.06 | 10.33 | 1.02 | 4.250 | 2.03 | 7.250 | 4.06 | 10.33 | 1.02 | 4.250 | 2.03 | 7.333 | 3.05 | 10.42 | 1.02 | 4.333 | 4.06 | 7.417 | 3.05 | 10.50 | 10.50 | 10.2 | 4.417 | 4.06 | 7.590 | 3.05 | 10.58 | 1.02 | 4.583 | 4.06 | 7.593 | 3.05 | 10.58 | 1.02 | 4.583 | 4.06 | 7.583 | 3.05 | 10.67 | 1.02 | 4.583 | 4.06 | 7.583 | 3.05 | 10.67 | 1.02 | 4.583 | 4.06 | 7.750 | 3.05 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 10.87 | 1
                                                                                                                         1.083
1.167
1.250
1.333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
1.02
1.02
                                                                                                                      1.417
1.500
1.583
1.667
1.750
1.833
1.917
2.000
2.083
2.167
2.250
2.333
2.417
2.500
2.583
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
1.02
2.03
2.03
2.03
1.02
1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
1.02
1.02
1.02
1.02
1.02
1.02
                                                                                                                            2.667
                                                                                                                      2.667
2.750
2.833
2.917
3.000
3.083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
1.02
1.02
1.02
      Max.Eff.Inten.(mm/hr)=
                                                                                                                                                                                                                                                                                                               49.78
                                                                                                                                                                                                                                                                                                                                                                                                                                                              28.42
   over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                                                                                                                                                                                         5.00
7.04 (ii)
5.00
0.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                        25.00
20.38 (ii)
25.00
0.05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                *TOTALS*
0.068 (iii)
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                                                                                                                                                                            0.05
                                                                                                                                                                                                                                                                                                               6.25
53.37
55.37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               6.25
36.78
55.37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          6.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                              24.78
```

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= Imp(%)=	0.79 42.00	Dir. Conn.((%)= 42	.00
Surface Area	(ha)=	IMPERVI 0.3		PERVIOUS (i) 0.46		

LangstaffRd_EA_Existing_WestDonWatershd
Dep. Storage (mm)= 2.00 5 00

(11111) -	2.00	3.00
(%)=	1.00	2.00
(m)=	340.00	20.00
=	0.013	0.250
	(%)= (m)=	(%)= 1.00 (m)= 340.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78 49.78	9.083	2.03	12.17	1.02
3.000		6.083		9.167	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03		

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= 49.78 29.56 5.00 15.00 7.04 (ii) 14.62 (ii) 5.00 15.00

Page 61

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

		TRA	NSFORMFI	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	i' hrs	mm/hr	i hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03		5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78		3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78		2.03		1.02
3.000	2.03	6.083	49.78		2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03		
nten.(mm/	/hr)=	49.78	:	24.61			
over (r	nin)	5 00		20 00			

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 20.00 5.97 (ii) 18.33 (ii) 5.00 20.00 0.19 0.06 *TOTALS* 1.176 (iii) 6.25 47.80 55.37 1.10 6.25 54.37 55.37 0.09 6.42 21.52 55.37 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=

Page 63

LangstaffRd_EA_Existing_WestDonWatershd

Unit Hyd. peak	(cms)=	0.17	0.08	
, ,				*TOTALS*
PEAK FLOW	(cms)=	0.05	0.03	0.071 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	53.37	24.78	36.78
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37
RUNOFF COEFFICI	ENT =	0.96	0.45	0.66

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COFFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0455)				
1 + 2 = 3	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)
ID1= 1 (0190):	0.86	0.068	6.25	36.78
+ ID2= 2 (0195):	0.79	0.071	6.25	36.78
ID = 3 (0455):	1.65	0.139	6.25	36.78

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0458)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0450):	2.15	0.197	6.25	37.24
+ ID2= 2 (0455):	1.65	0.139	6.25	36.78
ID = 3 (0458):	3.80	0.335	6.25	37.04

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0300) ID= 1 DT= 5.0 min	Area Total	(ha)= 10.00 Imp(%)= 80.00		80.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	8.00	2.00	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	258.20	40.00	
Mannings n	` ′=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 62

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* = 79.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0350)	Area (ha)=	0 00		
ID= 1 DT= 5.0 min			Dir. Conn.(%)=	70.00
	TMDED\/1	TOLIC DE	PVTOUS (4)	

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.63	0.27
Dep. Storage	(mm)=	1.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	77.46	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02

La	angstaffRd E	A_Existing_We	stDonWaters	hd	
				1	1.02
2.250 1.	02 5.333	7.11 8.4: 7.11 8.5: 7.11 8.5: 7.11 8.6: 7.11 8.7: 7.11 8.8: 49.78 8.9:	17 2.03	11.50	1.02
2.333 2.	03 5.417	7.11 8.50	2.03	11.58	1.02
2.417 2.	03 5.500	7.11 8.5	83 2.03	11.67	1.02
2.500 2.	03 5.583	7.11 8.6	57 2.03	11.75	1.02
2.583 2.	03 5.667	7.11 8.7	50 2.03	11.83	1.02
2.66/ 2.	03 5./50	7.11 8.8	33 3.05	11.92	1.02
2.750 2.	03 5.833	49.78 8.9	1/ 3.05	12.00	1.02
2.033 2.	03 5.917	49.78 9.00	20 202	12.00	1.02
3 000 2	03 6.000	49.78 9.00	57 2.03	12.17	1 02
3.083 2.	03 6.167	49.78 9.00 49.78 9.00 49.78 9.10 49.78 9.20	50 2.03	12.25	1.02
May Eff Takon (mm/hm)	40.70	24 61			
over (min) Storage Coeff. (min) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5 00	24.01			
Storage Coeff (min)=	2 90	(ii) 15 26	(ii)		
Unit Hvd. Tneak (min)=	5.00	20.00	(11)		
Unit Hvd. peak (cms)=	0.28	0.07			
				TALS*	
PEAK FLOW (cms)=	0.09	0.01	0	.098 (iii)	
TIME TO PEAK (hrs)=	6.25	6.42		6.25	
RUNOFF VOLUME (mm)=	54.37	21.52	4	4.51	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)=	55.37	55.37	5	5.37	
RUNOFF COEFFICIENT =	0.98	0.39		0.80	
**** WARNING: STORAGE COEF	F. IS SMALLE	R THAN TIME	STEP!		
(i) CN PROCEDURE SEL	ECTED FOR PE	RVIOUS LOSSES	S:		
CN* = 79.0					
(ii) TIME STEP (DT) S	HOULD BE SMA	LLER OR EQUA	L ´		
THAN THE STORAGE	COEFFICIENT				
(iii) PEAK FLOW DOES N	OT INCLUDE B	BASEFLOW IF A	NY.		
1 ()					
ADD HYD (0375)					
ID1= 1 (0300): + ID2= 2 (0350):	AREA QF	EAK IPEAK	R.V.		
TD4 4 (0200)	(ha) (c	ms) (hrs)	(mm)		
IDI= 1 (0300):	10.00 1.1	1/6 6.25	47.80		
+ 102= 2 (0350):	0.90 0.6	198 6.25	44.51		
ID = 3 (0375):					
NOTE: PEAK FLOWS DO N	OT INCLUDE B	BASEFLOWS IF	ANY.		
********	*****				
** STMULATTON: Run 04					

Page 65

Filename: C:\Users\ray.zhao\AppD
ata\Local\Temp\

	Langs	taffRd_E	A_Existi	ng_WestDon	Waters	hd	
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05			8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05			9.000	3.05		1.02
2.917		6.000	56.90	9.083	2.03		1.02
3.000	3.05	6.083	57.91	9.167	2.03		1.02
3.083	2.03	6.167	57.91	9.250	2.03	l	
Max.Eff.Inten.(mm,		57.91		39.56			
over (r		10.00		20.00			
	min)=			18.88 (ii)			
	min)=	10.00		20.00			
Unit Hyd. peak (cms)=	0.12		0.06			
						TALS*	
	cms)=	0.29		0.08		.365 (iii)	
	nrs)=	6.25		6.42		5.25	
	(mm)=	61.75		34.48		1.39	
	(mm)=	63.75		63.75		3.75	
RUNOFF COEFFICIEN	Γ =	0.97		0.54	(0.81	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 86.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0140)| |ID= 1 DT= 5.0 min | Area (ha)= 1.27 Total Imp(%)= 52.00 Dir. Conn.(%)= 52.00 IMPERVIOUS PERVIOUS (i) 0.61 5.00 2.00 Surface Area (ha)= 0.66 2.00 Dep. Storage Average Slope (mm)= (%)= 1.00

Page 67

Comments: 10yr-12hrSCS Ptotal= 63.75 mm RAIN | TIME mm/hr | hrs 11.18 | 10.00 5.08 | 10.25 5.08 | 10.50 RAIN mm/hr 2.03 2.03 TIME hrs 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 TIME RAIN | TIME hrs 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 mm/hr 3.05 2.03 3 ar 71ME hrs 0.25 0.50 0.75 1.00 1.25 mm/hr 0.00 1.02 2.03 3.05 1.02 1.02 2.03 4.06 10.75 1.02 2.03 | 5.08 | 4.06 | 5.08 | 7.11 | 8.13 | 56.90 | 57.91 | 11.18 | 1.02 4.06 11.00 2.03 1.02 1.02 2.03 1.02 1.02 3.05 2.03 1.25 1.50 1.75 2.00 2.25 2.50 2.75 4.06 3.05 3.05 2.03 3.05 2.03 11.25 11.50 11.75 12.00 12.25 1.02 1.02 1.02 2.03 1.02 3.05 | 2.03 | 6.25 9.50 9.75 2.03 3.25 2.03 | CALIB | | STANDHYD (0145) | |ID= 1 DT= 5.0 min | Area (ha)= 3.05 Total Imp(%)= 62.00 Dir. Conn.(%)= 62.00 PERVIOUS (i) TMPERVTOUS Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= 1.89 2.00 1.00 531.00 1.16 5.00 2.00 40.00 Mannings n 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME 9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92 mm/hr 0.00 0.00 hrs 0.083 mm/hr 2.03 0.167 2.03 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.00 1.02 1.02 1.02 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 0.750 0.833 2.03 5.08 5.08 10.00 10.08 2.03 3.917 4.000 4.083 4.167 4.250 1.02 2.03

Page 66

5.08 | 5.08 | 5.08 | 4.06 | 10.17 10.25 10.33 10.42 2.03 2.03 1.02 1.02

LangstaffRd_EA_Existing_WestDonWatershd n) = 503.00 25.00 = 0.013 0.250 (m)= = Length Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

0.917 1.000 1.083 1.167

1.02 1.02 1.02 1.02

		TR	ANS EORMEI) HYETOGR	ADH	_	
TIME	RAIN	I TIME	RAIN	l' TTMF	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs		hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02		5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500 2.583	3.05 2.03	5.583	8.13 8.13	8.667	2.03	11.75 11.83	1.02
2.583	2.03	5.750	8.13	8.750 8.833	3.05	11.83	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.750	3.05	5.917	56.90	9.000	3.05	12.00	1.02
2.833	3.05	6.000	56.90	9.083	2.03	12.00	1.02
3.000	3.05	6.083	57.91	9.065	2.03	12.17	1.02
3.083	2.03	6.167	57.91	9.167	2.03		1.02
5.005	2.03	0.107	57.51	1 3.230	2.03		

57.91 10.00 8.38 (ii) 10.00 0.12 37.09 20.00 16.29 (ii) Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 20.00

Page 68

TOTALS

	LangstaffRd_EA_Existing_WestDonWatershd								
PEAK FLOW	(cms)=	0.10	0.04	0.139 (iii)					
TIME TO PEAK	(hrs)=	6.25	6.42	6.25					
RUNOFF VOLUME	(mm)=	61.75	31.16	47.06					
TOTAL RAINFALL	(mm)=	63.75	63.75	63.75					
RUNOFF COEFFICI	ENT =	0.97	0.49	0.74					

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0135) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.43	Dir.	Conn.(%)=	40.00	
·		IMPERVI	ous	PERVIO	JS (i)		
Surface Area	(ha)=	0.5	7	0.8			
Dep. Storage	(mm)=	2.0	0	5.00	9		
Average Slope	(%)=	1.0	0	2.00	9		
Length	(m)=	503.0	0	30.00	3		
Mannings n	=	0.01	3	0.25	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03

Page 69

	Langstaff	Rd_EA_Exi	sting_Wes	tDonWaters	shd
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0145):	3.05	0.365	6.25	51.39	
+ ID2= 2 (0420):	2.70	0.280	6.25	45.45	
===========					
ID = 3 (0425):	5.75	0.645	6.25	48.60	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0210) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.96 44.00	Dir. Conn.(%)= 44.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)=	IMPERVI 0.4 2.0 1.0 470.0 0.01	2 0 0	PERVIOUS (i) 0.54 5.00 2.00 20.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03			
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03			
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03			
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03			
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03			
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03			
0.833	1.02		3.05	7.000	5.08	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03			
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03			
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02			
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02			
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02			
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06		1.02			
1.500	1.02		4.06	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02			
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02			
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02			
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02			
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02			
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02			
			Page	71						

	Langsta	ffRd_E	A_Exist	ing_West	DonWaters	hd	
1.833	1.02 4	4.917	4.06	8.000	4.06	11.08	1.02
1.91/	1.02 3	.000	4.06	0 167	3.05	11.1/	1.02
2.000	1 02	5 167	5.00	8 250	3.05	11.23	1 02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05 5	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05 5	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03 !	5.667	8.13	8.750	2.03	11.83	2.03
2.66/	2.03 3	./50	8.13	8.833	3.05	11.92	2.03
2./50	2.03 3	0.000	56.90	0.917	3.05	12.00	1 02
2 917	3.05	5 000	56 90	9 983	2 03	12.00	1 02
3.000	3.05	5.083	57.91	9.167	2.03	12.25	1.02
3.083	Langsta 1.02 1 1.02	5.167	57.91	9.250	2.03	i	
Max.Eff.Inten.(mm, over (r Storage Coeff. (r Unit Hyd. Tpeak (r Unit Hyd. peak (r	/hr)=	57.91		38.29			
over (r	nin)	10.00		20.00			
Storage Coeff. (r	nin)=	8.38	(11)	17.10 (:	ii)		
Unit Hyd. Ipeak (r	nin)=	10.00		20.00			
опіт нуш. реак (cms)=	0.12		0.06	****	TALS*	
						.141 (iii	١
TIME TO PEAK (nrs)=	6.25		6.42		6.25	,
RUNOFF VOLUME	(mm)=	61.75		32.22	4	4.03	
TOTAL RAINFALL	(mm)=	63.75		63.75	6	3.75	
PEAK FLOW (TIME TO PEAK (I RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	Γ =	0.97		0.51		0.69	
(i) CN PROCEDURI CN* = 84					١		
(ii) TIME STEP (I	OT) SHOULD	BE SMA	ALLER OF		,		
(iii) PEAK FLOW DO				IF ANY			
ADD 11VD / 0430\]							
1 + 2 = 3 ID1= 1 (0135)	ARE	A QI	PEAK	TPEAK	R.V.		
TD4 4 (043F	(ha) (cms)	(hrs)	(mm)		
+ ID2= 2 (0140)): 1.2	7 0.1	139	6.25	47.06		
ID = 3 (0420)							
NOTE: PEAK FLOWS	DO NOT TNO	'LUDE E	RASEFION	IS TE AN	,		
NOTE: TEAR TEORS							
ADD 11VD / 0435)							
ADD HYD (0425) 1 + 2 = 3	AREA	A QI	PEAK	TPEAK	R.V.		
			Page				

	Langs	taffRd E	A Exist	ing WestDon	Watersh	ıd	
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	7 3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.506	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	7 2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.756	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	7 3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03		
H FCC T-+ /-	(1)	F7 04		27.00			
Max.Eff.Inten.(57.91		37.09			
	(min)	10.00		15.00			
Storage Coeff.	(min)=			14.97 (ii)			
Unit Hyd. Tpeak		10.00		15.00			
Unit Hyd. peak	(cms)=	0.13		0.08			
					*TOT		
PEAK FLOW	(cms)=	0.07		0.04		103 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33	6	. 25	
RUNOFF VOLUME	(mm)=	61.75		31.16	44	.61	
TOTAL RAINFALL	(mm)=	63.75		63.75	63	.75	
RUNOFF COEFFICIE	NT =	0.97		0.49	0	.70	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= 1.11 Imp(%)= 38.00	
		THREENITOUS	DEBUTOUS (4)
		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.42	0.69
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	470.00	20.00
Mannings n	=	0.013	0.250
NOTE: RATNE	AII WAS	TRANSFORMED TO	5.0 MTN. TIME STEP.

TRANSFORMED HYETOGRAPH										
TIME	RAIN	1	IME	RAIN	1.	TIME	RAI	N	TIME	RAIN
hrs	mm/hr		hrs	mm/hr	1.	hrs	mm/h	r	hrs	mm/hr
0.083	0.00	3.	167	2.03	1	5.250	57.91		9.33	2.03
0.167	0.00	3.	250	2.03	1	5.333	11.18		9.42	2.03
0.250	0.00			3.05			11.18			
0.333	1.02	3.	417	3.05	1	5.500	11.18	-	9.58	2.03
0.167	0.00	3.	250 333	2.03	Ė	6.333 6.417	11.18 11.18	İ	9.42 9.50	2.03

				ing_WestD			
0.417		3.500		6.583			2.03
0.500	1.02	3.583	2.03			9.75	2.03
0.583	2.03	3.667		6.750	11.18		2.03
0.667		3.750		6.833	5.08		2.03
0.750		3.833		6.917	5.08		2.03
0.833		3.917		7.000	5.08		2.03
0.917		4.000		7.083	5.08		2.03
1.000		4.083		7.167			2.03
1.083		4.167		7.250	5.08		1.02
1.167		4.250		7.333			1.02
1.250		4.333					1.02
1.333	1.02	4.417	5.08	7.500	4.06		1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667		7.750			2.03
1.667	2.03	4.750	4.06	7.833			2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03	İ	
Inten.(mm/	hr)=	57.91		37.09			
over (m	in)	10.00		15.00			

Max.Eff.Inten.(mm/hr)=	57.91	37.09	
over (min)	10.00	15.00	
Storage Coeff. (min)=	8.04 (ii)	14.97 (ii)	
Unit Hyd. Tpeak (min)=	10.00	15.00	
Unit Hyd. peak (cms)=	0.13	0.08	
			TOTALS
PEAK FLOW (cms)=	0.07	0.05	0.114 (iii)
TIME TO PEAK (hrs)=	6.25	6.33	6.25
RUNOFF VOLUME (mm)=	61.75	31.16	42.78
TOTAL RAINFALL (mm)=	63.75	63.75	63.75
RUNOFF COEFFICIENT =	0.97	0.49	0.67

Page 73

	Langs	taffRd_E/	A_Existi	ng_WestDo	onWaters	hd	
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03	l	
Inten.(mm/	hr)=	57.91		34.81			

Max.Eff.Inten.(m	m/hr)=	57.91	34.81	
over	(min)	5.00	20.00	
Storage Coeff.	(min)=	6.39 (ii)	15.26 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	20.00	
Unit Hyd. peak	(cms)=	0.18	0.07	
				TOTALS
PEAK FLOW	(cms)=	0.06	0.02	0.081 (iii)
TIME TO PEAK	(hrs)=	6.25	6.42	6.25
RUNOFF VOLUME	(mm)=	61.75	29.17	47.73
TOTAL RAINFALL	(mm)=	63.75	63.75	63.75
RUNOFF COEFFICIE	NT =	0.97	0.46	0.75

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 81.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

	0.90				
1 Tmm/9/\					
T TIIIb(%)=	53.00	Dir. 0	Conn.(%)=	53.00	
IMPERVI(OUS	PERVIOUS	S (i)		
0.4	3	0.42			
2.0	3	5.00			
1.0	3	2.00			
320.0	9	25.00			
0.01	3	0.250			
	IMPERVIO 0.48 2.00 1.00 320.00	IMPERVIOUS 0.48 2.00 1.00	IMPERVIOUS PERVIOU 0.48 0.42 2.00 5.00 1.00 2.00 320.00 25.00	IMPERVIOUS PERVIOUS (i) 0.48 0.42 2.00 5.00 1.00 2.00 320.00 25.00	IMPERVIOUS PERVIOUS (i) 0.48 0.42 2.00 5.00 1.00 2.00 320.00 25.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

Page 75

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

ADD HYD (0460) 1 + 2 = 3 ID1= 1 (0205):	AREA (ha) 1.11	QPEAK (cms) 0.114	TPEAK (hrs) 6.25	R.V. (mm) 42.78
+ ID2= 2 (0210):	0.96	0.103	6.25	44.61
ID = 3 (0460):	2.07	0.217	6.25	43.63

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0230)	Area	(ha)=	0.70		
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir. Conn.(%)=	57.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.4	0	0.30	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	320.0	0	25.00	
Mannings n	_	a a1	3	a 29a	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03		
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03		
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03		
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03		
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03		
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03		
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03		
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03		
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03		
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03		
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03		
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03		
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02		
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02		
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02		
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02		
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02		
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02		
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03		
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03		
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03		
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02		

Langs	taffRd F	Δ Fyist	ing WestDo	nWaters	hd	
hrs mm/hr			l' hrs	mm/hr		mm/hr
0.083 0.00		2.03		57.91		2.03
	3.250		6.333	11.18		2.03
	3.333		6.417	11.18		2.03
	3.417	3.05		11.18		2.03
	3.500		6.583	11.18		2.03
	3.583		6.667	11.18		2.03
	3.667		6.750	11.18		2.03
	3.750		6.833	5.08		2.03
	3.833	3.05		5.08		2.03
	3.917		7.000	5.08		2.03
	4.000	3.05		5.08		2.03
	4.083		7.167	5.08		2.03
	4.167	2.03		5.08		1.02
	4.250	2.03		4.06		1.02
	4.230	5.08		4.06		1.02
	4.333			4.06		1.02
	4.500		7.583	4.06		1.02
	4.583	4.06		4.06		1.02
	4.667	4.06		4.06		2.03
	4.750	4.06		4.06		2.03
	4.833	4.06		4.06		2.03
	4.917	4.06		4.06		1.02
	5.000		8.083	3.05		1.02
	5.083	5.08		3.05		1.02
	5.167		8.250	3.05		1.02
	5.250	5.08		3.05		1.02
2.250 1.02			8.417	3.05		1.02
	5.417		8.500	3.05		1.02
	5.500		8.583	2.03		1.02
	5.583		8.667	2.03		1.02
2.583 2.03			8.750	2.03		2.03
	5.750		8.833	3.05		2.03
2.750 2.03			8.917	3.05		2.03
	5.917			3.05		1.02
	6.000		9.000	2.03		1.02
3.000 3.05				2.03		1.02
	6.167	57.91		2.03		1.02
3.083 2.03	0.10/	57.91	9.250	2.03		
Max.Eff.Inten.(mm/hr)=	57.91		37.09			
over (min)	5.00		15.00			
Storage Coeff. (min)=	6.39	(11)	14.30 (ii)		
Unit Hyd. Tpeak (min)=	5.00		15.00			
Unit Hyd. peak (cms)=	0.18		0.08	*****	TALS*	
PEAK FLOW (cms)=	0.08		0.03		.106 (iii)	
TIME TO PEAK (hrs)=	6.25		6.33		5.25	,
RUNOFF VOLUME (mm)=	61.75		31.16		7.37	
TOTAL RAINFALL (mm)=	63.75		63.75		3.75	
RUNOFF COEFFICIENT =	0.97		0.49		9.74	
MONOT. COLT. TETENT -	3.57		05	,		

LangstaffRd_EA_Existing_WestDonWatershd
CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0475)| | 1 + 2 = 3 | AREA QPEAK TPEAK R.V. ID1= 1 (0225): 0.90 + ID2= 2 (0230): 0.70 (cms) 0.106 0.081 (hrs) (mm) 6.25 47.37 6.25 47.73 ID = 3 (0475): 1.60 0.187 6.25

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS TE ANY.

| STANDHYD (0220) | Area (ha)= 0.65 |ID= 1 DT= 5.0 min | Total Imp(%)= 46.00 Dir. Conn.(%)= 46.00 IMPERVIOUS PERVIOUS (i)

1MPERVIOU 0.30 2.00 1.00 260.00 0.013 Surface Area (ha)= 0.35 5.00 Dep. Storage (mm)=
Average Slope (%)=
Length (m)=
Mannings n = 2.00 20.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH RAIN | mm/hr | 0.00 | 0.00 | TIME hrs 3.167 TIME hrs 0.083 0.167 3.333 0.250 0.333 1.02 3.417 2.03 0.417 1.02 3.500 2.03 1.02 2.03 2.03 2.03 1.02 3.583 3.667 3.750 3.833 3.917 4.000 0.500 0.583 2.03 0.583 0.667 0.750 0.833 2.03 0.917 2.03 4.083 1.000 1.02 2.03 1.02 | 4.083 1.02 | 4.167 1.02 | 4.250 1.02 | 4.333 1.02 | 4.417 1.02 | 4.500 1.083 1.02 1.167 1.02

Page 77

LangstaffRd_EA_Existing_WestDonWatershd NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH RAIN | TIME TTMF RATN 0.083 0.167 0.250 0.333 mm/hr | hrs 0.00 | 3.167 0.00 | 3.250 0.00 | 3.333 1.02 | 3.417 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 3.05 0.417 1.02 3.500 2.03 1.02 2.03 2.03 | 2.03 | 2.03 | 3.05 | 3.05 | 3.05 | 2.03 | 2.03 2.03 2.03 1.02 0.583 3.667 3.750 11.18 9.83 2.03 0.583 0.667 0.750 0.833 0.917 1.000 11.18 5.08 5.08 5.08 5.08 5.08 5.08 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 7.167 7.250 1.083 1.02 2.03 7.236 7.333 7.417 7.500 7.583 7.667 7.750 7.833 1.167 1.02 2.03 4.06 1.02 5.08 5.08 5.08 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 1.250 1.02 1.02 4.333 4.417 4.500 4.583 4.667 4.750 1 333 1.417 1.500 1.583 1.02 1.02 1.02 2.03 1.667 4.833 1.750 2.03 7.917 11.00 2.03 8.000 8.083 8.167 8.250 8.333 8.417 8.500 1.833 1.02 4.917 4.06 4.06 3.05 3.05 3.05 3.05 3.05 3.05 3.05 1.02 1.02 1.02 1.02 4.06 5.08 5.08 5.08 7.11 1.02 1.02 1.02 1.02 1.917 5.000 11.17 5.083 5.167 5.250 5.333 2.250 1.02 11.50 2.333 5.417 7.11 | 8.500 7.11 | 8.583 8.13 | 8.667 8.13 | 8.750 8.13 | 8.833 56.90 | 9.000 56.90 | 9.083 57.91 | 9.167 57.91 | 9.250 7.11 | 2.417 3.05 5.500 2.03 11.67 1.02 5.583 2.03 11.75 1.02 2.03 2.03 2.03 3.05 5.667 5.750 5.833 5.917 6.000 2.03 | 3.05 | 3.05 | 3.05 | 2.03 | 2.03 2.03 2.03 1.02 2.583 11.83 11.92 12.00 12.08 12.17 2.917 3.05 1.02 6.083 2.03 12.25 1.02 3.083 2.03 | 6.167 2.03

> 31.16 Page 79

5.00 15.00 5.64 (ii) 14.47 (ii) 5.00 15.00 0.20 0.08

0.02

0.05

6.25 61.75

TOTALS

0.071 (iii)

Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=

PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)=

	Langs	staffRd_E/	A_Existi	.ng_WestDoi	waters	hd	
1.500				7.667		10.75	1.02
1.583		4.667		7.750		10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333 8.417	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333 2.417	3.05	5.41/	7.11	8.500 8.583 8.667	3.05	11.58	1.02
2 500	2.05	1 5.500	0.11	0.505	2.03	11.07	1.02
2.500	2 02	5.565 E 667	0.13	0.007	2.03	11./5	2.03
2.565	2.03	5.00/ E 7EA	0.13	0./50	2.05	11.03	2.03
2.007	2.03	1 5 000	6.13	8.667 8.750 8.833 8.917	2 05	12.92	2.03
2.833	3 05	5 017	56 90	9.000	3 05 1	12.00	1.02
2.033	3.05	1 6 000	56 90	1 9.000	2 03	12.17	
3 000	3.05	6.000	57 91	9.083	2.03	12.17	1.02
3.000	2 03	6 167	57 91	9.250	2 03	12.23	1.02
3.003	2.05	01207	37.132	7.250	2.05		
Max.Eff.Inten.(mm/	/hr)=	57.91		37.09			
		5 00		15 00			
over (m Storage Coeff. (m	nin)=	5.64	(ii)	12.56 (ii)			
Unit Hyd. Tpeak (m		5.00		15.00 ` ′			
Unit Hyd. peak (d	ms)=	0.20		0.08			
, , ,					*T0T	ALS*	
PEAK FLOW (c	ms)=	0.05		0.03	0.	074 (iii)
TIME TO PEAK (F	nrs)=	6.25		6.33	E	.25	
	(mm)=	61.75		31.16	45	.22	
	(mm)=	63.75		63.75		3.75	
RUNOFF COEFFICIENT	· =	0.97		0.49	6	71	
(1)							
(i) CN PROCEDURE							
CN* = 83. (ii) TIME STEP (E							
THAN THE STOP				EQUAL			
(iii) PEAK FLOW DO				TE ANV			
(III) PEAK FLOW DO	JES NUI	INCLUDE D	ASEFLUW	IF ANT.			
CALIB							
STANDHYD (0215)	Area	(ha)=	0.58				
ID= 1 DT= 5.0 min				Dir. Conn.	(%)= 5	7.00	
		, -			, -		
		IMPERVIOU	S PE	RVIOUS (i)			
Surface Area ((ha)=	0.33		0.25			
Dep. Storage ((mm)=	2.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m)=	260.00		30.00			
Mannings n	` =	0.013		0.250			
•							

Page 78

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0470)| | 1 + 2 = 3 | | ID1= 1 (0215): + ID2= 2 (0220): AREA (ha) 0.58 QPEAK (cms) 0.071 0.074 TPEAK (hrs) 6.25 6.25 R.V. (mm) 48.58 45.22 0.65 ID = 3 (0470): 1.23 0.145 6.25 46.81 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0480)| | 1 + 2 = 3 | QPEAK AREA (ha) (cms) 1.23 0.145 AREA (hrs) 6.25 6.25 ID = 3 (0480): 2.83 0.332 6.25 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. I CALTB IMPERVIOUS PERVIOUS (i) Surface Area 0.24 2.00 0.19 Dep. Storage Average Slope Length Mannings n (mm) = (%) = (m) = 5.00 2.00 260.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYFTOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs

		+- CCD 4 F				6.4	
0.000				ing_WestD			2 02
0.083		3.167		6.250			2.03
0.167				6.333			2.03
0.250		3.333		6.417			2.03
0.333		3.417		6.500			2.03
0.417		3.500		6.583			2.03
0.500		3.583		6.667			2.03
0.583		3.667		6.750	11.18		2.03
0.667		3.750		6.833	5.08		2.03
0.750		3.833		6.917	5.08		2.03
0.833		3.917		7.000	5.08		2.03
0.917				7.083	5.08		2.03
1.000		4.083		7.167	5.08		2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917		5.000	4.06	8.083	3.05	11.17	1.02
2.000		5.083		8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250		5.333		8.417	3.05		1.02
2.333		5.417		8.500	3.05		1.02
2.417		5.500	7.11		2.03		1.02
2.500		5.583		8.667	2.03		1.02
2.583		5.667		8.750	2.03		2.03
2.667		5.750		8.833	3.05		2.03
2.750		5.833		8.917	3.05		2.03
2.833		5.917		9.000	3.05		1.02
2.917				9.083	2.03		1.02
3.000		6.083			2.03		1.02
3.083		6.167	57.91		2.03		1.02
Max.Eff.Inten.(m	m/hn\-	57.91		44.85			
over		5.00		15.00			
	(min) (min)=		(::)		2.1		
Unit Hyd. Tpeak		5.00	(ii)	12.06 (i 15.00	1)		
Unit Hyd. peak	(cms)=	0.20		0.09	*T0	TALS*	
PEAK FLOW	(cms)=	0.04		0.02		.057 (iii)
	(hrs)=	6.25		6.33		5.25	′
RUNOFF VOLUME	(mm)=	61.75		38.29		1.41	
TOTAL RAINFALL	(mm)=	63.75		63.75		3.75	
RUNOFF COEFFICIE		0.97		0.60		0.81	
		0.57		2.00			

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 89.0$ Ia = Dep. Storage (Above)

Page 81

Lar 2.583 2.0 2.667 2.0 2.759 2.0 2.833 3.0 2.917 3.0 3.000 3.0	ngstaffRd_EA_Exist 3 5.667	sing_WestDonWaters 8.750	hd 11.83 2.03 11.92 2.03 12.00 2.03 12.08 1.02 12.17 1.02 12.25 1.02						
Max.Eff.Inten.(mm/hr)=	57.91 5.00 5.64 (ii) 5.00 0.20	42.12 15.00 13.86 (ii) 15.00 0.08	TAI C*						
RUNOFF COEFFICIENT = 0.97 0.56 0.74 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 87.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.									
ADD HYD (0430) 1 + 2 = 3 ID1= 1 (0155): + ID2= 2 (0160): ID = 3 (0430):									
NOTE: PEAK FLOWS DO NO CALIB			94.00						
	0.013	0.23 5.00 2.00 40.00 0.250	EP.						

Page 83

LangstaffRd_EA_Existing_WestDonWatershd
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0155)	Area	(ha)=	0.56			
ID= 1 DT= 5.0 min	Total	Imp(%)=	45.00	Dir.	Conn.(%)=	45.00
		IMPERVI	OUS	PERVIO	JS (i)	
Surface Area	(ha)=	0.2	5	0.33	1	
Dep. Storage	(mm) =	2.0	0	5.00	9	
Average Slope	(%)=	1.0	0	2.00	9	
Length	(m)=	260.0	0	25.00	9	
Mannings n	` ′=	9.91	3	0.296	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				HYETOGR			
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02

 ${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

	TR	ANSFORMFI	O HYETOGR	ΔPH					
TIME RAI	N I TIME	RAIN		RAIN		RAIN			
hrs mm/h		mm/hr		mm/hr		mm/hr			
0.083 0.0			6.250	57.91 l		2.03			
	0 3.250	2.03		11.18		2.03			
	0 3.333	3.05		11.18		2.03			
	2 3.417	3.05		11.18		2.03			
	2 3.500	3.05		11.18		2.03			
	2 3.583	2.03		11.18		2.03			
0.583 2.0		2.03		11.18		2.03			
0.667 2.0		2.03		5.08		2.03			
0.750 2.0		3.05		5.08		2.03			
	2 3.917	3.05		5.08		2.03			
	2 4.000	3.05		5.08		2.03			
	2 4.083	2.03		5.08		2.03			
	2 4.167	2.03		5.08		1.02			
	2 4.250		7.333	4.06		1.02			
	2 4.333	5.08		4.06		1.02			
	2 4.417	5.08		4.06		1.02			
	2 4.500	5.08		4.06		1.02			
	2 4.583	4.06		4.06		1.02			
	3 4.667	4.06		4.06		2.03			
	3 4.750	4.06		4.06		2.03			
	3 4.833	4.06		4.06		2.03			
	2 4.917	4.06		4.06		1.02			
	2 5.000	4.06		3.05		1.02			
2.000 1.0		5.08		3.05		1.02			
	2 5.167	5.08		3.05		1.02			
	2 5.250	5.08		3.05		1.02			
2.250 1.0		7.11		3.05		1.02			
2.333 3.0		7.11		3.05		1.02			
	5 5.500	7.11		2.03		1.02			
2.500 3.0		8.13		2.03		1.02			
2.583 2.0		8.13		2.03		2.03			
2.667 2.0		8.13		3.05		2.03			
2.750 2.0	3 5.833	56.90	8.917	3.05	12.00	2.03			
	5 5.917	56.90		3.05		1.02			
2.917 3.0			9.083	2.03		1.02			
3.000 3.0			9.167	2.03		1.02			
3.083 2.0	3 6.167	57.91	9.250	2.03					
Max.Eff.Inten.(mm/hr)=	57.91		43.46						
over (min)	5.00		10.00						
Storage Coeff. (min)=		(ii)	6.98 (ii)					
Unit Hyd. Tpeak (min)=	5.00		10.00						
Unit Hyd. peak (cms)=	0.24		0.14						
, , , , , , , , , , , , , , , , , , , ,				*T01	ΓALS*				
PEAK FLOW (cms)=	0.58		0.03		601 (iii)				
TIME TO PEAK (hrs)=	6.25		6.25		5.25				
RUNOFF VOLUME (mm)=	61.75		36.96		9.27				
TOTAL RAINFALL (mm)=	63.75		53.75		3.75				
Page 84									

$\label{eq:coefficient} \begin{array}{lll} & LangstaffRd_EA_Existing_WestDonWatershd \\ RUNOFF \ COEFFICIENT & = \ 0.97 & 0.58 & 0.5 \\ \end{array}$

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 88.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0440) | 1 + 2 = 3 | AREA QPEAK (ha) 3.81 (cms) 0.601 (hrs) 6.25 (mm) 60.27 ID1= 1 (0150): + ID2= 2 (0430): 0.99 0.123 49.15 ID = 3 (0440): 4.80 0.724 6.25

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

-----STANDHYD (0185) Area (ha)= 0.47
Total Imp(%)= 48.00 Dir. Conn.(%)= 48.00 IMPERVIOUS Surface Area (ha)=
Dep. Storage (mm)=
Average Slope
Length (m)=
Mannings n = 0.24 5.00 2.00 0.23 2.00 1.00 20.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH RAIN | TIME RAIN | TIME mm/hr | hrs RAIN | TIME mm/hr | hrs mm/hr mm/hr | hrs 2.03 | 6.253 3.05 | 6.417 3.05 | 6.590 3.05 | 6.583 2.03 | 6.667 2.03 | 6.667 2.03 | 6.833 3.05 | 6.917 3.05 | 7.000 3.05 | 7.083 2.03 | 7.167 mm/hr mm/hr 57.91 | 11.18 | 11.18 | 11.18 | 11.18 | 9.33 9.42 9.50 9.58 9.67 9.75 0.083 0.167 0.250 0.333 0.417 0.00 0.00 0.00 1.02 1.02 3.167 2.03 3.167 3.250 3.333 3.417 3.500 3.583 2.03 2.03 2.03 2.03 2.03 0.583 2.03 3.667 11.18 9.83 2.03 0.667 2.03 3.750 9.92 2.03 5.08 | 5.08 | 5.08 | 5.08 | 2.03 | 1.02 | 1.02 | 1.02 | 3.833 3.917 4.000 4.083 2.03 2.03 2.03 2.03 2.03 0.750

Page 85

LangstaffRd_EA_Existing_WestDonWatershd 1) = 2.00 5.00 6) = 1.00 2.00 (mm)= (%)= (m)= Average Slope Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH
ME RAIN | TIME
rs mm/hr | hrs m mm/hr | 0.00 | 0.00 | 1.02 | 1.02 | 1.02 | 2.03 | hrs hrs 3.167 mm/hr hrs mm/hr | 57.91 | mm/hr 2.03 0.083 6.250 6.333 6.417 6.500 6.583 6.667 7.000 7.003 7.167 7.250 7.333 7.417 9.33 2.03 2.03 | 2.03 | 3.05 | 3.05 | 3.05 | 2.03 | 2.03 | 57.91 | 11.18 | 11.18 | 11.18 | 11.18 | 11.18 | 11.18 | 0.167 3.250 2.03 0.167 0.250 0.333 0.417 0.500 0.583 3.417 3.500 3.583 3.667 0.667 2.03 3.750 2.03 5.08 5.08 0.750 2.03 3.833 3.05 1.02 1.02 1.02 1.02 1.02 1.02 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 3.05 3.05 3.05 2.03 2.03 2.03 5.08 5.08 5.08 5.08 5.08 5.08 4.06 4.06 4.06 0.833 2.03 0.917 1.000 1.083 1.167 1.250 1.333 1.02 5.08 7.500 1.02 1.417 1.02 4.500 5.08 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 4.06 4.06 | 4.06 | 4.06 | 4.06 | 4.06 | 4.06 4.06 4.06 4.06 4.06 3.05 1.02 2.03 2.03 2.03 4.583 4.667 4.750 4.833 4.917 1.917 4.06 1.02 5.083 5.08 3.05 11.25 2.083 1.02 5.167 5.08 3.05 1.02 1.02 3.05 3.05 5.250 5.333 5.417 5.500 5.583 5.08 7.11 7.11 7.11 3.05 3.05 3.05 2.03 2.03 2.167 7.11 | 8.583 8.13 | 8.667 8.13 | 8.750 8.13 | 8.833 56.90 | 8.917 56.90 | 9.000 56.90 | 9.083 57.91 | 9.167 57.91 | 9.250 11.75 3.05 1.02 2.583 2.03 5.667 2.03 2.03 2.667 2.03 5.750 3.05 11.92 2.03 2.750 2.03 5.833 3.05 3.05 | 5.917 3.05 | 6.000 3.05 | 6.083 2.03 | 6.167 3.05 2.03 2.03 2.03 2.833 12.08 1.02

Max.Eff.Inten.(mm/hr)= 57.91 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)= 5.00 15.00 2.47 (ii) 13.12 (ii) 5.00 15.00

```
LangstaffRd_EA_Existing_WestDonWatershd
1.02 | 4.167 | 2.03 | 7.250 | 5.08 | 1
1.02 | 4.250 | 2.03 | 7.333 | 4.06 | 1
1.02 | 4.253 | 2.03 | 7.333 | 4.06 | 1
1.02 | 4.333 | 5.08 | 7.417 | 4.06 | 1
1.02 | 4.540 | 5.08 | 7.500 | 4.06 | 1
1.02 | 4.593 | 4.06 | 7.567 | 4.06 | 1
1.02 | 4.583 | 4.06 | 7.567 | 4.06 | 1
2.03 | 4.667 | 4.06 | 7.753 | 4.06 | 1
2.04 | 4.750 | 4.06 | 7.753 | 4.06 | 1
                                 1.083
                                                           1.02
                                                                                                                                                          5.08 | 10.33
4.06 | 10.42
                                  1.167
                                 1.167
1.250
1.333
1.417
1.500
1.583
                                                                                                                                                                              10.50
10.58
10.67
10.75
                                                                                                                                                                                                          1.02
1.02
1.02
1.02
                                                           1.02
1.02
1.02
2.03
                                                                               4.750
4.833
4.917
5.000
5.083
5.167
5.250
5.333
                                  1.667
                                                           2.03
                                                                                                                                7.833
                                  1.750
                                                           2.03
                                                                                                            4.06
                                                                                                                                7.917
                                                                                                                                                           4.06
                                                                                                                                                                              11.00
                                                                                                   4.06 | 8.000
4.06 | 8.083
5.08 | 8.167
5.08 | 8.250
7.11 | 8.417
7.11 | 8.500
7.11 | 8.583
8.13 | 8.667
8.13 | 8.833
56.90 | 9.000
56.90 | 9.083
57.91 | 9.167
57.91 | 9.250
                                  1.833
                                                           1.02
                                                                                                            4.06
                                                                                                                                8.000
                                                                                                                                                           4.06
                                  1.917
2.000
2.083
2.167
                                                           1.02
                                                                                                                                                                              11.17
                                  2.250
                                                            1.02
                                                                                                                                                                              11.50
                                                                                                                                                                                                           1.02
                                  2.333
                                                            3.05
                                                                                 5.417
                                                                               5.417
5.500
5.583
5.667
5.750
5.833
5.917
6.000
                                  2.417
                                                            3.05
                                                                                                                                                           2.03
                                                                                                                                                                              11.67
                                                                                                                                                                                                           1.02
                                                            3.05
                                                                                                                                                                               11.75
                                  2.583
2.667
2.750
2.833
                                                           2.03
2.03
2.03
3.05
3.05
                                                                                                                                                                              11.83
11.92
12.00
12.08
                                  2.917
                                                                                                                                                           2.03
                                                                                                                                                                                                           1.02
                                                            3.05
                                                                                6.083
                                                                                                                                                           2.03
                                 3.083
                                                                               6.167
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                   57.91
5.00
5.37 (ii)
5.00
                                                                                                                           32.68
                                                                                                                          15.00
14.29 (ii)
                                                                                      0.21
                                                                                                                            0.08
                                                                                                                                                                  *TOTALS*
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                     TOTALS*
0.051 (iii)
6.25
43.84
63.75
0.69
                                                                                      0.04
                                                                                                                             9.92
                                                                                    6.25
61.75
63.75
0.97
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (1) CN* = 79.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

| CALIB | STANDHYD (0180)| Area (ha)= 0.65 |ID= 1 DT= 5.0 min | Total Imp(%)= 33.00 Dir. Conn.(%)= 33.00 IMPERVIOUS PERVIOUS (i) = 0.21 0.44

Page 86

LangstaffRd_EA_Existing_WestDonWatershd
)= 0.29 0.08

Unit Hyd. peak (cms)= PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.067 (iii) 6.25 6.33 6.25 61.75 31.16 41.24

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0445)| | 1 + 2 = 3 | QPEAK (cms) 0.067 0.051 ARFA TPFAK ID = 3 (0445): 1.12 0.118 6.25 42.33

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| CALIB | STANDHYD (0165) |ID= 1 DT= 5.0 min | Area (ha)= 0.60 Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00 IMPERVIOUS PERVIOUS (i) 0.24 2.00 1.00 250.00 0.013 Surface Area 0.36 5.00 2.00 Dep. Storage Average Slope Length (mm)= (%)= (m)= Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH											
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03				
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03				
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03				
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03				
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03				
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03				

Lä	ngstaffRd E	A Existi	ng WestDo	nWaters	hd		
	03 3.667		6.750			2.03	
	03 3.750		6.833	5.08	9.92	2.03	
0.750 2.0	93 3.833	3.05	6.917	5.08	10.00	2.03	
0.833 1.0	02 3.917	3.05 3.05 2.03	7.000		10.08	2.03	
	92 4.000	3.05	7.083		10.17	2.03	
1.000 1.0	02 4.083	2.03	7.167	5.08	10.25	2.03	
1.083 1.0	02 4.167 02 4.250	2.03	7.250	5.08	10.33	1.02	
1.167 1.0	02 4.250	2.03	7.333	4.06	10.42	1.02	
1.250 1.0	02 4.333 02 4.417	5.08	7.417	4.06	10.50	1.02	
1.333 1.0	02 4.417	5.08	7.500	4.06	10.58	1.02	
1.417 1.0	02 4.500	5.08	7.583	4.06	10.67	1.02	
1.500 1.0	02 4.583 03 4.667	4.06	7.667	4.06	10.75	1.02	
1.583 2.0	03 4.667	4.06	7.750	4.06	10.83	2.03	
1.667 2.0	03 4.750 03 4.833	4.06	7.833	4.06	10.92	2.03	
1.750 2.0	03 4.833	4.06	7.917	4.06	11.00	2.03	
1.833 1.0	02 4.917 02 5.000	4.06	8.000	4.06	11.08	1.02	
1.917 1.0	02 5.000	4.06	8.083	3.05	11.17		
2.000 1.0	02 5.083	5.08	8.167	3.05	11.25	1.02	
2.083 1.0 2.167 1.0	02 5.167	5.08	8.250	3.05	11.33		
2.167 1.0	02 5.250	5.08	8.333	3.05	11.42	1.02	
2.250 1.0	02 5.333 05 5.417	7.11	8.417		11.50	1.02	
2.333 3.0	05 5.417	7.11	8.500	3.05	11.58	1.02	
2.417 3.0	05 5.500 05 5.583	7.11	8.583	2.03	11.67	1.02	
2.500 3.0	05 5.583	8.13	8.667	2.03	11.75	1.02	
2.583 2.0	03 5.667	8.13	8.750	2.03	11.83	2.03	
2.583 2.0 2.667 2.0 2.750 2.0	03 5.750	8.13	8.833	3.05	11.92	2.03	
21/30 21	05 5.055				12.00	2.03	
2.833 3.0	05 5.917	56.90	9.000	3.05	12.08	1.02	
2.917 3.0		56.90	9.083	2.03	12.08 12.17	1.02	
	05 6.083	5/.91	1 9.16/	2.03	12.25	1.02	
3.083 2.0	03 6.167	57.91	9.250	2.03			
Max.Eff.Inten.(mm/hr)=	57.91		37.09				
over (min)	5.00		15.00				
Storage Coeff. (min)=	5.51	(ii) :	12.43 (ii)			
Unit Hyd. Tpeak (min)=	5.00		15.00				
Unit Hyd. peak (cms)=	0.20		0.08				
					TALS*		
PEAK FLOW (cms)=	0.04		0.03		.065 (iii)	
TIME TO PEAK (hrs)=	6.25		6.33		5.25		
RUNOFF VOLUME (mm)=	61.75		31.16		3.38		
TOTAL RAINFALL (mm)=	63.75		63.75		3.75		
RUNOFF COEFFICIENT =	0.97		0.49	•	0.68		
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN™ = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.							

Page 89

57.91 44.85 5.00 15.00 5.51 (ii) 11.93 (ii) 5.00 15.00 0.20 0.09 Max.Eff.Inten.(mm/hr)= over (min)= Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 0.04 6.25 61.75 63.75 0.02 6.33 38.29 63.75 0.057 (iii) 6.25 51.65 63.75 0.97 0.60 0.81 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 89.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0450)| 1 + 2 = 3 | QPEAK (cms) 0.065 R.V. (mm) 43.38 (ha) 0.60 (hrs) 6.25 ID1= 1 (0165): + ID2= 2 (0170): 6.25 0.43 0.057 51.65 ID = 3 (0450): 1.03 0.122 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. AREA (ha) 1.03 1.12 QPEAK (cms) 0.122 0.118 TPEAK (hrs) 6.25 6.25 R.V. (mm) 46.83 42.33 ID = 1 (0450): 2.15 0.240 6.25 44.49 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

IMPERVIOUS PERVIOUS (i)

0.50 Page 91

0.36

Surface Area (ha)=

CALIB | CALIB | STANDHYD (0170) |ID= 1 DT= 5.0 min Area (ha)= 0.43 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 IMPERVIOUS PERVIOUS (i) 0.25 2.00 1.00 0.18 5.00 2.00 (mm) = (%) = (m) = Dep. Storage Average Slope Length Mannings n 250.00 20.00

0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Existing_WestDonWatershd

0.250

		TR	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167		4.250	2.03	7.333	4.06	10.42	1.02
1.250		4.333	5.08	7.417	4.06	10.50	1.02
1.333		4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02

Page 90

	LangstaffRd_EA_Existing_WestDonWatersh							
Dep. Storage	(mm)=	2.00	5.00					
Average Slope	(%)=	1.00	2.00					
Length	(m)=	340.00	50.00					
Mannings n	=	0.013	0.250					

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03			
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03			
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03			
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03			
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03			
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03			
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03			
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02			
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02			
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02			
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02			
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02			
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02			
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02			
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02			
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02			
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02			
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02			
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02			
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03			
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03			
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03			
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02			
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02			
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02			
3.083	2.03	6.167	57.91	9.250	2.03					

Max.Eff.Inten.(mm/hr)= 57.91 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)= 5.00 20.00 6.62 (ii) 18.79 (ii) 5.00 20.00

LangstaffRd_EA_Existing_WestDonWatershd									
Unit Hyd. peak	(cms)=	0.18	0.06						
				TOTALS					
PEAK FLOW	(cms)=	0.06	0.03	0.086 (iii)					
TIME TO PEAK	(hrs)=	6.25	6.42	6.25					
RUNOFF VOLUME	(mm)=	61.75	31.16	44.00					
TOTAL RAINFALL	(mm)=	63.75	63.75	63.75					
RUNOFF COEFFICI	ENT =	0.97	0.49	0.69					

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0195)	Area	(ha)=	0.79				
ID= 1 DT= 5.0 min	Total	Imp(%)=	42.00	Dir.	Conn.(%)=	42.00	
		IMPERVIO	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	0.3	3	0.46	5		
Dep. Storage	(mm)=	2.00	Э	5.00	9		
Average Slope	(%)=	1.00	а	2.00	9		
Length	(m)=	340.00	а	20.00	9		
Mannings n	=	0.01	3	0.256	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH											
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN					
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr					
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03					
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03					
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03					
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03					
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03					
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03					
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03					
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03					
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03					
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03					
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03					
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03					
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02					
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02					
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02					
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02					
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02					
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02					
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03					

Page 93

LangstaffRd_EA_Existing_WestDonWatershd

ADD HYD (0458)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0450):	2.15	0.240	6.25	44.49
+ ID2= 2 (0455):	1.65	0.172	6.25	44.00
============				
ID = 3 (0458):	3.80	0.412	6.25	44.28

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB					
STANDHYD (0300)	Area	(ha)=	10.00		
ID= 1 DT= 5.0 min	Total	Imp(%)=	80.00	Dir. Conn.(%)=	80.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	8.0	0	2.00	
Dep. Storage	(mm)=	1.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	258.2	0	40.00	
Mannings n	=	0.01		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				D HYETOGR			
TIME	RAIN	TIME		' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91		2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02

Page 95

Langs	staffRd_E	A Exist	ing WestD	onWaters	hd	
1.667 2.03	1 4.750	4.06	I 7.833	4.06	10.92	2.03
1.750 2.03	4.833	4.06	7.917	4.06	11.00	2.03
Lange 1.667 2.03 1.750 2.03 1.833 1.02 1.917 1.02 2.000 1.02 2.083 1.02 2.167 1.02 2.250 1.02 2.250 1.02 2.333 3.05 2.417 3.05 2.500 3.05 2.583 2.03 2.667 2.03 2.667 2.03 2.833 3.05 2.917 3.05 3.000 3.05 3.000 3.05	4.917	4.06	8.000	4.06	11.08	1.02
1.917 1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000 1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083 1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167 1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250 1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333 3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417 3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500 3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583 2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667 2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750 2.03	5.833	56.90	8.917	3.05	12.00	2.03
2 833 3 05	5 917	56 90	9 999	3 05	12 08	1 02
2 917 3 05	6 999	56 90	9 083	2 03	12 17	1 02
3 000 3 05	6 083	57 91	9 167	2 03	12 25	1 02
3 083 2 03	6 167	57 91	9 250	2 03	12.25	2.02
3.003 2.03	0.10	37.132	7 3.230	2.05		
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	57 91		37 09			
over (min)	5 00		15 00			
Storage Coeff (min)=	6 62	(ii)	13.55 (i	i)		
Unit Hyd Theak (min)=	5 00	()	15 00	-/		
Unit Hyd neak (cms)=	0 18		0 08			
					ALS*	
PEAK FLOW (cms)=	0 05		0 03	.o.	086 (iii)
TIME TO PEAK (hrs)=	6.25		6 33		25	,
RUNOFE VOLUME (mm)=	61 75		31 16	44	1 00	
TOTAL RATNEALL (mm)=	63.75		63 75	44 63	75	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0 97		0 49	9	.69	
NONOTT COLITICIENT -	0.57		0.43			
(i) CN PROCEDURE SELECT CN* = 83.0 Ia (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT	= Dep. S LD BE SMA EFFICIENT INCLUDE B	torage LLER OR	(Above) R EQUAL W IF ANY.			
ADD HYD (0455)						
1 + 2 = 3 Al (1 ID1= 1 (0190): 0 + ID2= 2 (0195): 0	REA QP	EAK	TPEAK	R.V.		
(1	ha) (c	ms)	(hrs)	(mm)		
ID1= 1 (0190): 0	.86 0.0	86	6.25	44.00		
+ ID2= 2 (0195): 0	.79 0.0	86	6.25	44.00		
				=====		
ID = 3 (0455): 1	.65 0.1	72	6.25	44.00		
NOTE: PEAK FLOWS DO NOT	INCLUDE B	ASEFLOW	IS IF ANY			

Page 94

	Langs	taffRd E	A Exist	ing WestDon	Waters	hd	
2.167	1.02			8.333	3.05		1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
		5.833		8.917	3.05	12.00	2.03
		5.917		9.000		12.08	1.02
		6.000		9.083		12.17	1.02
	3.05			9.167	2.03		1.02
3.083	2.03	6.167	57.91	9.250	2.03	l	
Max.Eff.Inten.(mm/	'hr)=	57.91		31.36			
over (m		5.00		20.00			
	nin)=	5.62	(ii)	16.84 (ii)			
Unit Hyd. Tpeak (m	nin)=	5.00		20.00			
Unit Hyd. peak (c	:ms)=	0.20		0.06			
, , ,					*T0	TALS*	
PEAK FLOW (c	:ms)=	1.28		0.12	1	.382 (iii)	
TIME TO PEAK (H	ırs)=	6.25		6.42		6.25	
RUNOFF VOLUME (mm)=	62.75		27.34	5	5.67	
TOTAL RAINFALL (mm)=	63.75		63.75	6	3.75	
RUNOFF COEFFICIENT	=	0.98		0.43	(0.87	
///							
(i) CN PROCEDURE							
CN* = 79.		= Dep. S		(Above)			
(ii) TIME STEP (D				EQUAL			
THAN THE STO	KAGE COE	FFTCTENT					

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0350)	Area	(ha)= 0.9	10	
ID= 1 DT= 5.0 min	Total	Imp(%) = 70.6	0 Dir. Conn.(%)=	70.00
·				
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.63	0.27	
Dep. Storage	(mm)=	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	77.46	40.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO $\,$ 5.0 MIN. TIME STEP.

		TRA	NSFORMFI	D HYETOGRA	APH		
TIME				' TIME		TIME	RAIN
hrs r	mm/hr İ	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
				6.250			
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03

```
LangstaffRd_EA_Existing_WestDonWatershd
0.00 | 3.333 | 3.05 | 6.417 | 11.18 |
1.02 | 3.417 | 3.05 | 6.500 | 11.18 |
1.02 | 3.500 | 3.05 | 6.500 | 11.18 |
1.02 | 3.583 | 2.03 | 6.667 | 11.18 |
1.02 | 3.583 | 2.03 | 6.667 | 11.18 |
1.02 | 3.583 | 2.03 | 6.70 | 11.18 |
1.02 | 3.750 | 2.03 | 6.750 | 11.18 |
1.03 | 3.750 | 2.03 | 6.750 | 11.18 |
1.04 | 3.917 | 3.05 | 6.917 | 5.08 | 1 |
1.02 | 4.000 | 3.05 | 7.000 | 5.08 | 1 |
1.02 | 4.083 | 2.03 | 7.167 | 5.08 | 1 |
1.02 | 4.250 | 2.03 | 7.250 | 5.08 | 1 |
1.02 | 4.417 | 2.03 | 7.350 | 5.08 | 1 |
1.02 | 4.417 | 5.08 | 7.500 | 4.06 | 1 |
1.02 | 4.590 | 5.08 | 7.580 | 4.06 | 1 |
1.02 | 4.590 | 5.08 | 7.580 | 4.06 | 1 |
1.02 | 4.583 | 4.06 | 7.667 | 4.06 | 1 |
1.02 | 4.583 | 4.06 | 7.667 | 4.06 | 1 |
                                     0.250
                                                                                                                                                                                                          9.50
9.58
                                     0.333
                                                                                                                                                                                                                                      2.03
                                    0.533
0.417
0.500
0.583
0.667
0.750
                                                                                                                                                                                                                                     2.03
2.03
2.03
2.03
2.03
2.03
                                     0.833
                                                                                                                                                                                                                                      2.03
                                     0.917
                                                                                                                                                                                                       10.17
                                                                                                                                                                                                                                      2.03
                                                                                                                                                                              5.08
5.08
5.08
4.06
4.06
4.06
4.06
4.06
                                     1.000
                                                                                                                                                                                                                                      2.03
                                                                                        4.083
4.167
4.250
4.333
4.417
4.500
4.583
                                                                                                                        2.03
2.03
2.03
5.08
5.08
5.08
4.06
                                     1.083
1.167
1.250
1.333
                                                                                                                                                                                                       10.33
10.42
10.50
10.58
                                                                                                                                                                                                                                      1.02
1.02
1.02
1.02
                                                                  1.02
                                                                                                                                                                                                       10.67
                                                                                                                                                                                                                                      1.02
                                     1.417
                                                                                                                                                7,667
                                                                                                                                                                                                       10.75
                                                                                                                                                                                                                                      1.02
                                                                                                                        4.06
4.06
4.06
4.06
4.06
5.08
5.08
5.08
                                     1.583
                                                                  2.03
                                                                                          4.667
                                                                                                                                                7.750
                                                                                                                                                                              4.06
4.06
4.06
3.05
3.05
3.05
3.05
3.05
3.05
2.03
2.03
2.03
3.05
3.05
                                                                                                                                                                                                       10.83
                                                                                                                                                                                                                                      2.03
                                     1.667
                                                                                          4.750
                                                                                                                                               7.833
7.917
8.000
8.083
8.167
8.250
8.333
8.417
8.500
8.583
8.667
8.750
8.833
                                                                                                                                                                                                       10.92
                                                                 2.03
1.02
1.02
1.02
                                                                                        4.833
4.917
5.000
5.083
                                                                                                                                                                                                       11.00
11.08
11.17
11.25
                                                                                                                                                                                                                                      2.03
1.02
1.02
1.02
                                     1.750
                                     2.083
                                                                  1.02
                                                                                         5.167
                                                                                                                                                                                                       11.33
                                                                                                                                                                                                                                      1.02
                                     2.167
                                                                   1.02
                                                                                          5,250
                                                                                                                                                                                                       11.42
                                                                                                                                                                                                                                      1.02
                                                                                                                         7.11
7.11
7.11
8.13
8.13
8.13
                                     2.250
                                                                  1.02
                                                                                          5.333
                                                                                                                                                                                                       11.50
                                                                                                                                                                                                                                      1.02
                                                                  3.05
3.05
3.05
2.03
2.03
                                                                                          5.333
5.417
5.500
5.583
5.667
5.750
5.833
                                      2 333
                                                                                                                                                                                                                                      1 02
                                     2.333
2.417
2.500
2.583
2.667
                                                                                                                                                                                                       11.58
11.67
11.75
11.83
11.92
                                                                                                                                                                                                                                      1.02
1.02
1.02
2.03
2.03
                                                                                                                    8.13 | 8.833
56.90 | 8.917
56.90 | 9.000
56.90 | 9.083
57.91 | 9.167
57.91 | 9.250
                                                                  2.03
                                     2.750
                                                                                                                                                                                                       12.00
                                                                                                                                                                                                                                      2.03
                                     2.833
                                                                   3.05
                                                                                          5.917
                                                                                                                                                                                                       12.08
                                                                                                                                                                                                                                      1.02
                                     2.917
                                                                  3.05
                                                                                          6.000
                                                                                                                                                                               2.03
                                                                                                                                                                                                       12.17
                                                                                                                                                                                                                                      1.02
                                                                                           6 083
                                                                                                                                                                                                       12.25
                                     3.083
                                                                 2.03
                                                                                          6.167
                                                                                             57.91
5.00
2.73 (ii)
5.00
                                                                                                                                         31.36
15.00
13.95 (ii)
15.00
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                0.29
                                                                                                                                             0.08
                                                                                                                                                                                       *TOTALS*
```

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

Max.Eff.Inten.(mm/hr)= over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 79.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

0.10 6.25 62.75 63.75

0.98

Page 97

a a2 6.33 27.34 63.75

0.43

0.118 (iii) 6.25 52.12 63.75

LangstaffRd_EA_Existing_WestDonWatershd (m)= 531.00 40.00 = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

```
TRANSFORMED HYFTOGRAPH -
                                         RAIN | TIME
mm/hr | hrs
0.00 | 3.167
0.00 | 3.250
0.00 | 3.333
                                                                                                                                                                                                                   RAIN | TIME
mm/hr | hrs
67.05 | 9.33
13.21 | 9.42
13.21 | 9.50
TIME
hrs
0.083
                                                                                                                                 RAIN |'
mm/hr |'
2.03 | 6.
2.03 | 6.
                                                                                                                                                                          ' TIME
' hrs
6.250
                                                                                                                                                                                                                                                                                                                   RAIN
mm/hr
3.05
3.05
                                                                                                                                                                                                                                                                      hrs
9.33
9.42
                                                                                                                                                                       6.333
6.417
6.590
6.583
6.667
6.750
6.833
6.917
7.000
7.083
7.167
7.250
7.333
7.417
7.500
7.583
0.167
0.250
                                                                                                                                      3.05
                                                                                                                                                                                                                                                                                                                     3.05
                                             1.02
1.02
1.02
2.03
2.03
2.03
                                                                                                                                                                                                                                                                   9.50
9.58
9.67
9.75
9.83
9.92
10.00
0.333
                                                                                     3.417
                                                                                                                                      13.21
                                                                                                                                                                                                                                                                                                                   2.03
0.333
0.417
0.500
0.583
0.667
0.750
                                                                                                                                                                                                                      13.21
13.21
13.21
6.10
6.10
6.10
6.10
6.10
5.08
5.08
5.08
4.06
4.06
                                                                                     3.583
3.667
3.750
3.833
0.833
                                               1.02
                                                                                     3.917
                                                                                                                                                                                                                                                                   10.08
                                                                                                                                                                                                                                                                                                                   2.03
                                                                                  4.000
4.083
4.167
4.250
4.333
4.417
4.500
4.583
0.917
                                                1.02
                                                                                                                                                                                                                                                                   10.17
                                                                                                                                                                                                                                                                                                                   2.03
                                             1.02
2.03
2.03
2.03
1.02
                                                                                                                                                                                                                                                                   10.17
10.25
10.33
10.42
10.50
10.58
                                                                                                                                                                                                                                                                                                                   2.03
2.03
2.03
2.03
2.03
1.02
1.000
 1 083
1.167
1.250
1.333
1.417
                                                                                                                              5.08 7.567
5.08 7.567
5.08 7.583
6.10 7.917
6.10 8.090
6.10 8.083
5.08 8.167
5.08 8.250
5.08 8.333
8.13 8.417
8.13 8.590
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.14 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
9.15 8.667
                                                                                                                                      5.08
5.08
1.500
                                               1.02
                                                                                                                                                                          7.667
                                                                                                                                                                                                                                                                   10.75
                                                                                                                                                                                                                                                                                                                   1.02
1.583
                                                                                     4.667
                                                                                                                                                                                                                                                                   10.83
                                                                                                                                                                                                                                                                                                                   2.03
                                                                                                                                                                                                                           4.06
4.06
4.06
5.08
5.08
5.08
                                             2.03
2.03
1.02
1.02
                                                                                  4.750
4.833
4.917
5.000
5.083
                                                                                                                                                                                                                                                                                                                   2.03
2.03
1.02
1.02
1.667
1.750
                                                                                                                                                                                                                                                                   10.92
                                                                                                                                                                                                                                                                 11.00
11.08
11.17
11.25
                                                1.02
2.083
                                                2.03
                                                                                     5.167
                                                                                                                                                                                                                                                                   11.33
                                                                                                                                                                                                                                                                                                                   2.03
2.167
                                               2.03
                                                                                     5.250
                                                                                                                                                                                                                             3.05
                                                                                                                                                                                                                                                                   11.42
                                                                                                                                                                                                                                                                                                                   2.03
                                                                                                                                                                                                                             3.05
3.05
3.05
3.05
3.05
3.05
3.05
2.250
                                               2.03
                                                                                     5.333
                                                                                                                                                                                                                                                                   11.50
                                                                                                                                                                                                                                                                                                                   2.03
                                                                                     5.333
5.417
5.500
5.583
5.667
5.750
5.833
                                               3.05
3.05
3.05
3.05
3.05
2.333
                                                                                                                                                                                                                                                                   11.58
                                                                                                                                                                                                                                                                                                                   1.02
                                                                                                                                                                                                                                                                 11.67
11.75
11.83
11.92
2.667
                                                3.05
                                                                                                                                                                                                                                                                                                                   2.03
2.750
                                                3.05
                                                                                                                                                                                                                                                                   12.00
                                                                                                                                                                                                                                                                                                                   2.03
2.833
                                               3.05
                                                                                   5.917
                                                                                                                                                                                                                             3.05
                                                                                                                                                                                                                                                                 12.08
                                                                                                                                                                                                                                                                                                                   1.02
2.917
                                                3.05
                                                                                     6.000
                                                                                                                                                                                                                                                                   12.17
                                                                                                                                                                                                                                                                                                                   1.02
                                             3.05 |
                                                                                     6.083
                                                                                                                                                                                                                           2.03
                                                                                                                                                                                                                                                                 12.25
                                                                                                                                                                                                                                                                                                                   1.02
```

0.06 Page 99

TOTALS

20.00

10.00 20.00 8.16 (ii) 17.46 (ii)

10.00

10.00

 $Lang staff Rd_EA_Existing_WestDonWatershd \\ THAN \ THE \ STORAGE \ COEFFICIENT.$ (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0375)							
1 + 2 = 3	Al	REA QF	PEAK	TPEAK	R.V.		
	(1	ha) (c	ms)	(hrs)	(mm)		
ID1= 1 (030	0): 10	.00 1.3	182	6.25	55.67		
ID1= 1 (030 + ID2= 2 (035	0): 0	.90 0.1	.18	6.25	52.12		
ID = 3 (037				====== 6.25			
NOTE: PEAK FLOW	IS DO NOT	TNCLUDE E	SASFFI OW	S TF ANY	· .		

		**					
** SIMULATION:Run 05 ***********							
*******	*****	**					
READ STORM	Filenar	ne: C:\Us	ers\ray	.zhao\Ap	pD		
j i			ocal\Te		•		
i i					819-1b449	900a1c25\d	155f
Ptotal= 74.42 mm	Comment	ts: 25yr-	12hrSCS				
TIME	RAIN mm/hr 0.00 1.002 2.03 1.02 2.03 1.02 2.03 3.05 3.05 3.05	TIME	RAIN	TIME	RAIN	TIME	R.
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm,
0.25	0.00	3.50	3.05	6.75	13.21	10.00	2.0
0.50	1.02	3.75	3.05	7.00	6.10	10.25	2.0
0.75	2.03	4.00	3.05	7.25	6.10	10.50	2.0
1.00	1.02	4.25	3.05	7.50	5.08	10.75	1.0
1.25	2.03	4.50	5.08	/./5	4.06	11.00	2.0
1.50	1.02	4.75	5.08	8.00	4.06	11.25	1.0
1.75	2.03	5.00	6.10	8.25	5.08	11.50	2.0
2.00	1.02	5.25	5.08	8.50	3.05	11.75	1.0
2.25	2.03	5.50	8.13	8.75	3.05	12.00	2.0
2.50	3.05	1 6 00	67.00	9.00	3.05	1 12.25	1.1
2./3	3.05	1 6.00	67.00	9.25	2.05	1	
3.00	3.05 2.03	6.23	13 21	0.75	2 03	ŀ	
3.23	2.03	0.50	13.21	1 3.73	2.03		
CALIB							
STANDHYD (0145)	Area	(ha)=	3.05				
ID= 1 DT= 5.0 min	Total In	np(%)= 6	2.00	Dir. Con	n.(%)= (62.00	
·							
		IMPERVIOL			i)		
Surface Area Dep. Storage	(ha)=	1.89		1.16			
Dep. Storage	(mm)=	2.00		5.00			
Average Slope	(%)=	1.00		2.00			

	Lana	-+	xisting WestDor	al-last a a a b d
PEAK FLOW	(cms)=	0.34	0.11	
				0.438 (iii)
TIME TO PEAK	(hrs)=	6.25	6.42	6.25
RUNOFF VOLUME	(mm)=	72.42	43.51	61.43
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42
RUNOFF COEFFICI	FNT =	0.97	0.58	0.83

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0140) | |ID= 1 DT= 5.0 min | Area (ha)= 1.27 Total Imp(%)= 52.00 Dir. Conn.(%)= 52.00

IMPERVIOUS PERVIOUS (i) 0.66 2.00 1.00 503.00 0.013 0.61 5.00 2.00 25.00 0.250 Surface Area Dep. Storage Average Slope Length (mm)= (%)= (m)= Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH TIME hrs 3.167 RAIN mm/hr 2.03 2.03 RAIN | mm/hr | 67.05 | TIME hrs 0.083 RAIN mm/hr 0.00 0.00 | TIME | TIME | 6.250 | 6.333 | 6.417 | 6.500 | 6.583 | 6.667 | 6.750 | 6.833 | 6.917 | 7.000 | 7.083 TIME hrs 9.33 9.42 RAIN mm/hr 3.05 0.167 3.250 13.21 3.05 0.250 0.00 3.333 3.05 13.21 9.50 9.58 3.05 0.333 1.02 3.417 3.05 13.21 2.03 3.417 3.500 3.583 3.667 3.750 3.833 3.917 13.21 13.21 13.21 13.21 6.10 6.10 0.533 0.417 0.500 0.583 0.667 0.750 1.02 1.02 2.03 2.03 2.03 3.05 3.05 3.05 3.05 3.05 9.67 9.75 9.83 9.92 2.03 2.03 2.03 2.03 3.05 10.00 2.03 0.833 1.02 3.05 10.08 2.03 0.917 1.02 4.000 3.05 6.10 10.17 2.03 7.167 7.250 7.333 7.417 7.500 7.583 1.000 1.02 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 3.05 10.25 2.03 1.083 1.167 1.250 1.333 2.03 2.03 2.03 1.02 1.02 3.05 3.05 5.08 5.08 6.10 5.08 5.08 5.08 4.06 10.23 10.33 10.42 10.50 10.58 2.03 2.03 2.03 2.03 1.02 1.02 5.08 1.417 10.67 7.667 7.750 7.833 7.917 1.500 1.02 5.08 4.06 10.75 1.02 1.583 2.03 5.08 4.06 10.83 2.03 1 667 2 03 5 08 4 96 10 92 1.750 2.03 6.10 11.00

	1.833				ing_WestDor 8.000		11.08	1.6
	1.917	1.02	5.000	6.10	8.083	5.08		1.0
	2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.0
	2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.0
	2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.
	2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.
	2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.
	2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.
	2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.
	2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.
	2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.
	2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.
	2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.
	2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.
	3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.
	3.083	2.03	6.167	67.06	9.250	2.03	İ	
Max.Eff.I	nten.(mr	m/hr)=	67.06		46.22			
	over	(min)	10.00		20.00			
Storage C	oeff.	(min)=	7.90	(ii)	15.15 (ii)			
Jnit Hyd.	Tpeak	(min)=	10.00		20.00			
Jnit Hyd.	peak	(cms)=	0.13		0.07			
						T0	TALS	
PEAK FLOW		(cms)=	0.12		0.05	0	.168 (iii)	
IME TO P	EAK	(hrs)=	6.25		6.33		5.25	
RUNOFF VO	LUME	(mm)=	72.42		39.68	50	5.70	
	NFALL	(mm)=	74.42		74.42	74	4.42	
TOTAL RAI		NT =	0.97		0.53		2.76	

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0135)| |ID= 1 DT= 5.0 min | Area (ha)= 1.43 Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.57 2.00 1.00 503.00 0.86 5.00 2.00 30.00 Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

Page 101

LangstaffRd_EA_Existing_WestDonWatershd
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
CN* = 84.0 I a= Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COFFFICENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0420)| 1 + 2 = 3 | QPEAK (cms) 0.174 0.168 R.V. (mm) 53.51 56.70 AREA (hrs) 6.25 6.25 (ha) 1.43 1.27

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0425)| 1 + 2 = 3 | ID1= 1 (0145): + ID2= 2 (0420): AREA (ha) 3.05 2.70 QPEAK (cms) 0.438 0.342 TPEAK (hrs) 6.25 6.25 R.V. (mm) 61.43 55.01 ID = 3 (0425): 5.75 0.780

Area (ha)= 0.96 Total Imp(%)= 44.00 Dir. Conn.(%)= 44.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.54 5.00 2.00 20.00 Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				HYETOGR			
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21 İ	9.58	2.03

Page 103

LangstaffRd EA Existing WestDonWatershd								
	IN TIME		l' TIME	RAIN		RAIN		
hrs mm/		mm/hr		mm/hr		mm/hr		
	00 3.167	2.03		67.05		3.05		
	00 3.250	2.03		13.21		3.05		
	00 3.333	3.05		13.21		3.05		
	02 3.417	3.05		13.21		2.03		
	02 3.500	3.05		13.21		2.03		
	02 3.583	3.05		13.21		2.03		
	03 3.667		6.750	13.21		2.03		
	03 3.750	3.05		6.10		2.03		
	03 3.833			6.10		2.03		
	02 3.917	3.05		6.10		2.03		
	02 4.000	3.05		6.10		2.03		
	02 4.083			6.10		2.03		
	03 4.167			6.10		2.03		
	03 4.107	3.05		5.08		2.03		
	03 4.230			5.08		2.03		
	02 4.417			5.08		1.02		
	02 4.417	5.08		4.06		1.02		
	02 4.588			4.06		1.02		
	03 4.667			4.06		2.03		
				4.06				
	03 4.750 03 4.833	5.08				2.03		
	02 4.833			4.06				
			8.000	4.06		1.02		
	02 5.000			5.08		1.02		
	02 5.083		8.167	5.08		1.02		
	03 5.167			5.08		2.03		
	03 5.250		8.333	3.05		2.03		
	03 5.333		8.417	3.05		2.03		
	05 5.417			3.05		1.02		
	05 5.500	8.13		3.05		1.02		
	05 5.583	9.14		3.05		1.02		
	05 5.667		8.750	3.05		2.03		
	05 5.750			3.05		2.03		
	05 5.833			3.05		2.03		
	05 5.917			3.05		1.02		
	05 6.000			2.03		1.02		
	05 6.083	67.06		2.03		1.02		
3.083 2.	03 6.167	67.06	9.250	2.03				
Max.Eff.Inten.(mm/hr)=	67.06		47.54					
over (min)	10.00		20.00					
Storage Coeff. (min)=			15.90 (ii)					
Unit Hyd. Tpeak (min)=			20.00	,				
Unit Hyd. peak (min)=			0.07					
Unit nyu. peak (Cms)=	0.13		0.07	******	ALS*			
PEAK FLOW (cms)=	0.10		0.08		174 (iii)			
TIME TO PEAK (hrs)=			6.42		5.25			
RUNOFF VOLUME (mm)=			40.91		3.51			
TOTAL RAINFALL (mm)=			74.42		1.42			
RUNOFF COEFFICIENT =	0.97		0.55		1.72			

Page 102

	t- CCD4 F		!!+В.			
	angstaffRd_E 02 3.500	:A_EX1ST1 3.05		nWaters		2.03
	02 3.583	3.05		13.21		2.03
	03 3.667	3.05	6.750	13.21	9.73	2.03
	03 3.750	3.05	6.833	6.10		2.03
	03 3.833	3.05	6.917	6.10		2.03
	02 3.917	3.05		6.10		2.03
	02 4.000	3.05	7.083	6.10		2.03
	02 4.083	3.05	7.167	6.10		2.03
	03 4.167	3.05	7.250	6.10		2.03
	03 4.250	3.05	7.333	5.08		2.03
	03 4.333	5.08	7.417	5.08		2.03
	02 4.417	5.08	7.500	5.08		1.02
1.417 1.	02 4.500	5.08	7.583	4.06	10.67	1.02
1.500 1.	02 4.583	5.08	7.667	4.06	10.75	1.02
1.583 2.	03 4.667	5.08	7.750	4.06		2.03
1.667 2.	03 4.750	5.08	7.833	4.06	10.92	2.03
1.750 2.	03 4.833	6.10	7.917	4.06	11.00	2.03
1.833 1.	02 4.917	6.10	8.000	4.06	11.08	1.02
1.917 1.	02 5.000	6.10		5.08		1.02
	02 5.083	5.08		5.08		1.02
	03 5.167	5.08		5.08		2.03
	03 5.250	5.08		3.05		2.03
	03 5.333	8.13		3.05		2.03
	05 5.417	8.13		3.05		1.02
	05 5.500	8.13		3.05		1.02
	05 5.583	9.14		3.05		1.02
	05 5.667	9.14		3.05		2.03
	05 5.750	9.15	8.833	3.05		2.03
	05 5.833 05 5.917	67.06 67.06		3.05		2.03 1.02
	05 6.000	67.06		2.03		1.02
	05 6.083	67.06		2.03		1.02
	03 6.167	67.06		2.03		1.02
3.003 2.	03 0.107	07.00	3.230	2.03		
Max.Eff.Inten.(mm/hr)=	67.06		46.22			
over (min)	10.00		15.00			
Storage Coeff. (min)=			13.93 (ii)		
Unit Hyd. Tpeak (min)=	10.00		15.00			
Unit Hyd. peak (cms)=	0.13		0.08			
				T01	TALS	
PEAK FLOW (cms)=			0.05		.126 (iii)
TIME TO PEAK (hrs)=			6.33		5.25	
RUNOFF VOLUME (mm)=			39.68		1.08	
TOTAL RAINFALL (mm)=			74.42		1.42	
RUNOFF COEFFICIENT =	0.97		0.53	6	9.73	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

LangstaffRd_EA_Existing_WestDonWatershd

CALIB STANDHYD (0205) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.11 38.00	Dir. Conn.(%)=	38.00
		IMPERVIOUS		PERVIOUS (i)	
Surface Area	(ha)=	0.42		0.69	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	470.00		20.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02

Page 105

	Langs	taffRd_E		ing_WestDo			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083		3.167		6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500		3.583			13.21		2.03
0.583		3.667		6.750	13.21		2.03
0.667		3.750			6.10		2.03
0.750		3.833		6.917	6.10		2.03
0.833		3.917		7.000	6.10		2.03
0.917		4.000		7.083	6.10		2.03
1.000		4.083		7.167	6.10		2.03
1.083		4.167		7.250	6.10		2.03
1.167		4.250	3.05		5.08		2.03
		4.230					2.03
1.250				7.417	5.08		
1.333		4.417			5.08		1.02
1.417		4.500		7.583	4.06		1.02
1.500		4.583			4.06		1.02
1.583		4.667	5.08		4.06		2.03
1.667		4.750		7.833		10.92	2.03
1.750		4.833		7.917	4.06		2.03
1.833		4.917		8.000	4.06		1.02
1.917		5.000		8.083	5.08		1.02
2.000		5.083		8.167	5.08		1.02
2.083		5.167		8.250	5.08		2.03
2.167		5.250		8.333	3.05		2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750		5.833		8.917	3.05		2.03
2.833		5.917		9.000	3.05		1.02
2.917		6.000		9.083	2.03		1.02
3.000		6.083		9.167	2.03		1.02
3.083		6.167		9.250	2.03		1.02
		0.107	07.00	7.230	2.03	'	
Max.Eff.Inten.(m	m/hr)=	67.06		43.68			
over	(min)	5.00		15.00			
Storage Coeff.	(min)=	6.02		14.13 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		15.00			
Unit Hyd. peak	(cms)=	0.19		0.08			
•					*T0	TALS*	

⁽i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

0.07 6.25 72.42 74.42 0.97

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

Page 107

0.03 6.33 37.36 74.42 0.50

TOTALS
0.100 (iii)
6.25
57.33
74.42
0.77

2.917 3 3.000 3 3.083 2	.05 6.000		ıg_wesτι	DonWater		
3 000 3		67.06	9.083	2.03	12.17	1.6
2.000 3	.05 6.083	67.06	9.167	2.03	12.25	1.6
3.083 2	.03 6.167	67.06	9.250	2.03	:	
Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min) Unit Hyd. Tpeak (min) Unit Hyd. peak (cms)						
over (min)	10.00	1	5.00			
Storage Coeff. (min)	= 7.59	(ii) 1	3.93 (i	i)		
Unit Hyd. Tpeak (min)	= 10.00	1	5.00			
Unit Hyd. peak (cms)	= 0.13		0.08			
					OTALS*	
PEAK FLOW (cms) TIME TO PEAK (hrs) RUNOFF VOLUME (mm) TOTAL RAINFALL (mm) RUNOFF COEFFICIENT	= 0.08		0.07		0.140 (iii)	1
TIME TO PEAK (hrs)	= 6.25		6.33		6.25	
RUNUFF VULUME (MM):	= /2.42	3	9.68		52.12 74.42	
DUNCE COFFEE (MIII)	= /4.42	,	4.42		0.70	
KUNOFF COEFFICIENT	= 0.97		0.55		0.70	
(i) CN PROCEDURE SE CN* = 83.0 (ii) TIME STEP (DT): THAN THE STORAG (iii) PEAK FLOW DOES	Ia = Dep. S SHOULD BE SMA E COEFFICIEN	Storage ALLER OR F.	(Above) EQUAL			
ADD HYD (0460) 1 + 2 = 3 ID1= 1 (0205): + ID2= 2 (0210):	ADEA O	DEAU T	DEAK	B.V		
1 + 2 - 3	(ha) (r	eme) (hne)	(mm)		
TD1= 1 (0205):	1.11 0.1	140 6	. 25	52.12		
+ ID2= 2 (0210):	0.96 0.1	126 6	. 25	54.08		
============						
ID = 3 (0460):	2.07 0.2	266 6	. 25	53.03		
NOTE: PEAK FLOWS DO						
CALTR	a (ha)=	0.70				
CALIB	a (ha)= al Imp(%)= !	0.70 57.00 D	ir. Con	n.(%)=	57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	THRERVITO	ıc nen	VITOUS (57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	THRERVITO	ıc nen	VITOUS (57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	THRERVITO	ıc nen	VITOUS (57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	THRERVITO	ıc nen	VITOUS (57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	THRERVITO	ıc nen	VITOUS (57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	THRERVITO	ıc nen	VITOUS (57.00	
CALIB STANDHYD (0230) Are ID= 1 DT= 5.0 min Tot	IMPERVIOL = 0.40 = 2.00 = 1.00 = 320.00 = 0.013	JS PER 2 0	VIOUS (0.30 5.00 2.00 5.00	i)		

TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

Page 106

LangstaffRd_EA_Existing_WestDonWatershd
CN* = 81.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COFFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB			
STANDHYD (0225)	Area	(ha)= 0.9	
ID= 1 DT= 5.0 min	Total	Imp(%) = 53.0	00 Dir. Conn.(%)= 53.00
		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.48	0.42
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	320.00	25.00
Mannings n	=	0.013	0.250
NOTE: RATNE	A11 MAC	TRANSFORMED :	TO 5.0 MTN TIME STEP

•	MAINI ALL	· WAS	I IVANOI OIUIE	0 10	J.O MIN.	TIME STE	-1 -					
	TRANSFORMED HYETOGRAPH											
	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
	0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05				
	0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05				
	0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05				
	0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03				
	0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03				
	0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03				
	0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03				
	0.667	2.03	3.750	3.05	6.833	6.10		2.03				
	0.750	2.03	3.833	3.05	6.917	6.10		2.03				
	0.833	1.02	3.917	3.05	7.000	6.10		2.03				
	0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03				
	1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03				
	1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03				
	1.167	2.03		3.05	7.333	5.08	10.42	2.03				
	1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03				
	1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02				
	1.417	1.02	4.500	5.08	7.583	4.06		1.02				
	1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02				
	1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03				
	1.667	2.03		5.08	7.833	4.06		2.03				
	1.750	2.03		6.10	7.917	4.06		2.03				
	1.833	1.02	4.917	6.10	8.000	4.06		1.02				
	1.917	1.02	5.000	6.10	8.083	5.08		1.02				
	2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02				
	2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03				
	2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03				
	2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03				
	2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02				
	2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02				

	Langs	taffRd_E	A_Exist	ing_WestDor	Waters	hd	
2.50	0 3.05	5.583	9.14	8.667	3.05	11.75	1.0
2.58	3 3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.66	7 3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.75	0 3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.83	3 3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.91	7 3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.00	0 3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.08	3 2.03	6.167	67.06	9.250	2.03	İ	
Max.Eff.Inten.(mm/hr)=	67.06		46.22			
over	(min)	5.00		15.00			
Storage Coeff.	(min)=	6.02	(ii)	13.27 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		15.00			
Unit Hyd. peak	(cms)=	0.19		0.08			
					T0	TALS	
PEAK FLOW	(cms)=	0.09		0.04	0	.128 (iii)
TIME TO PEAK	(hrs)=	6.25		6.33		5.25	
RUNOFF VOLUME	(mm)=	72.42		39.68	5	7.02	
TOTAL RAINFALL	(mm)=	74.42		74.42	74	4.42	
RUNOFF COEFFICI	ENT =	0.97		0.53		0.77	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0475) 1 + 2 = 3		QPEAK (cms) 0.128 0.100	TPEAK (hrs) 6.25 6.25	R.V. (mm) 57.02 57.33
ID = 3 (0475):	1.60	0.228	6.25	57.16

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB	_			
STANDHYD (0220)	Area	(ha)= 0.65		
ID= 1 DT= 5.0 min	Total	Imp(%) = 46.06	Dir. Conn.(%)=	46.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.30	0.35	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	260.00	20.00	
Mannings n	=	0.013	0.250	

Page 109

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0215)	Area	(ha)=	0.58				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
		IMPERVI	OUS	PERVIO	US (i)		
Surface Area	(ha)=	0.3	3	0.2	5		
Dep. Storage	(mm)=	2.0	10	5.00	9		
Average Slope	(%)=	1.0	10	2.00	9		
Length	(m)=	260.0	10	30.00	9		
Mannings n		0.01	.3	0.250	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05			
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05			
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05			
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03			
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03			
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03			
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03			
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03			
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03			
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03			
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03			
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02			
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02			
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02			

Page 111

LangstaffRd_EA_Existing_WestDonWatershd NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	ED HYETOGR	ΔРН	_	
TIM	E RAIN		RAIN		RAIN		RAIN
hr:					mm/hr		mm/hr
0.08		3.167		6.250	67.05		3.05
0.16		3.250		6.333	13.21		3.05
0.25		3.333		6.417	13.21		3.05
0.33		3.417		6.500	13.21 13.21		2.03
0.41							2.03
0.50		3.583		6.667	13.21		2.03
0.58		3.667	3.05		13.21		2.03
0.66		3.750		6.833	6.10		2.03
0.75		3.833		6.917		10.00	2.03
0.83		3.917		7.000		10.08	2.03
0.91		4.000		7.083		10.17	2.03
1.00		4.083		7.167		10.25	2.03
1.08		4.167		7.250		10.33	2.03
1.16		4.250		7.333		10.42	2.03
1.25		4.333		7.417		10.50	2.03
1.33		4.417		7.500		10.58	1.02
1.41		4.500	5.08			10.67	1.02
1.50		4.583				10.75	1.02
1.58	3 2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.66		4.750		7.833		10.92	2.03
1.75	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.83	3 1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.91	7 1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.00	0 1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.08	3 2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.16	7 2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.25	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.33	3 3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.41	7 3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.50	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.58	3 3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.66	7 3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.75	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.83	3 3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.91	7 3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.00	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.08	3 2.03	6.167	67.06	9.250	2.03	j	
Max.Eff.Inten.(67.06		46.22			
	(min)	5.00		15.00			
Storage Coeff.	(min)=	5.32	(11)	11.66 (ii)		
Unit Hyd. Tpeak		5.00		15.00			
Unit Hyd. peak	(cms)=	0.21		0.09			
PEAK FLOW	(cms)=	0.06		0.02		TALS*	
	(cms)= (hrs)=			0.03 6.33		.090 (iii)	
TIME TO PEAK		6.25				6.25	
RUNOFF VOLUME	(mm)=	72.42		39.68	54	4.73	
			Page	110			

	Lange	+-4404 5	A Evict	ing WestDon	Watone	hd	
2.083		5.167	5.08		5.08	11.33	2.03
2.167		5.250	5.08		3.05		2.03
2.250		5.333			3.05		2.03
2.333		5.417			3.05		1.02
2.417		5.500	8.13		3.05		1.02
2.417		5.583			3.05		1.02
					3.05		2.03
2.583							
2.667		5.750	9.15		3.05	11.92	2.03
2.750			67.06		3.05		2.03
2.833		5.917	67.06		3.05		1.02
2.917		6.000	67.06		2.03		1.02
3.000		6.083	67.06		2.03		1.02
3.083	2.03	6.167	67.06	9.250	2.03	l	
Max.Eff.Inten.(m		67.06		46.22			
over		5.00		15.00			
	(min)=			13.40 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		15.00			
Unit Hyd. peak	(cms)=	0.21		0.08			
						TALS*	
PEAK FLOW	(cms)=	0.06		0.02	0	.085 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	72.42		39.68	58	8.33	
TOTAL RAINFALL	(mm)=	74.42		74.42	74	4.42	
RUNOFF COEFFICIE	NT =	0.97		0.53		0.78	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) :	SHOULD BI	E SMALLER	OR EQUAL		
THAN THE STORAGE	E COEFFIC	CIENT.			
(iii) PEAK FLOW DOES I	NOT INCL	UDE BASEFL	OW IF AN	Υ.	
ADD HYD (0470)					
	ARFA	QPEAK	TPFAK	R.V.	
		(cms)			
ID1= 1 (0215):					
+ ID2= 2 (0220):					
1 102- 2 (0220).			0.25	54.75	
ID = 3 (0470):		0 175	6 25	E6 42	
10 - 3 (04/0).	1.23	0.1/3	0.23	30.43	
NOTE: DEAK FLOWS DO I	NOT THE	IDE DACEEL	OUG TE 41		
NOTE: PEAK FLOWS DO I	NOT INCLU	DDE BASEFL	.UWS IF A	NY.	
1					
ADD HYD (0480)					
1 1 1 2 - 3	AREA	ODEAK	TDEAK	P V	

ADD HYD (0480)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0470):	1.23	0.175	6.25	56.43
+ ID2= 2 (0475):	1.60	0.228	6.25	57.16

LangstaffRd_EA_Existing_WestDonWatershd

ID = 3 (0480): 2.83 0.402 6.25 56.84

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB				
STANDHYD (0160)	Area	(ha)= 0.43	3	
ID= 1 DT= 5.0 min	Total	Imp(%) = 56.00	<pre>Dir. Conn.(%)=</pre>	56.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.24	0.19	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	260.00	20.00	
Mannings n	` =	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02

Page 113

LangstaffRd_EA_Existing_MestDonWatershol 0.667 2.08 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.017 6.10 10.08 2.03 0.833 1.02 3.917 3.05 7.080 6.10 10.08 2.03 0.917 1.02 4.080 3.05 7.083 6.10 10.17 2.03 1.080 1.02 4.083 3.05 7.083 6.10 10.17 2.03 1.1060 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.335 5.08 10.42 2.03 1.150 2.03 4.353 5.08 7.417 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.500 5.08 10.58 1.02 1.417 1.02 4.590 5.08 7.583 4.06 10.67 1.02 1.580 2.03 4.657 5.08 7.570 4.06 10.675 1.02 1.147 1.02 4.590 5.08 7.583 4.06 10.67 1.02 1.580 1.03 4.667 5.08 7.750 4.06 10.675 1.02 1.581 2.03 4.667 5.08 7.750 4.06 10.675 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.675 1.02 1.667 2.03 4.750 5.08 7.575 4.06 10.83 2.03 1.667 2.03 4.363 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.808 5.08 11.17 1.02 2.000 1.02 5.003 5.08 5.08 8.167 5.08 11.17 1.02 2.001 1.02 5.000 6.10 8.000 4.06 11.00 2.03 2.03 2.03 5.167 5.08 8.167 5.08 11.25 1.02 2.03 3.05 5.667 9.14 8.750 3.05 11.45 1.02 2.150 2.03 5.533 8.13 8.417 3.05 11.55 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.55 1.02 2.501 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.502 3.05 5.83 67.06 9.167 2.03 12.25 1.02 2.503 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.503 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.513 3.05 5.667 9.15 8.833 3.05 11.55 1.02 2.503 3.05 5.667 9.15 8.833 3.05 11.57 1.02 3.000							
0.667 2.03 3.756 3.05 6.833 6.10 9.92 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 1.000 1.02 4.003 3.05 7.003 6.10 10.17 2.03 1.000 1.02 4.003 3.05 7.167 6.10 10.25 2.03 1.003 2.03 4.167 3.05 7.250 6.10 10.25 2.03 1.167 2.03 4.256 3.05 7.333 5.08 10.42 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.250 2.03 4.355 7.500 5.08 10.50 2.03 1.417 1.02 4.500 5.08 7.530 4.06 10.57 1.02 1.417 1.02 4.500 5.08 7.583 4.06 10.57 1.02 1.583 2.03 4.667 5.08 7.583 4.06 10.75 1.02 1.583 2.03 4.567 5.08 7.333 4.06 10.57 1.02 1.583 2.03 4.550 5.08 7.333 4.06 10.92 2.03 1.750 2.03 4.750 5.08 7.333 4.06 11.00 2.03 1.750 2.03 4.750 6.08 7.333 4.06 11.00 2.03 1.750 2.03 4.750 6.08 7.333 4.06 11.00 2.03 1.750 2.03 4.750 6.08 7.333 4.06 11.00 2.03 1.750 2.03 4.550 5.08 7.333 4.06 11.00 2.03 1.750 2.03 4.750 6.08 7.333 4.06 11.00 2.03 1.750 2.03 4.750 6.08 7.333 4.06 11.00 2.03 1.750 2.03 5.500 5.08 7.333 4.06 11.00 2.03 1.200 1.02 4.917 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.000 6.10 8.03 5.08 11.17 1.02 2.000 1.02 5.000 5.08 8.33 3.05 11.33 2.03 2.167 2.03 5.250 5.08 5.08 8.33 3.05 11.32 2.03 2.167 2.03 5.250 5.08 8.33 3.05 11.52 2.250 2.03 5.353 8.13 8.417 3.05 11.50 2.250 2.03 5.583 9.14 8.667 3.05 11.50 2.583 3.05 5.583 9.14 8.667 3.05 11.50 2.583 3.05 5.575 9.15 8.833 3.05 11.57 2.60 3.000 3.05 5.683 6.06 6.06 9.083 3.05 11.52 2.101 1.101 1.102 5.00 3.000 3.05 6.000 6.00 6.00 9.03 12.00 3.000 3.05 6.000 6.00 6.00 9.03 12.00 3.000 3.05 6.000 6.00 6.00 9.03 12.00 3.000 3.05 6.000 6.00 9.03 12.00 3.000 3.05 6.000 6.00 9.03 12.00 3.000 3.05 6.000 6.00 9.03 12.00 3.000 3.05 6.000 6.000 9.000 3.05 12.00 3.000 3.05 6.000 6.000 9.000 3.05 12.00	Lang	staffRd E	A Exist	ing WestDon	Waters	hd	
0.750							2.03
0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.083 2.03 4.167 3.05 7.250 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.353 5.08 10.42 2.03 1.150 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.500 5.08 10.58 1.02 1.417 1.02 4.500 5.08 7.533 4.06 10.67 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.667 2.03 4.675 5.08 7.575 4.06 10.83 2.03 1.667 2.03 4.458 5.08 7.667 4.06 10.75 1.02 1.670 2.03 4.853 6.10 7.917 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.09 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.08 1.02 1.017 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.37 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.33 2.03 2.250 2.03 5.567 5.08 8.133 3.05 11.50 2.03 2.250 2.03 5.550 8.13 8.417 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.590 3.05 5.500 8.13 8.583 3.05 11.58 1.02 2.590 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.501 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.502 2.03 5.500 8.13 8.583 3.05 11.50 2.03 2.503 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.591 3.05 5.500 8.13 8.583 3.05 11.50 11.50 2.500 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.501 3.05 5.500 8.13 8.583 3.05 11.50 1.00 2.917 3.06 5.500 6.06 6.06 6.07 6.05 1.155 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.77 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.75 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.7							
1.000	0.833 1.02	3.917	3.05	7.000	6.10	10.08	2.03
1.083 2.03 4.167 3.05 7.250 6.10 10.33 2.03	0.917 1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.500 5.08 10.58 1.02 1.417 1.02 4.500 5.08 7.583 4.06 10.57 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.583 2.03 4.567 5.08 7.533 4.06 10.57 1.02 1.583 2.03 4.750 5.08 7.333 4.06 10.92 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.167 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.157 5.08 8.13 8.583 3.05 11.57 1.02 2.417 3.05 5.583 9.14 8.679 3.05 11.58 1.02 2.580 3.05 5.583 9.14 8.679 3.05 11.57 1.02 2.583 3.05 5.583 9.14 8.679 3.05 11.58 1.02 2.667 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.833 3.05 5.917 67.06 9.083 2.03 12.17 1.02 2.833 3.05 6.083 67.06 9.083 2.03 12.17 1.02 2.833 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.080 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.080 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.080 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.080 3.05 6.083 67.06 9.083 2.03 12.15 1.02 4.084 5.084	1.000 1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.250	1.083 2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.333 1.02 4.417 5.08 7.500 5.08 10.58 1.02 1.417 1.02 4.500 5.08 7.583 4.06 10.675 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.675 1.02 1.583 2.03 4.750 5.08 7.750 4.06 10.75 1.02 1.667 2.03 4.750 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.733 4.06 10.83 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.080 4.06 11.08 10.2 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.003 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.003 2.167 2.03 5.550 5.08 8.333 3.05 11.50 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.550 5.08 8.350 3.05 11.50 2.03 2.250 2.03 5.550 8.13 8.590 3.05 11.50 2.03 2.250 2.03 5.550 8.13 8.583 3.05 11.57 1.02 2.417 3.05 5.583 9.14 8.67 3.05 11.57 1.02 2.503 3.05 5.567 9.15 8.833 3.05 11.77 1.02 2.503 3.05 5.563 9.15 8.833 3.05 11.2 2.667 3.06 5.583 6.06 8.917 3.05 11.20 2.03 2.833 3.05 5.567 9.15 8.833 3.05 11.20 2.03 2.833 3.05 5.567 9.15 8.833 3.05 11.20 2.03 2.833 3.05 5.583 9.14 8.67 3.05 11.58 1.02 2.500 3.05 5.683 6.06 6.983 6.06 9.083 2.03 12.17 1.02 2.833 3.05 5.917 67.06 9.083 2.03 12.10 2.03 2.833 3.05 6.000 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.080 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.093 2.03 12.15 1.02 3.000 3.05 6.080 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.15 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.15 1.02 3.000	1.167 2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.417 1.02 4.500 5.08 7.583 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.57 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.750 5.08 7.750 4.06 10.92 2.03 1.667 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.15 1.02 2.000 1.02 5.833 5.08 8.167 5.08 11.15 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.167 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.547 8.13 8.590 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.57 1.02 2.500 3.05 5.560 9.14 8.560 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.53 2.03 2.567 3.05 5.583 67.06 8.917 3.05 11.20 2.167 3.05 5.583 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 9.083 2.03 12.17 1.02 2.917 3.05 6.080 67.06 9.083 2.03 12.25 1.02 2.917 3.05 6.080 67.06 9.083 2.03 12.25 1.02 3.080 3.05 5.532 67.06 9.15 8.83 3.05 12.08 1.02 2.917 3.05 6.080 67.06 9.083 2.03 12.27 1.02 3.080 3.05 6.083 67.06 9.083 2.03 12.27 1.02 3.080 3.09 6.167 67.06 9.090 3.05 12.08 1.02 2.917 3.05 6.083 67.06 9.150 2.03 12.25 1.02 3.083 2.093 6.167 67.06 9.050 2.03 12.25 1.02 3.084 2.093 6.167 67.06 9.050 2.03 12.25 1.02 4011 Hyd. Tpeak (min) =	1.250 2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.500 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.759 4.06 10.83 2.03 1.667 2.03 4.759 5.08 7.833 4.06 10.93 2.03 1.750 2.03 4.4759 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.917 6.10 8.000 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 5.00 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.25 1.02 2.003 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.33 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.500 8.13 8.500 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.57 1.02 2.590 3.05 5.567 9.14 8.667 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.667 3.05 11.75 1.02 2.583 3.05 5.567 9.15 8.83 3.05 11.92 2.03 2.667 3.05 5.500 9.15 8.83 3.05 11.20 2.03 2.675 3.05 5.590 6.00 6.00 9.00 3.05 12.00 2.03 2.833 3.05 5.567 9.15 8.83 3.05 11.92 2.03 2.667 3.05 5.590 6.00 6.00 9.00 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.83 3.05 11.92 2.03 2.833 3.05 5.550 9.15 8.83 3.05 11.20 2.03 2.833 3.05 5.567 9.15 8.83 3.05 11.92 2.03 2.833 3.05 5.500 5.500 9.003 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.003 2.03 12.15 1.02 3.000 3.05 6.000 67.06 9.003 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.003 2.03 12.17 1.02 4.000 5.00	1.333 1.02	4.417			5.08	10.58	
1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.08 4.750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.080 4.06 11.00 2.03 1.917 1.02 5.080 6.10 8.083 5.08 11.17 1.02 2.080 1.02 5.080 5.08 8.157 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.33 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.081 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.580 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.580 3.05 5.550 9.15 8.833 3.05 11.92 2.03 2.566 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.667 3.05 5.591 67.06 9.080 3.05 11.20 2.03 2.833 3.05 5.917 67.06 9.080 3.05 12.00 2.03 2.833 3.05 6.080 67.06 9.083 2.03 12.17 1.02 3.080 3.08 5.080 67.06 9.083 2.03 12.15 1.02 3.080 3.08 5.080 6.706 9.083 2.03 12.15 1.02 3.080 3.08 5.500 5.00 15.00 Unit Hyd. peak (cms) =	1.417 1.02	4.500			4.06	10.67	1.02
1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.08 4.750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.080 4.06 11.00 2.03 1.917 1.02 5.080 6.10 8.083 5.08 11.17 1.02 2.080 1.02 5.080 5.08 8.157 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.33 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.081 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.580 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.580 3.05 5.550 9.15 8.833 3.05 11.92 2.03 2.566 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.667 3.05 5.591 67.06 9.080 3.05 11.20 2.03 2.833 3.05 5.917 67.06 9.080 3.05 12.00 2.03 2.833 3.05 6.080 67.06 9.083 2.03 12.17 1.02 3.080 3.08 5.080 67.06 9.083 2.03 12.15 1.02 3.080 3.08 5.080 6.706 9.083 2.03 12.15 1.02 3.080 3.08 5.500 5.00 15.00 Unit Hyd. peak (cms) =	1.500 1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.756		4.667	5.08	7.750	4.06	10.83	2.03
1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.05 1.02 2.000 1.02 5.083 5.08 8.157 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.259 5.08 11.25 1.02 2.167 2.03 5.256 5.08 8.259 5.08 11.25 1.02 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.583 3.05 5.583 67.06 8.917 3.05 11.02 2.1790 3.05 5.750 9.15 8.833 3.05 11.02 2.03 2.750 3.05 5.750 9.15 8.833 3.05 11.02 2.03 2.750 3.05 5.750 9.15 8.033 3.05 11.20 2.03 2.750 3.05 5.750 9.15 8.033 3.05 11.20 2.03 2.833 3.05 5.833 67.06 9.00 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.157 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.157 2.03 12.25 1.02 3.000 3.05 6.000 15.00 5torage Coeff. (min)= 5.32 (ti) 12.90 (ti) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. Tpeak (min)= 6.25 6.33 6.25				7.833			
1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02							
2.000			6.10	8.000			
2.083 2.09 5.167 5.08 8.250 5.08 11.33 2.09 2.167 2.09 5.250 5.08 8.333 3.05 11.452 2.03 2.250 2.09 5.333 8.13 8.417 3.05 11.59 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.59 2.03 2.417 3.05 5.550 8.13 8.583 3.05 11.57 1.02 2.500 3.05 5.583 9.14 8.67 3.05 11.75 1.02 2.583 3.05 5.667 9.14 8.67 3.05 11.75 1.02 2.667 3.05 5.657 9.14 8.750 3.05 11.75 1.02 2.667 3.05 5.583 9.14 8.750 3.05 11.92 2.03 2.667 3.05 5.583 67.06 8.917 3.05 11.92 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.157 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.157 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.15 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.15 2.03 12.17 1.02 3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)=							
2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03							
2.256 2.03 5.333 8.13 8.417 3.05 11.50 2.03			5.08	8.250			
2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.58 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.67 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.75 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.83 2.03 2.750 3.05 5.750 9.15 8.833 3.05 11.83 2.03 2.750 3.05 5.750 9.15 8.833 3.05 12.02 2.03 2.750 3.05 5.917 67.06 9.000 3.05 12.02 1.02 2.03 2.93 2.917 3.05 6.000 67.06 9.000 3.05 12.02 1.02 2.03 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.157 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.08 2.03 12.17 1.02 3.000 67.06 9.250 2.03 12.25 1.02 3.08 12.02 1.02 3.000 3.05 6.167 67.06 9.250 2.03 12.25 1.02 3.05 12.02 3.05			5.08	8.333			
2.417 3.05 5.500 8.13 8.583 3.65 11.67 1.02							
2.590 3.05 5.583 9.14 8.667 3.05 11.75 1.02							
2.583 3.05 5.667 9.14 8.750 3.05 11.83 2.03 2.667 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.03 3.000 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.083 2.03 61.67 67.06 9.550 2.03 12.25 1.02 3.083 2.03 0.000 67.06 9.550 2.03 0.000 67.06 9.550 2.03 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.06 0.000 67.00							
2.667 3.05 5.750 9.15 8.833 3.05 11.92 2.03							
2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr)							
2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.003 2.03 12.17 1.02 3.000 3.05 6.003 67.06 9.033 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.008 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.008 2.03 6.167 67.06 9.250 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03 2.25 1.02 3.008 2.03							
2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.003 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr)							
3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.083 2.03 61.07 67.06 9.250 2.03 12.25 1.02 3.083 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.08 15.00 15.0							
3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)= 67.06 51.67 5.00 15.00 Storage Coeff. (min)= 5.32 (ii) 12.90 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.21 0.08 PEAK FLOW (cms)= 0.05 0.03 0.080 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25							
Max.Eff.Inten.(mm/hr)=							1.02
over (min) 5.00 15.00 Storage Coeff. (min)= 5.32 (ii) 12.90 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.21 0.08 **TOTALS* PEAK FLOW (cms)= 0.05 0.03 0.080 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25	3.083 2.03	6.16/	67.06	9.250	2.03	l	
Storage Coeff. (min)= 5.32 (ii) 12.90 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.21 0.08 *TOTALS* PEAK FLOW (cms)= 0.05 0.03 0.080 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25							
Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.21 0.08 PEAK FLOW (cms)= 0.05 0.03 0.080 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25							
Unit Hyd. peak (cms)= 0.21 0.08 **TOTALS* PEAK FLOW (cms)= 0.05 0.03 0.080 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25							
TOTALS PEAK FLOW (cms)= 0.05 0.03 0.080(iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25							
PEAK FLOW (cms)= 0.05 0.03 0.080 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25	Unit Hyd. peak (cms)=	0.21		0.08			
TIME TO PEAK (hrs)= 6.25 6.33 6.25							
RUNDEF VOLUME (mm)= /2.42 44.88 57.26							
TOTAL RAINFALL (mm)= 74.42 74.42 74.42 RUNOFF COEFFICIENT = 0.97 0.60 0.77							

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 87.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
LangstaffRd_EA_Existing_WestDonWatershd
3.05 | 5.667 | 9.14 | 8.750 | 3.05 | 1
3.05 | 5.750 | 9.15 | 8.833 | 3.05 | 1
3.05 | 5.833 | 67.06 | 8.917 | 3.05 | 1
3.05 | 5.917 | 67.06 | 9.000 | 3.05 | 1
3.05 | 6.000 | 67.06 | 9.03 | 2.03 | 1
3.05 | 6.083 | 67.06 | 9.167 | 2.03 | 1
2.03 | 6.167 | 67.06 | 9.250 | 2.03 |
                                             2.583
2.667
2.750
2.833
2.917
3.000
3.083
                                                                                                                                                                                                                        3.05 | 11.83
3.05 | 11.92
3.05 | 12.00
3.05 | 12.08
2.03 | 12.17
2.03 | 12.25
2.03 |
                                                                                                                                                                                                                                                                                           2.03
2.03
2.03
1.02
1.02
                                                                                                                  67.06 54.54
5.00 15.00
5.32 (ii) 10.28 (ii)
5.00 15.00
0.21 0.09
 Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                                                                                                  *TOTALS*
0.068 (iii)
6.25
61.58
74.42
0.83
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                     0.04
6.25
72.42
74.42
                                                                                                                                                                            0.02
6.25
47.80
74.42
                                                                                                                         0.97
```

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 89.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COFFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB					
STANDHYD (0155)	Area	(ha)=	0.56		
ID= 1 DT= 5.0 min	Total	Imp(%)=	45.00	Dir. Conn.(%)=	45.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.2	5	0.31	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	260.0	0	25.00	
Mannings n	` =	0.01	3	0.290	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03

Page 114

LangstaffRd	EA	Existing	_WestDonWatershd

ADD HYD (0430)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0155):	0.56	0.080	6.25	57.26	
+ ID2= 2 (0160):	0.43	0.068	6.25	61.58	
============					
ID = 3 (0430):	0.99	0.149	6.25	59.14	

NOTE: DEAK FLOWS DO NOT THICHIDE BASEFLOWS TE ANY

CALIB (0450)	•	(1)	2 04		
STANDHYD (0150)	Area	(ha)=	3.81		
D= 1 DT= 5.0 min	Total	Imp(%)=	94.00	Dir. Conn.(%)=	94.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	3.5	8	0.23	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	150.0	0	40.00	
Mannings n	` ′ =	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

NATINI AL	LL WAS 11	MANUEL CHAIR		J.O HIN.	TIME SIL		
				HYETOGR			
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr		mm/hr
0.083	0.00	3.167	2.03	6.250	67.05		3.05
0.167	0.00	3.250	2.03		13.21		3.05
0.250	0.00		3.05		13.21		3.05
0.333	1.02	3.417	3.05		13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03

```
LangstaffRd_EA_Existing_WestDonWatershd
2.03 | 5.250 | 5.08 | 8.333 | 3.05 | 1
2.03 | 5.333 | 8.13 | 8.417 | 3.05 | 1
3.05 | 5.417 | 8.13 | 8.500 | 3.05 | 1
3.05 | 5.500 | 8.13 | 8.583 | 3.05 | 1
3.05 | 5.580 | 8.13 | 8.583 | 3.05 | 1
3.05 | 5.583 | 9.14 | 8.750 | 3.05 | 1
3.05 | 5.667 | 9.14 | 8.750 | 3.05 | 1
3.05 | 5.333 | 67.06 | 8.917 | 3.05 | 1
3.05 | 5.333 | 67.06 | 9.083 | 3.05 | 1
3.05 | 5.917 | 67.06 | 9.083 | 2.03 | 1
3.05 | 6.083 | 67.06 | 9.167 | 2.03 | 1
2.03 | 6.167 | 67.06 | 9.250 | 2.03 |
                                                                                                                                                                 Natershd
3.05 | 11.42
3.05 | 11.50
3.05 | 11.58
3.05 | 11.67
3.05 | 11.75
3.05 | 11.75
3.05 | 11.93
3.05 | 12.00
3.05 | 12.00
                                             2.167
                                              2.250
                                                                                                                                                                                                                 2.03
                                             2.250
2.333
2.417
2.500
2.583
2.667
2.750
                                                                                                                                                                                                                1.02
1.02
1.02
2.03
2.03
                                              2.833
                                                                                                                                                                                                                 1.02
                                              2.917
                                                                                                                                                                                                                 1.02
                                                                                                                                                                                      12.25
             Max.Eff.Inten.(mm/hr)=
             over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                   10.00
6.58 (ii)
                                                                                                5.00
3.82 (ii)
                                                                                                 5.00
                                                                                                                                   10.00
                                                                                                0.25
                                                                                                                                      0.14
                                                                                                                                                                          *TOTALS*
0.699 (iii)
6.25
70.86
             PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                              0.67
6.25
72.42
74.42
                                                                                                                                   0.03
6.25
46.31
74.42
                                                                                                0.97
                                                                                                                                      0.62
                                                                                                                                                                                  0.95
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
            (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 88.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
    ADD HYD ( 0440)|
1 + 2 = 3 |
                                                                                                         QPEAK
                                                                                                                                   TPEAK
                                                                                                                                                          (mm)
70.86
59.14
                                                                                   (ha)
3.81
                                                                                                       (cms)
0.699
                                                                                                                                   (hrs)
6.25
                 ID1= 1 ( 0150):
+ ID2= 2 ( 0430):
                                                                                  0.99
                                                                                                       0.149
                                                                                                                                   6.25
                     ID = 3 ( 0440):
                                                                                 4.80
                                                                                                   0.847
                                                                                                                                   6.25
                                                                                                                                                          68.44
             NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

CALIB | | STANDHYD (0185)| |ID= 1 DT= 5.0 min | IMPERVIOUS PERVIOUS (i) 0.23 0.24

Page 117

Area (ha)= 0.47 Total Imp(%)= 48.00 Dir. Conn.(%)= 48.00

LangstaffRd_EA_Existing_WestDonWatershd									
Unit Hyd. peak	(cms)=	0.21	0.08						
				TOTALS					
PEAK FLOW	(cms)=	0.04	0.02	0.062 (iii)					
TIME TO PEAK	(hrs)=	6.25	6.33	6.25					
RUNOFF VOLUME	(mm)=	72.42	35.19	53.05					
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42					
RUNOFF COEFFICI	ENT =	0.97	0.47	0.71					

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

- CN* = 79.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0180)	Area	(ha)=	0.65			
ID= 1 DT= 5.0 min	Total	Imp(%)=	33.00	Dir.	Conn.(%)=	33.00
		IMPERVI	OUS	PERVIO	JS (i)	
Surface Area	(ha)=	0.2	1	0.4	4	
Dep. Storage	(mm)=	2.0	0	5.00	9	
Average Slope	(%)=	1.0	0	2.00	9	
Length	(m)=	65.8	3	40.00	9	
Mannings n	=	0.01	3	0.25	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05		
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05		
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05		
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03		
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03		
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03		
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03		
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03		
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03		
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03		
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03		
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03		
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03		
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03		
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03		
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02		
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02		
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02		
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03		

Page 119

LangstaffRd_EA_Existing_WestDonWatershd i)= 2.00 5.00 i)= 1.00 2.00 Dep. Storage

Average Slope Length Mannings n (%)= (m)=

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	D HYETOGR	APH		
TIME	RAIN			I' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr		mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417		4.500	5.08	7.583	4.06		1.02
1.500		4.583	5.08	7.667			1.02
1.583	2.03		5.08	7.750	4.06	10.83	2.03
1.667		4.750	5.08	7.833	4.06		2.03
1.750		4.833	6.10	7.917	4.06		2.03
1.833	1.02		6.10	8.000	4.06		1.02
1.917		5.000	6.10		5.08	11.17	1.02
2.000		5.083	5.08	8.167	5.08	11.25	1.02
2.083		5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03		5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417		5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750		5.833	67.06	8.917	3.05	12.00	2.03
2.833		5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05		67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03		
Fff.Inten.(mm	/hr)=	67.06		41.26			

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= 41.26 15.00 13.19 (ii) 15.00

Page 118

	Langs	taffRd E	Δ Frist	ing_WestDon	Waters	hd	
1.667	2.03	4.750	5.08		4.06		2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05		9.14		3.05		2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06		3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03		
May FEE Totan /mm/h		67.06		46.22			
Max.Eff.Inten.(mm/h		67.06 5.00		15.00			
over (mi	.n)=		(22)				
		2.33	(11)	11.94 (ii) 15.00			
Unit Hyd. Tpeak (mi				0.09			
Unit Hyd. peak (cm	ıs)=	0.30		פט. ט			

max.err.inten.(mm	/ nr.) = (07.00	40.22	
over (min)	5.00	15.00	
Storage Coeff. (min)=	2.33 (ii)	11.94 (ii)	
Unit Hyd. Tpeak (min)=	5.00	15.00	
Unit Hyd. peak (cms)=	0.30	0.09	
				TOTALS
PEAK FLOW (cms)=	0.04	0.04	0.082 (iii)
TIME TO PEAK (hrs)=	6.17	6.33	6.25
RUNOFF VOLUME	(mm)=	72.42	39.68	50.48
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42
RUNOFF COEFFICIEN	T =	0.97	0.53	0.68

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0445)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0180):	0.65	0.082	6.25	50.48
+ ID2= 2 (0185):	0.47	0.062	6.25	53.05
ID = 3 (0445):	1.12	0.144	6.25	51.56

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS TE ANY.

LangstaffRd_EA_Existing_WestDonWatershd

STANDHYD (0165) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.60 40.00	Dir. Conn.(%)=	40.00
		IMPERVIO	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.24	1	0.36	
Dep. Storage	(mm)=	2.00)	5.00	
Average Slope	(%)=	1.00)	2.00	
Length	(m)=	250.00)	20.00	
Mannings n	=	0.013	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05	
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05	
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05	
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03	
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03	
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03	
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03	
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03	
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03	
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03	
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03	
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03	
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03	
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03	
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03	
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02	
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02	
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02	
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03	
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03	
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03	
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02	
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02	
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02	
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03	
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03	
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03	
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02	
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02	
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02	
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03	
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03	
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03	
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02	
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02	
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02	

Page 121

	LangstaffRd_EA_Existing_WestDonWatershd									
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03			
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03			
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02			
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02			
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02			
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03			
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03			
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03			
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02			
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02			
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02			
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03			
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03			
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03			
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02			
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02			
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02			
3.083	2.03	6.167	67.06	9.250	2.03					

Max.Eff.Inten.(r	nm/hr)=	67.06	54.54	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	5.19 (ii)	10.08 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.21	0.10	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.02	0.069 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	72.42	47.80	61.82
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42
RUNOFF COEFFICIE	NT =	0.97	0.64	0.83

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0450)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0165):	0.60	0.080	6.25	52.77
+ ID2= 2 (0170):	0.43	0.069	6.25	61.82

Page 123

Max.Eff.Inten.(m	m/hr)=	67.06	46.22		
over	(min)	5.00	15.00		
Storage Coeff.	(min)=	5.19	(ii) 11.53	(ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00		
Unit Hyd. peak	(cms)=	0.21	0.09		
				TOTALS	
PEAK FLOW	(cms)=	0.04	0.04	0.080	(iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25	
RUNOFF VOLUME	(mm)=	72.42	39.68	52.77	
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42	
RUNOFF COEFFICIE	NT =	0.97	0.53	0.71	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

							-
CALIB							
STANDHYD (0170)	Area	(ha)=	0.43				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
· ii							
		IMPERVIO	US	PERVIOU	IS (i)		
Surface Area	(ha)=	0.25		0.18	3		
Dep. Storage	(mm)=	2.00	1	5.00)		
Average Slope	(%)=	1.00	1	2.00)		
Length	(m)=	250.00	1	20.00)		
Mannings n	=	0.013		0.250)		

NOTE: RAINFALL WAS TRANSFORMED TO $\,$ 5.0 MIN. TIME STEP.

			ANCEODUE	LIVETOCE			
		IR	ANSFURME) HYETOGR	(APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03

Page 122

		Langstaff	Rd_EA_Ex	isting_Wes	stDonWater	rshd
ID = 3 (0450):	1.03	0.149	6.25	56.55	

NOTE:	PFΔK	FLOWS	DΩ	NOT	TNCLLIDE	RASFELOWS	TF	ΔNV

ADD HYD (0450) 3 + 2 = 1				
ID1= 3 (0450): 1.03 0.149 6.25 56.55				
	1.03	0.149	6.25	56.55

ID = 1 (0450): 2.15 0.293 6.25 5

NOTE: PEAK FLOW	S DO NO	T INCLUDE BASEF	LOWS IF ANY.	
CALIB				
STANDHYD (0190)	Area	(ha)= 0.86		
ID= 1 DT= 5.0 min	Total	Imp(%)= 42.00	Dir. Conn.(%)=	42.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.36	0.50	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	340.00	50.00	
Mannings n	` =	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05				
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05				
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05				
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03				
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03				
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03				
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03				
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03				
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03				
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03				
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03				
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03				
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03				
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03				
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03				
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02				
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02				
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02				
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03				

Page 124

	Lange	taffRd E	Λ Evicti	ng WestD	onWaters	hd	
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03		

Max.Eff.Inten.(mm/hr)=		67.06	44.81	
over	(min)	5.00	20.00	
Storage Coeff.	(min)=	6.25 (ii)	17.37 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	20.00	
Unit Hyd. peak	(cms)=	0.19	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.04	0.105 (iii)
TIME TO PEAK	(hrs)=	6.25	6.42	6.25
RUNOFF VOLUME	(mm)=	72.42	39.68	53.42
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42
RUNOFF COEFFICIE	ENT =	0.97	0.53	0.72

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(111) 1 EAR 1 EOR	5025 110	. 11100000	DAJE! I	2011 21 7			
CALIB							
STANDHYD (0195)	Area	(ha)=	0.79				
ID= 1 DT= 5.0 min	Total	Imp(%)=	42.00	Dir.	Conn.(%)=	42.00	
		IMPERVI	OUS	PERVIOU	JS (i)		
Surface Area	(ha)=	0.3	3	0.46	5		
Dep. Storage	(mm)=	2.0	10	5.00	•		
Average Slope	(%)=	1.0	10	2.00	•		
Length	(m)=	340.0	10	20.00	•		
Mannings n	=	0.01	.3	0.256	•		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 125

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0455) 1 + 2 = 3 	AREA (ha) 0.86 0.79	QPEAK (cms) 0.105 0.105	TPEAK (hrs) 6.25 6.25	R.V. (mm) 53.42 53.42
ID = 3 (0455):	1.65	0.210	6.25	53.42

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0458) 1 + 2 = 3 	AREA (ha) 2.15 1.65	QPEAK (cms) 0.293 0.210	TPEAK (hrs) 6.25 6.25	R.V. (mm) 53.95 53.42
ID = 3 (0458):	3.80	0.503	6.25	53.72

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB					
STANDHYD (0300)	Area	(ha)=	10.00		
ID= 1 DT= 5.0 min	Total	Imp(%)=	80.00	Dir. Conn.(%)=	80.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	8.0	0	2.00	
Dep. Storage	(mm)=	1.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	258.2	0	40.00	
Mannings n	` ′=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH											
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05				
0.167	0.00	3.250	2.03	6.333	13.21 İ	9.42	3.05				

Page 127

LangstaffRd_EA_Existing_WestDonWatershd

TIME	Edilbaca i Ma_Ex_Extactib_nesconinacei sila								
hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs new mm/hr h			TRA	ANSFORME	D HYETOGR	APH	-		
0.083 0.00 3.167 2.03 6.250 67.05 9.33 3.05 0.167 0.00 3.259 2.03 6.333 13.21 9.42 3.05 0.250 0.00 3.333 3.05 6.417 13.21 9.50 3.05 0.333 1.02 3.417 3.05 6.580 13.21 9.67 2.03 0.590 1.02 3.583 3.05 6.583 13.21 9.67 2.03 0.590 1.02 3.583 3.05 6.567 13.21 9.57 2.03 0.583 2.03 3.667 3.05 6.5750 13.21 9.58 2.03 0.667 2.03 3.353 3.05 6.667 13.21 9.83 2.03 0.667 2.03 3.353 3.05 6.691 6.19 9.02 2.03 0.633 1.02 3.1750 3.05 6.917 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.08 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.08 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.750 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.750 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.583 4.06 10.17 2.03 1.333 1.02 4.417 5.08 7.590 5.08 10.58 1.02 1.417 1.02 4.500 5.08 7.583 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.457 5.08 7.583 4.06 10.67 1.02 1.583 2.03 4.457 5.08 7.583 4.06 10.83 2.03 1.750 2.03 4.735 5.08 7.583 5.08 11.05 2.03 1.750 2.03 4.735 5.08 7.583 5.08 11.05 2.03 1.750 2.03 4.735 5.08 7.583 5.08 11.05 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.00 5.08 11.55 1.02 2.083 2.03 5.167 5.08 8.00 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.00 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 3.05 5.583 9.14 8.667 3.05 11.15 1.02 2.167 2.03 5.583 9.14 8.667 3.05 11.15 1.02 2.283 3.05 5.590 6.10 8.00 3.05 6.00 11.00 2.283 3.05 5.583 9.14 8.667 3.05 11.15 1.02 2.283 3.05	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
	hrs	s mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.333 1.02 3.417 3.05 6.500 13.21 9.58 2.03 0.500 1.02 3.560 3.05 6.583 13.21 9.67 2.03 0.500 1.02 3.563 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.657 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.870 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.870 3.05 6.6750 13.21 9.83 2.03 0.667 2.03 3.870 3.05 6.697 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.000 1.02 4.083 3.05 7.157 6.10 10.25 2.03 1.107 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.65 7.333 5.08 10.42 2.03 1.150 2.03 4.433 5.08 7.417 5.08 10.50 2.03 1.150 2.03 4.450 5.08 7.500 5.08 10.50 2.03 1.417 1.02 4.500 5.08 7.500 5.08 10.58 10.50 1.583 2.03 4.667 5.08 7.567 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.83 4.06 10.05 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.03 1.1917 1.02 5.000 6.10 8.083 5.08 11.13 2.03 2.1083 2.03 5.167 5.08 8.167 5.08 11.55 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.15 2.03 2.167 2.03 5.550 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.15 2.03 2.167 2.03 5.553 5.08 8.167 5.08 11.15 2.03 2.167 2.03 5.553 9.14 8.667 3.05 11.58 2.03 2.250 2.03 5.553 9.14 8.750 3.05 11.58 2.03 2.250 2.03 5.553 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.750 3.05 11.50 2.03 2.267 3.05 5.570 9.14 8.750 3.05 11.50 2.03	0.08						9.33	3.05	
0.333 1.02 3.417 3.05 6.500 13.21 9.58 2.03 0.500 1.02 3.560 3.05 6.583 13.21 9.67 2.03 0.500 1.02 3.563 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.657 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.870 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.870 3.05 6.6750 13.21 9.83 2.03 0.667 2.03 3.870 3.05 6.697 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.000 1.02 4.083 3.05 7.157 6.10 10.25 2.03 1.107 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.65 7.333 5.08 10.42 2.03 1.150 2.03 4.433 5.08 7.417 5.08 10.50 2.03 1.150 2.03 4.450 5.08 7.500 5.08 10.50 2.03 1.417 1.02 4.500 5.08 7.500 5.08 10.58 10.50 1.583 2.03 4.667 5.08 7.567 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.83 4.06 10.05 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.03 1.1917 1.02 5.000 6.10 8.083 5.08 11.13 2.03 2.1083 2.03 5.167 5.08 8.167 5.08 11.55 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.15 2.03 2.167 2.03 5.550 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.15 2.03 2.167 2.03 5.553 5.08 8.167 5.08 11.15 2.03 2.167 2.03 5.553 9.14 8.667 3.05 11.58 2.03 2.250 2.03 5.553 9.14 8.750 3.05 11.58 2.03 2.250 2.03 5.553 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.750 3.05 11.50 2.03 2.267 3.05 5.570 9.14 8.750 3.05 11.50 2.03	0.16	7 0.00	3.250	2.03	6.333	13.21			
0.333 1.02 3.417 3.05 6.500 13.21 9.58 2.03 0.500 1.02 3.560 3.05 6.583 13.21 9.67 2.03 0.500 1.02 3.563 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.657 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.870 3.05 6.667 13.21 9.67 2.03 0.667 2.03 3.870 3.05 6.6750 13.21 9.83 2.03 0.667 2.03 3.870 3.05 6.697 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.000 1.02 4.083 3.05 7.157 6.10 10.25 2.03 1.107 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.65 7.333 5.08 10.42 2.03 1.150 2.03 4.433 5.08 7.417 5.08 10.50 2.03 1.150 2.03 4.450 5.08 7.500 5.08 10.50 2.03 1.417 1.02 4.500 5.08 7.500 5.08 10.58 10.50 1.583 2.03 4.667 5.08 7.567 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.83 4.06 10.05 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.03 1.1917 1.02 5.000 6.10 8.083 5.08 11.13 2.03 2.1083 2.03 5.167 5.08 8.167 5.08 11.55 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.15 2.03 2.167 2.03 5.550 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.15 2.03 2.167 2.03 5.553 5.08 8.167 5.08 11.15 2.03 2.167 2.03 5.553 9.14 8.667 3.05 11.58 2.03 2.250 2.03 5.553 9.14 8.750 3.05 11.58 2.03 2.250 2.03 5.553 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.50 2.03 2.250 3.05 5.583 9.14 8.750 3.05 11.50 2.03 2.267 3.05 5.570 9.14 8.750 3.05 11.50 2.03	0.25	0.00	3.333	3.05	6.417	13.21			
0.583 2.03 3.667 3.05 6.750 13.21 9.83 2.03 0.667 2.03 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.080 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 12.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 10.58 1.250 2.03 4.333 5.08 7.417 5.08 10.58 1.02 1.417 1.02 4.560 5.08 7.583 4.06 10.67 10.2 1.500 1.02 4.583 5.08 7.667 4.06 10.675 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.075 1.02 1.833 1.02 4.917 6.10 8.000 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.150 5.08 11.15 1.02 2.083 2.03 5.167 5.00 6.10 8.083 5.08 11.15 1.02 2.167 2.03 5.550 5.08 8.167 3.05 11.58 1.02 2.167 2.03 5.550 5.08 8.167 3.05 11.58 1.02 2.167 2.03 5.550 5.08 8.800 3.05 11.58 1.02 2.167 2.03 5.550 5.00 5.00 5.00 5.00 5.00 2.167 3.05 5.500 5.00 5.00 5.00 5.00 5.00 2.170 3.05 5.500 5.00 5.00 5.00 5.00 2.183 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.170 3.05 5.500 6.03 67.06 9.083 2.03 12.17 1.02 2.183 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.183 3.05 5.660 9.08 5.00 5.00 5.00 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05	0.33		3.417	3.05	6.500	13.21	9.58	2.03	
0.583 2.03 3.667 3.05 6.750 13.21 9.83 2.03 0.667 2.03 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.080 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 12.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 10.58 1.250 2.03 4.333 5.08 7.417 5.08 10.58 1.02 1.417 1.02 4.560 5.08 7.583 4.06 10.67 10.2 1.500 1.02 4.583 5.08 7.667 4.06 10.675 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.075 1.02 1.833 1.02 4.917 6.10 8.000 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.150 5.08 11.15 1.02 2.083 2.03 5.167 5.00 6.10 8.083 5.08 11.15 1.02 2.167 2.03 5.550 5.08 8.167 3.05 11.58 1.02 2.167 2.03 5.550 5.08 8.167 3.05 11.58 1.02 2.167 2.03 5.550 5.08 8.800 3.05 11.58 1.02 2.167 2.03 5.550 5.00 5.00 5.00 5.00 5.00 2.167 3.05 5.500 5.00 5.00 5.00 5.00 5.00 2.170 3.05 5.500 5.00 5.00 5.00 5.00 2.183 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.170 3.05 5.500 6.03 67.06 9.083 2.03 12.17 1.02 2.183 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.183 3.05 5.660 9.08 5.00 5.00 5.00 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05	0.41	7 1.02	3.500	3.05	6.583	13.21	9.67	2.03	
0.583 2.03 3.667 3.05 6.750 13.21 9.83 2.03 0.667 2.03 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.080 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 12.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 10.58 1.250 2.03 4.333 5.08 7.417 5.08 10.58 1.02 1.417 1.02 4.560 5.08 7.583 4.06 10.67 10.2 1.500 1.02 4.583 5.08 7.667 4.06 10.675 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.075 1.02 1.833 1.02 4.917 6.10 8.000 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.150 5.08 11.15 1.02 2.083 2.03 5.167 5.00 6.10 8.083 5.08 11.15 1.02 2.167 2.03 5.550 5.08 8.167 3.05 11.58 1.02 2.167 2.03 5.550 5.08 8.167 3.05 11.58 1.02 2.167 2.03 5.550 5.08 8.800 3.05 11.58 1.02 2.167 2.03 5.550 5.00 5.00 5.00 5.00 5.00 2.167 3.05 5.500 5.00 5.00 5.00 5.00 5.00 2.170 3.05 5.500 5.00 5.00 5.00 5.00 2.183 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.170 3.05 5.500 6.03 67.06 9.083 2.03 12.17 1.02 2.183 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.183 3.05 5.660 9.08 5.00 5.00 5.00 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05	0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03	
0.833 1.02 3.917 3.05 7.000 6.10 10.10 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.17 2.03 1.1683 2.03 4.167 3.05 7.7.50 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.590 5.08 10.58 1.02 1.417 1.02 4.583 5.08 7.567 4.06 10.75 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.750 2.03 4.750 6.10 7.917 4.06 11.00 2.03 1.750 2.03 4.750 6.10 7.917 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.003 5.08 5.08 8.167 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.833 5.08 11.17 1.02 2.083 2.03 5.5167 5.08 8.250 5.08 11.33 2.03 2.167 2.03 5.550 5.08 8.150 5.08 11.55 1.02 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.51 2.263 3.05 5.750 9.15 8.833 3.05 11.67 1.02 2.283 3.05 5.750 9.15 8.833 3.05 11.67 1.02 2.283 3.05 5.750 9.15 8.833 3.05 11.50 2.03 2.2667 3.05 5.750 9.15 8.833 3.05 11.57 1.02 2.283 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.2607 3.05 5.600 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.003 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02	0.583	າ າ ຄາ	3.667	3.05	6.750		9.83	2.03	
0.833 1.02 3.917 3.05 7.000 6.10 10.10 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.17 2.03 1.1683 2.03 4.167 3.05 7.7.50 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.590 5.08 10.58 1.02 1.417 1.02 4.583 5.08 7.567 4.06 10.75 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.750 2.03 4.750 6.10 7.917 4.06 11.00 2.03 1.750 2.03 4.750 6.10 7.917 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.003 5.08 5.08 8.167 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.833 5.08 11.17 1.02 2.083 2.03 5.5167 5.08 8.250 5.08 11.33 2.03 2.167 2.03 5.550 5.08 8.150 5.08 11.55 1.02 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.51 2.263 3.05 5.750 9.15 8.833 3.05 11.67 1.02 2.283 3.05 5.750 9.15 8.833 3.05 11.67 1.02 2.283 3.05 5.750 9.15 8.833 3.05 11.50 2.03 2.2667 3.05 5.750 9.15 8.833 3.05 11.57 1.02 2.283 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.2607 3.05 5.600 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.003 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02	0.66	7 2.03	3.750	3.05	6.833	6.10	9.92	2.03	
0.833 1.02 3.917 3.05 7.000 6.10 10.10 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.17 2.03 1.1683 2.03 4.167 3.05 7.7.50 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.590 5.08 10.58 1.02 1.417 1.02 4.583 5.08 7.567 4.06 10.75 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.750 2.03 4.750 6.10 7.917 4.06 11.00 2.03 1.750 2.03 4.750 6.10 7.917 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.003 5.08 5.08 8.167 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.833 5.08 11.17 1.02 2.083 2.03 5.5167 5.08 8.250 5.08 11.33 2.03 2.167 2.03 5.550 5.08 8.150 5.08 11.55 1.02 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.51 2.263 3.05 5.750 9.15 8.833 3.05 11.67 1.02 2.283 3.05 5.750 9.15 8.833 3.05 11.67 1.02 2.283 3.05 5.750 9.15 8.833 3.05 11.50 2.03 2.2667 3.05 5.750 9.15 8.833 3.05 11.57 1.02 2.283 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.2607 3.05 5.600 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.003 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.05 1.02	0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03	
1.000	0.83	3 1.02	3.917	3.05	7.000	6.10	10.08	2.03	
1.000	0.91	7 1.02	4.000	3.05	7.083	6.10	10.17	2.03	
1.250	1.000	1.02	4.083	3.05	7.167	6.10			
1.250	1.08	3 2.03	4.167	3.05	7.250	6.10	10.33	2.03	
1.333 1.02 4.417 5.08 7.590 5.08 1.02 1.417 1.02 4.590 5.08 7.583 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.63 2.03 1.750 2.03 4.750 5.08 7.750 4.06 10.92 2.03 1.750 2.03 4.750 6.10 8.000 4.06 11.00 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.003 5.08 11.17 1.02 2.000 1.02 5.003 5.08 8.883 5.08 11.17 1.02 2.003 2.03 5.167 5.08 8.167 5.08 11.25 1.02 2.003 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.59 2.03 2.250 2.03 5.550 8.13 8.583 3.05 11.67 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.590 3.05 5.583 9.14 8.667 3.05 11.58 1.02 2.590 3.05 5.560 8.13 8.583 3.05 11.67 1.02 2.583 3.05 5.567 9.15 8.833 3.05 11.67 1.02 2.583 3.05 5.560 9.14 8.750 3.05 11.58 2.03 2.667 3.05 5.560 9.14 8.750 3.05 11.83 2.03 2.670 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.833 3.05 5.5750 9.15 8.833 3.05 11.82 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.600 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.600 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.017 67.06 9.000 3.05 12.00 2.03 2.834 3.05 5.000 15.00 Max.Eff.Inten.(mm/hr) =	1.16	7 2.03	4.250			5.08	10.42	2.03	
1.417 1.02 4.500 5.08 7.583 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.667 2.03 4.4750 5.08 7.753 4.06 10.83 2.03 1.667 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 2.03 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.000 2.003 5.503 5.08 8.250 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.13 2.03 2.167 2.03 5.250 5.08 8.250 5.08 11.13 2.03 2.167 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.333 3.05 5.417 8.13 8.417 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.58 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.58 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.18 2.03 2.583 3.05 5.667 9.14 8.750 3.05 11.18 2.03 2.750 3.05 5.583 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.667 9.15 8.833 3.05 11.02 2.03 2.750 3.05 5.660 67.06 9.003 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr) =	1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03	
1.590 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.4750 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.4750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.4750 5.08 7.833 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.003 5.08 5.08 8.167 5.08 11.25 1.02 2.003 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.580 3.05 11.67 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.583 3.05 5.5667 9.14 8.750 3.05 11.58 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.50 2.03 2.667 3.05 5.583 6.706 8.917 3.05 12.00 2.03 2.833 3.05 5.583 6.06 8.917 3.05 12.00 2.03 2.833 3.05 5.667 9.14 8.750 3.05 11.20 2.03 2.833 3.05 5.667 9.16 8.917 3.05 12.00 2.03 2.833 3.05 5.667 9.16 9.000 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.833 3.05 11.92 2.03 2.833 3.05 5.667 9.16 9.000 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.15 8.933 3.05 12.00 2.03 2.833 3.05 5.667 9.60 9.000 3.05 12.00 2.03 2.834 2.034 2.05 2.05									
1.667 2.03 4.750 5.08 7.833 4.06 11.09 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.108 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.150 5.08 11.125 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.13 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.500 3.05 11.56 1.02 2.500 3.05 5.550 9.14 8.750 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.18 2.03 2.667 3.05 5.583 9.14 8.750 3.05 11.18 2.03 2.750 3.05 5.583 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr) =		7 1.02	4.500	5.08	7.583	4.06	10.67		
1.667 2.03 4.750 5.08 7.833 4.06 11.09 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.108 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.150 5.08 11.125 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.13 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.500 3.05 11.56 1.02 2.500 3.05 5.550 9.14 8.750 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.18 2.03 2.667 3.05 5.583 9.14 8.750 3.05 11.18 2.03 2.750 3.05 5.583 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr) =		1.02	4.583	5.08	7.667	4.06	10.75	1.02	
1.756 2.83 4.83 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 1.00 2.000 1.02 5.003 5.003 6.00 8.00 5.00 8.01 11.7 1.02 2.003 2.003 5.167 5.00 8.8 8.167 5.00 8.11.125 1.02 2.083 2.03 5.167 5.00 8.8 8.250 5.00 8.11.13 2.03 2.167 2.03 5.250 5.00 8.00 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.43 8.407 3.05 11.50 2.03 2.250 2.03 5.333 8.13 8.407 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.500 8.13 8.503 3.05 11.57 1.02 2.500 3.05 5.500 8.13 8.503 3.05 11.57 1.02 2.503 3.05 5.667 9.14 8.750 3.05 11.57 1.02 2.503 3.05 5.667 9.14 8.750 3.05 11.75 1.02 2.503 3.05 5.533 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.833 3.05 5.000 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.003 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.003 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03								2.03	
1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.083 6.08 8.167 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.13 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.59 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.59 1.02 2.417 3.05 5.560 9.14 8.750 3.05 11.57 1.02 2.500 3.05 5.560 9.14 8.750 3.05 11.75 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.75 1.02 2.583 3.05 5.560 9.15 8.833 3.05 11.20 2.03 2.750 3.05 5.583 67.06 8.917 3.05 12.08 1.02 2.750 3.05 6.833 67.06 8.917 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.883 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr) =		7 2.03	4.750	5.08	7.833	4.06			
1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.003 5.00 5.00 6.10 8.083 5.08 11.25 1.02 2.003 5.00		2.03	4.833	6.10	7.917	4.06	11.00	2.03	
2.083 2.03 5.167 5.08 8.250 5.08 8.120 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.45 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.530 8.13 8.500 3.05 11.58 1.02 2.150 2.03 2.500 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.263 3.05 5.750 9.15 8.833 3.05 11.75 1.02 2.263 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.667 3.05 5.833 6.766 8.917 3.05 11.83 2.03 2.150 2.03 2.150 3.05 6.083 67.06 8.917 3.05 12.00 2.03 2.103							11.08	1.02	
2.083 2.03 5.167 5.08 8.250 5.08 8.120 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.45 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.530 8.13 8.500 3.05 11.58 1.02 2.150 2.03 2.500 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.263 3.05 5.750 9.15 8.833 3.05 11.75 1.02 2.263 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.667 3.05 5.833 6.766 8.917 3.05 11.83 2.03 2.150 2.03 2.150 3.05 6.083 67.06 8.917 3.05 12.00 2.03 2.103		7 1.02	5.000	6.10	8.083	5.08	11.17	1.02	
2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.58 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.75 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.75 1.02 2.583 3.05 5.550 9.15 8.833 3.05 11.92 2.750 3.05 5.533 67.06 8.917 3.05 12.00 2.03 2.833 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.833 3.05 5.067 0.76 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.080 3.05 6.083 67.06 9.157 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)									
2.256 2.63 5.333 8.417 3.65 11.50 2.63	2.083	3 2.03	5.167	5.08	8.250	5.08			
2.256 2.63 5.333 8.417 3.65 11.50 2.63	2.16	7 2.03	5.250	5.08	8.333	3.05	11.42	2.03	
2.590 3.05 5.583 9.14 8.667 3.05 11.83 2.03 2.583 3.05 5.667 9.14 8.750 3.05 11.83 2.03 2.667 3.05 5.5750 9.15 8.833 3.05 11.83 2.03 2.750 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.000 3.05 12.08 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.17 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr) =	2.250	0 2.03	5.333	8.13	8.417	3.05	11.50	2.03	
2.590 3.05 5.583 9.14 8.667 3.05 11.83 2.03 2.583 3.05 5.667 9.14 8.750 3.05 11.83 2.03 2.667 3.05 5.5750 9.15 8.833 3.05 11.83 2.03 2.750 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.000 3.05 12.08 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.17 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr) =	2.33	3.05	5.417	8.13	8.500	3.05	11.58	1.02	
2.583 3.05 5.667 9.14 8.750 3.05 11.93 2.03 2.667 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.750 3.05 5.833 67.06 8.917 3.05 11.90 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.000 3.05 12.108 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.083 2.08 15.00 15.00 Storage Coeff. (min) =		7 3.05	5.500	8.13	8.583	3.05			
2.756 3.05 5.833 67.06 8.917 3.05 12.08 1.02		3.05	5.583	9.14	8.667				
2.756 3.05 5.833 67.06 8.917 3.05 12.08 1.02		3.05	5.667	9.14	8.750	3.05	11.83	2.03	
3.000 3.05 0.003 0.105 9.167 2.03 12.25 1.02 3.0083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr) = 67.06 46.22 0.00 0.00 Storage Coeff. (min) = 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. Tpeak (cms) = 0.19 0.08 PEAK FLOW (cms) = 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs) = 6.25 6.33 6.25 RUNOFF VOLUME (mm) = 72.42 39.68 53.42 TOTAL RAINFALL (mm) = 74.42 74.42 74.42		7 3.05	5.750	9.15	8.833	3.05	11.92		
3.000 3.05 0.003 0.105 9.167 2.03 12.25 1.02 3.0083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr) = 67.06 46.22 0.00 0.00 Storage Coeff. (min) = 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. Tpeak (cms) = 0.19 0.08 PEAK FLOW (cms) = 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs) = 6.25 6.33 6.25 RUNOFF VOLUME (mm) = 72.42 39.68 53.42 TOTAL RAINFALL (mm) = 74.42 74.42 74.42	2.750	3.05	5.833	67.06	8.917	3.05	12.00		
3.000 3.05 0.003 0.105 9.167 2.03 12.25 1.02 3.0083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr) = 67.06 46.22 0.00 0.00 Storage Coeff. (min) = 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. Tpeak (cms) = 0.19 0.08 PEAK FLOW (cms) = 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs) = 6.25 6.33 6.25 RUNOFF VOLUME (mm) = 72.42 39.68 53.42 TOTAL RAINFALL (mm) = 74.42 74.42 74.42	2.83	3.05	5.917	67.06	9.000	3.05	12.08	1.02	
3.000 3.05 0.003 0.105 9.167 2.03 12.25 1.02 3.0083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr) = 67.06 46.22 0.00 0.00 Storage Coeff. (min) = 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. Tpeak (cms) = 0.19 0.08 PEAK FLOW (cms) = 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs) = 6.25 6.33 6.25 RUNOFF VOLUME (mm) = 72.42 39.68 53.42 TOTAL RAINFALL (mm) = 74.42 74.42 74.42	2.91	7 3.05	6.000	67.06	9.083	2.03	12.17		
Max.Eff.Inten.(mm/hr)=		3.05	6.083	6/.06	1 9.16/	2.03	12.25	1.02	
over (min) 5.00 15.00 Storage Coeff. (min)= 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.19 0.08 *TOTALS* PEAK FLOW (cms)= 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	3.083	3 2.03	6.167	67.06	9.250	2.03	l		
over (min) 5.00 15.00 Storage Coeff. (min)= 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.19 0.08 *TOTALS* PEAK FLOW (cms)= 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	/								
Storage Coeff. (min) = 6.25 (ii) 12.59 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 15.00 Unit Hyd. peak (cms) = 0.19 0.08 *TOTALS*									
Unit Hyd. peak (cms)= 0.19 0.08 *TOTALS* PEAK FLOW (cms)= 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42						,			
Unit Hyd. peak (cms)= 0.19 0.08 *TOTALS* PEAK FLOW (cms)= 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	Storage Coeff.	(min)=				.)			
PEAK FLOW (cms)= 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42									
PEAK FLOW (cms)= 0.06 0.04 0.105 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	ипіт нуб. реак	(cms)=	0.19		0.08	****	TALC*		
TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 53.42 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	DEAK FLOW	()	0.00		0.04			`	
RUNOFF VOLUME (mm) = 72.42 39.68 53.42 TOTAL RAINFALL (mm) = 74.42 74.42 74.42								,	
TOTAL RAINFALL (mm)= 74.42 74.42 74.42									
NONOFF COEFFECIEN(= 0.9/ 0.33 0./2									
	NUMOFF CUEFFICI	-IVI =	0.97		0.33	,	0.72		

Page 126

	Langs	taffRd E	A Exist	ing WestDo	nWaters	hd		
0.250		3.333		6.417	13.21		3.05	
		3.417	3.05		13.21		2.03	
	1.02 İ	3.500	3.05		13.21	9.67	2.03	
	1.02 İ	3.583	3.05		13.21		2.03	
0.583	2.03 İ	3.667	3.05	6.750	13.21	9.83	2.03	
		3.750	3.05		6.10		2.03	
		3.833		6.917	6.10		2.03	
		3.917	3.05		6.10		2.03	
0.917	1.02 İ	4.000	3.05	7.083	6.10	10.17	2.03	
		4.083	3.05	7.167	6.10	10.25	2.03	
		4.167	3.05		6.10		2.03	
		4.250	3.05		5.08		2.03	
		4.333	5.08	7.417	5.08	10.50	2.03	
1.333	1.02 İ	4.417	5.08	7.500	5.08	10.58	1.02	
		4.500	5.08		4.06	10.67	1.02	
		4.583		7.667	4.06		1.02	
		4.667	5.08		4.06	10.83	2.03	
		4.750	5.08	7.833	4.06		2.03	
		4.833	6.10		4.06		2.03	
		4.917		8.000	4.06		1.02	
1.917	1.02 İ	5.000	6.10	8.083	5.08	11.17	1.02	
		5.083	5.08		5.08	11.25	1.02	
	2.03		5.08		5.08		2.03	
		5.250	5.08		3.05		2.03	
	2.03 İ	5.333	8.13	8.417	3.05	11.50	2.03	
		5.417	8.13		3.05	11.58	1.02	
		5.500		8.583	3.05		1.02	
2.500	3.05 j	5.583	9.14	8.667	3.05	11.75	1.02	
2.583	3.05 j	5.667	9.14	8.750	3.05	11.83	2.03	
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03	
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03	
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02	
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02	
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02	
3.083	2.03	6.167	67.06	9.250	2.03			
Max.Eff.Inten.(mm/hr)=	67.06		41.26				
over (min		5.00		15.00				
Storage Coeff. (min		5.30	(ii)	10.05 (ii)				
Unit Hyd. Tpeak (min		5.00	()	15.00	'			
Unit Hyd. peak (cms		0.21		0.10				
(,				*T01	TALS*		
PEAK FLOW (cms		1.49		0.18		.665 (iii)		
TIME TO PEAK (hrs		6.25		6.33		5.25		
RUNOFF VOLUME (mm		73.42		35.19		.78		
TOTAL RAINFALL (mm		74.42		74.42		74.42		
RUNOFF COEFFICIENT	=	0.99		0.47	6	88.6		

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 79.0 Ta = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

$\label{langstaffRd_EA_Existing_WestDonWatershd} \mbox{(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.}$

CALIB							
STANDHYD (0350)	Area	(ha)=	0.90				
ID= 1 DT= 5.0 min	Total	Imp(%)=	70.00	Dir.	Conn.(%)=	70.00	
		IMPERVIO	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	0.63	3	0.27	,		
Dep. Storage	(mm) =	1.00	9	5.00)		
Average Slope	(%)=	1.00)	2.00)		
Length	(m)=	77.46	5	40.00)		
Mannings n	` <i>=</i>	0.013	3	0.250)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08		4.06	10.75	1.02
1.583	2.03		5.08		4.06		2.03
1.667	2.03	4.750	5.08		4.06		2.03
1.750	2.03	4.833	6.10		4.06	11.00	2.03
1.833	1.02	4.917	6.10		4.06	11.08	1.02
1.917	1.02	5.000	6.10		5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03

Page 129

	LangstaffRd_EA_Existing_WestDonWatershd											
0.75	1.02	4.00	4.06	7.25	6.10	10.50	2.03					
1.00	2.03	4.25	3.05	7.50	5.08	10.75	1.02					
1.25	1.02	4.50	5.08	7.75	5.08	11.00	2.03					
1.50	2.03	4.75	6.10	8.00	5.08	11.25	2.03					
1.75	2.03	5.00	6.10	8.25	4.06	11.50	1.02					
2.00	1.02	5.25	5.08	8.50	4.06	11.75	2.03					
2.25	2.03	5.50	10.16	8.75	3.05	12.00	1.02					
2.50	3.05	5.75	10.16	9.00	3.05	12.25	2.03					
2.75	3.05	6.00	73.15	9.25	3.05	l						
3.00	4.06	6.25	74.17	9.50	3.05	l						
3.25	3.05	6.50	15.24	9.75	2.03							

CALIB	Area Total	(ha)= Imp(%)=	3.05 62.00	Dir. Conn.(%)=	62.00
		IMPERVI	ous	PERVIOUS (i)	
Surface Area	(ha)=	1.8	9	1.16	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	531.0	0	40.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR		D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
			D	424			
			Page	131			

	Langst	affRd F	Δ Fyist	ing West	DonWaters	:hd	
2.750							2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05 3.05 2.03	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03	l	
Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (/hr)=	67.06		39.79			
over (min)	5.00		15.00			
Storage Coeff. (min)=	2.57	(ii)	12.78 (ii)		
Unit Hyd. Ipeak (min)=	5.00		15.00			
unit nyu. peak (CIIIS)=	0.29		0.00	****	TALS*	
PFAK FLOW (cms)=	0.12		0.02		.140 (iii)
TIME TO PEAK (hrs)=	6.25		6.33	_	6.25	,
RUNOFF VOLUME	(mm)=	73.42		35.19	6	1.95	
TOTAL RAINFALL	(mm)=	74.42		74.42	7	4.42	
PEAK FLOW (TIME TO PEAK (RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	Ť =	0.99		6.33 35.19 74.42 0.47		0.83	
**** WARNING: STORAGE	COEFF. IS	S SMALL	ER THAN	TIME ST	EP!		
(i) CN PROCEDUR	E SELECTEI	D FOR P	ERVIOUS	LOSSES:			
CN* = 79							
(ii) TIME STEP (R ÈQUAL	•		
THAN THE ST							
(iii) PEAK FLOW D	OES NOT IN	NCLUDE I	BASEFLO	W IF ANY			
ADD HYD (0375) 1 + 2 = 3 ID1= 1 (0300 + ID2= 2 (0350	ARI (h:	EA QI a) (PEAK cms)	TPEAK (hrs)	R.V. (mm)		
+ ID2= 2 (0350): 10.0	90 0.	140	6.25	61.95		
ID = 3 (0375					65.46		
NOTE: PEAK FLOWS							

** SIMULATION:Run 06	**						
*************	*******	*					
DEAD STORM	E43			! \ •			
READ STORM	Filename		sers∖ra Local∖T		ррυ		
i					9819-1b44	900a1c25\	d7466973
Ptotal= 82.04 mm	Comments						
	RAIN						
hrs	mm/hr	hrs	mm/hr	' hr	s mm/hr	hrs	mm/hr
0.25	0.00	3.50	3.05	6.75	14.22	10.00	3.05
0.50	2.03	3.75	3.05	7.00	7.11	10.25	2.03
			Page	130			

	Langs	taffRd_E	A_Exist	ing_WestDon	Waters	hd	
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03		5.08		4.06		1.02
2.250	2.03	5.333	10.16		4.06		1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05		
Max.Eff.Inten.(mm/h	nr)=	74.17		57.55			
over (mi		10.00		20.00			
	in)=		(ii)	16.64 (ii)			
Unit Hyd. Tpeak (mi		10.00	(/	20.00			
	ns)=	0.13		0.06			
	,				*T0	TALS*	
PEAK FLOW (cr	ns)=	0.38		0.13	0	.493 (iii)	
	-s)=	6.25		6.42		5.25	
RUNOFF VOLUME (r	nm)=	80.04		50.13	68	3.67	
TOTAL RAINFALL (r	nm)=	82.04		82.04		2.04	
RUNOFF COEFFICIENT	=	0.98		0.61		0.84	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= 1.2 Imp(%)= 52.0	7 0 Dir. Conn.(%)=	52.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.66	0.61	
Dep. Storage	(mm) =	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	503.00	25.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

	Lange	taffRd F	A Evict	ing WestDo	nWatere	hd	
TIMI			RAIN		RAIN		RAI
hr		l hrs	mm/hr	l' hrs	mm/hr		mm/h
0.08			3.05		74.17		3.05
0.16			3.05		15.24		3.05
0.250			3.05		15.24	9.50	3.05
0.33			3.05		15.24		2.03
0.41		3.500		6.583	14.22		2.03
0.50			3.05		14.22		2.03
0.58				6.750	14.22		3.05
0.66				6.833	7.11		3.05
0.75			4.06		7.11		3.05
0.83				7.000	7.11		2.03
0.91			4.06		6.10		2.03
1.000			3.05		6.10		2.03
1.08			3.05		6.10		2.03
1.16			3.05		5.08		2.03
1.25		4.230	5.08		5.08		2.03
1.33		4.417	5.08		5.08		1.02
1.41			5.08		5.08		1.02
1.500		4.583	6.10		5.08		1.02
1.58			6.10		5.08		2.03
1.66		4.750	6.10		5.08		2.03
1.750		4.833	6.10		5.08		2.03
1.83			6.10		5.08		2.03
1.91				8.083	4.06		2.03
2.000		5.083		8.167	4.06		2.03
2.08			5.08		4.06		1.02
2.16				8.333	4.06		1.02
2.250				8.417	4.06		1.02
2.33				8.500	4.06		2.03
2.41				8.583	3.05		2.03
2.500			10.16		3.05		2.03
2.58				8.750	3.05		1.02
2.66				8.833	3.05		1.02
2.750			73.15		3.05		1.02
2.83			73.15		3.05	12.08	2.03
2.91			73.15		3.05		2.03
3.000			74.17		3.05		2.03
3.08	3 3.05	6.167	/4.1/	9.250	3.05		
Max.Eff.Inten.(74.17		53.29			
	(min)	10.00		15.00			
Storage Coeff.	(min)=	7.59	(ii)	14.44 (ii)		
Unit Hyd. Tpeak		10.00		15.00			
Unit Hyd. peak	(cms)=	0.13		0.08	******	ALS*	
PEAK FLOW	(cms)=	0.13		0.07		196 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33		5.25	
RUNOFF VOLUME	(mm)=	80.04		45.99		3.69	
TOTAL RAINFALL	(mm)=	82.04		82.04		2.04	
RUNOFF COEFFICI		0.98		0.56		3.78	
						-	

Page 133

Lar	ngstaffRd_EA_E	xisting_West	DonWaters	hd	
2.41/ 3.0	5 5.500 16	0.16 8.583	3.05	11.6/	2.03
2.500 3.0	5 5.583 16	0.16 8.66/	3.05	11.75	2.03
2.583 3.0	5 5.66/ 16	1.16 8.750	3.05	11.83	1.02
2.00/ 3.0	5 5./50 10	1.10 0.033	3.05	11.92	1.02
2.750 5.0	5 5.033 /3 6 5.017 73	15 0.917	3.05	12.00	2.02
2.655 4.0	6 5.917 73 6 6 000 73	15 9.000	3.05	12.00	2.03
2.917 4.0	6 6.000 7.	17 0 167	2.05	12.1/	2.03
3.083 3.0	ngstaffRd_EA_E 5 5.500	.17 9.250	3.05	12.23	2.03
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)=	7/ 17	54 69			
over (min)	10 00	20 00			
Storage Coeff. (min)=	7.59 (ii) 15.15 (i	i)		
Unit Hvd. Tneak (min)=	10.00	20.00	/		
Unit Hyd. peak (cms)=	0.13	0.07			
, , , ,			*T0	TALS*	
PEAK FLOW (cms)=	0.11	0.09	0	.198 (iii)
TIME TO PEAK (hrs)=	6.25	6.33		5.25	•
RUNOFF VOLUME (mm)=	80.04	47.32	66	3.40	
TOTAL RAINFALL (mm)=	82.04	82.04	82	2.04	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.98	0.58	82	3.74	
CN* = 84.0 (ii) TIME STEP (DT) SH THAN THE STORAGE (iii) PEAK FLOW DOES NO	OULD BE SMALLE COEFFICIENT.	R OR EQUAL			
ADD HYD (0420) 1 + 2 = 3 ID1= 1 (0135): + ID2= 2 (0140):	AREA QPEAK	TPEAK	R.V.		
ID1= 1 (0135):	1.43 0.198	6.25	60.40		
+ ID2= 2 (0140):	1.27 0.196	6.25	63.69		
ID = 3 (0420):					
NOTE: PEAK FLOWS DO NO	T INCLUDE BASE	FLOWS IF ANY	·.		
ADD HYD (0425) 1 + 2 = 3 ID1= 1 (0145):	AREA OPEAK	TPEAK	R.V.		
1 + 2 = 3	(ha) (cms)	(hrs)	(mm)		
ID1= 1 (0145):	3.05 0.493	6.25	68.67		
+ ID2= 2 (0420):	2.70 0.394	6.25	61.95		

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Page 135

ID = 3 (0425): 5.75 0.887 6.25 65.52

- Langstaffrd_EA_Existing_WestDonWatershd
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

IMPERVIOUS (i) 0.57 0.86 2.00 5.00 1.00 2.00 503.00 30.00 0.013 0.250 Surface Area Dep. Storage Average Slope Length Mannings n (ha)= (mm)= (%)= (m)=

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22		3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03		4.06	7.000	7.11		2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10		2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03		5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08		2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03

Page 134

LangstaffRd	EA	Existing	_WestDonWatershd

CALIB							
STANDHYD (0210)	Area	(ha)=	0.96				
ID= 1 DT= 5.0 min	Total	Imp(%)=	44.00	Dir.	Conn.(%)=	44.00	
		IMPERVI	OUS	PERVIO	JS (i)		
Surface Area	(ha)=	0.4	2	0.5	4		
Dep. Storage	(mm)=	2.0	0	5.00			
Average Slope	(%)=	1.0	0	2.0	9		
Length	(m)=	470.0	0	20.0	9		
Mannings n	` =	0.01	3	0.25	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

•	KAINFAL	L WAS I	KANSFORM		J.O MIN.	IIME SIE	.г.	
			TR/	NSFORME	D HYETOGR	ΔΡΗ		
	TIME	RAIN		RAIN	l' TIME	RAIN		RAIN
	hrs	mm/hr	hrs	mm/hr		mm/hr	hrs	mm/hr
	0.083	0.00	3.167	2 05	6 250	74.17	9.33	3.05
	0.167		3.250	3.05	6.333	15.24		3.05
	0.250		3.333	3.05	6.417			3.05
	0.333		3.417			15.24		2.03
	0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
	0.500		3.583	3.05		14.22		2.03
	0.583		3.667	3.05	6.750	14.22	9.83	3.05
	0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
	0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
	0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
	0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
	1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
	1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
	1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
	1.250	1.02	4.333	5.08		5.08	10.50	2.03
	1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
	1.417	2.03	4.500	5.08		5.08	10.67	1.02
	1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
	1.583		4.667		7.750	5.08		2.03
	1.667		4.750	6.10		5.08		2.03
	1.750		4.833	6.10		5.08		2.03
	1.833		4.917	6.10		5.08		2.03
	1.917		5.000	6.10				
	2.000		5.083	5.08				2.03
	2.083	2.03		5.08		4.06		1.02
	2.167	2.03		5.08		4.06		1.02
	2.250		5.333	10.16		4.06		1.02
	2.333	3.05		10.16		4.06		2.03
	2.417		5.500	10.16		3.05		2.03
	2.500		5.583					2.03
	2.583		5.667			3.05		1.02
	2.667		5.750	10.16		3.05		1.02
	2.750		5.833		8.917	3.05		1.02
	2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03

Page 136

LangstaffRd_EA_Existing_WestDonWatershd 4.06 | 6.000 73.15 | 9.083 3.05 | 12.17 4.06 | 6.083 74.17 | 9.167 3.05 | 12.25 3.05 | 6.167 74.17 | 9.250 3.05 | 2.917 3.083 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 74.17 5.00 7.29 (ii) 5.00 0.17 53.29 15.00 13.28 (ii) 15.00 0.08 *TOTALS* 0.09 6.25 80.04 82.04 0.98 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = TOTALS* 0.144 (iii) 6.25 60.96 82.04 0.74 0.06 6.33 45.99 82.04 0.56

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* PROCEDURE SELECTED FOR FEATURES LOSSES.

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0205)	Area	(ha)=	1.11			
ID= 1 DT= 5.0 min	Total	Imp(%)=	38.00	Dir.	Conn.(%)=	38.00
		IMPERVI	OUS	PERVIOL	JS (i)	
Surface Area	(ha)=	0.4	2	0.69	9	
Dep. Storage	(mm)=	2.0	а	5.00	•	
Average Slope	(%)=	1.0	а	2.00	•	
Length	(m)=	470.0	а	20.00	•	
Mannings n	` '=	0.01	3	0.250	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03

Page 137

		Langstaff	Rd_EA_Ex	isting_West	DonWater	shd
+ ID2= 2 (0210):	0.96	0.144	6.25	60.96	
TD = 3 (0460):	2.07	0.305	6.25	59.87	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS TE ANY.

CALIB					
STANDHYD (0230)	Area	(ha)=	0.70		
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir. Conn.(%)=	57.00
		IMPERVI	0US	PERVIOUS (i)	
Surface Area	(ha)=	0.4	0	0.30	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	320.0	0	25.00	
Mannings n	` =	0.01	3	0.290	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	ΔРН		
TIME	RAIN				RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	i hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250					2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583			
1.500	2.03		6.10		5.08		1.02
1.583	2.03		6.10		5.08		2.03
1.667	2.03		6.10				2.03
1.750	2.03	4.833				11.00	2.03
1.833	1.02	4.917	6.10		5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08			11.42	1.02
2.250	2.03	5.333	10.16				1.02
2.333		5.417	10.16		4.06	11.58	2.03
2.417	3.05	1 5.500	10.16	8.583	3.05	11.67	2.03

Page 139

```
LangstaffRd_EA_Existing_WestDonWatershd
2.03 | 4.083 | 3.05 | 7.167 | 6.10 | 16
1.02 | 4.167 | 3.05 | 7.259 | 6.10 | 16
1.02 | 4.250 | 3.05 | 7.333 | 5.08 | 16
1.02 | 4.250 | 3.05 | 7.333 | 5.08 | 16
1.02 | 4.333 | 5.08 | 7.6417 | 5.08 | 16
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 16
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 16
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 16
2.03 | 4.567 | 6.10 | 7.657 | 5.08 | 16
2.03 | 4.667 | 6.10 | 7.759 | 5.08 | 16
2.03 | 4.759 | 6.10 | 7.759 | 5.08 | 16
2.03 | 4.759 | 6.10 | 7.833 | 5.08 | 17
1.02 | 5.000 | 6.10 | 8.000 | 5.08 | 11
1.02 | 5.000 | 6.10 | 8.000 | 5.08 | 12
1.02 | 5.000 | 6.10 | 8.000 | 5.08 | 12
1.02 | 5.000 | 6.10 | 8.000 | 5.08 | 12
1.02 | 5.500 | 6.10 | 8.000 | 5.08 | 12
1.02 | 5.500 | 6.10 | 8.000 | 5.08 | 12
1.02 | 5.500 | 6.10 | 8.000 | 6.00 | 6.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.
                                                                                                         1.000
                                                                                                                                                                                                                                                                                                                                                                                                6.10 | 10.25
6.10 | 10.33
                                                                                                           1.083
                                                                                                         1.083
1.167
1.250
1.333
1.417
1.500
1.583
                                                                                                                                                                                                                                                                                                                                                                                                                                            10.33
10.42
10.50
10.58
10.67
10.75
10.83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
2.03
1.02
1.02
1.02
                                                                                                         1.667
                                                                                                                                                                                                                                                                                                                                                                                                                                              10.92
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2.03
                                                                                                           1.750
                                                                                                                                                                                                                                                                                                                                                                                                                                              11.00
11.08
11.17
11.25
11.33
11.42
                                                                                                         1.833
1.917
2.000
2.083
2.167
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
2.03
2.03
1.02
1.02
                                                                                                         2,250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.02
                                                                                                                                                                                                                                                                                                                                                                                            4.06 | 11.50

4.06 | 11.58

3.05 | 11.67

3.05 | 11.75

3.05 | 11.83

3.05 | 11.92

3.05 | 12.00

3.05 | 12.00

3.05 | 12.02

3.05 | 12.17

3.05 | 12.25

3.05 |
                                                                                                         2.333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.03
                                                                                                           2.417
                                                                                                         2.417
2.500
2.583
2.667
2.750
2.833
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
1.02
1.02
1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.03
                                                                                                           2.917
                                                                                                           3.000
                            Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                                                                                            74.17
5.00
7.29 (ii)
                                                                                                                                                                                                                                                                                                                53.29
15.00
13.28 (ii)
                                                                                                                                                                                                                                   5.00
0.17
                                                                                                                                                                                                                                                                                                                        15.00
                                                                                                                                                                                                                                                                                                                             0.08
                                                                                                                                                                                                                                                                                                                                                                                                                  *TOTALS*
                            PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                                                                              0.09
6.25
80.04
82.04
0.98
                                                                                                                                                                                                                                                                                                                                                                                                                         TOTALS*
0.160 (iii)
6.25
58.92
82.04
0.72
                                                                                                                                                                                                                                                                                                                      0.08
6.33
45.99
82.04
0.56
                                          (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                              (1) CN* PROCEDURE SELECTED FOR FEXTURES USED SELECTED FOR FEXTURE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0460)|
| 1 + 2 = 3 |
                                                                                                                                                                                               AREA QPEAK
(ha) (cms)
1.11 0.160
                                                                                                                                                                                                                                                                                                        (hrs)
6.25
                                                   ID1= 1 ( 0205):
```

	Langs	taffRd E	A Exist	ing WestDon	Watershd		
2.50	0 3.05	5.583	10.16	8.667	3.05 1	1.75	2.03
2.58	3 3.05	5.667	10.16	8.750	3.05 1	1.83	1.02
2.66	7 3.05	5.750	10.16	8.833	3.05 1	1.92	1.02
2.75	0 3.05	5.833	73.15	8.917	3.05 1	2.00	1.02
2.83	3 4.06	5.917	73.15	9.000	3.05 1	2.08	2.03
2.91	7 4.06	6.000	73.15	9.083	3.05 1	2.17	2.03
3.00	0 4.06	6.083	74.17	9.167	3.05 1	2.25	2.03
3.08	3 3.05	6.167	74.17	9.250	3.05		
Max.Eff.Inten.(mm/hr)=	74.17		50.57			
over	(min)	5.00		15.00			
Storage Coeff.	(min)=	5.79	(ii)	13.43 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		15.00			
Unit Hyd. peak	(cms)=	0.20		0.08			
					TOTAL	S	
PEAK FLOW	(cms)=	0.08		0.03	0.11	2 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33	6.2	5	
RUNOFF VOLUME	(mm)=	80.04		43.44	64.3	0	
TOTAL RAINFALL	(mm)=	82.04		82.04	82.0	4	
RUNOFF COEFFICI	ENT =	0.98		0.53	0.7	8	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 81.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0225) ID= 1 DT= 5.0 min	Area	(ha)= Imp(%)=	0.90	Din	Conn.(%)=	E2 00
	IUCAI	IIIb(%)-	33.00	DII.	COIIII. (%)-	33.00
		IMPERVI	ous	PERVIO	JS (i)	
Surface Area	(ha)=	0.4	8	0.42	2	
Dep. Storage	(mm) =	2.0	0	5.00	9	
Average Slope	(%)=	1.0	0	2.00	9	
Length	(m)=	320.0	0	25.00	9	
Mannings n	` =	0.01	3	0.256	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.00	3.167	3.05	6.250	74.17	9.33	3.05			
0.00	3.250	3.05	6.333	15.24	9.42	3.05			
0.00	3.333	3.05	6.417	15.24	9.50	3.05			
2.03	3.417	3.05	6.500	15.24	9.58	2.03			
2.03	3.500	3.05	6.583	14.22	9.67	2.03			
2.03	3.583	3.05	6.667	14.22	9.75	2.03			
	mm/hr 0.00 0.00 0.00 2.03 2.03	RAIN TIME	RAIN TIME RAIN mm/hr hrs mm/hr 0.00 3.167 3.05 0.00 3.250 3.05 0.00 3.333 3.05 2.03 3.417 3.05 2.03 3.590 3.05	RAIN TIME RAIN TIME mm/hr hrs mm/hr hrs mm/hr hrs 0.00 3.167 3.05 6.250 0.00 3.250 3.05 6.333 0.00 3.333 3.05 6.417 2.03 3.417 3.05 6.500 2.03 3.500 3.05 6.580	RAIN TIME RAIN TIME RAIN TIME RAIN RAIN TIME RAIN	mm/hr hrs mm/hr hrs mm/hr hrs 0.00 3.167 3.05 6.250 74.17 9.33 0.00 3.250 3.05 6.333 15.24 9.42 0.00 3.333 3.05 6.417 15.24 9.50 2.03 3.417 3.05 6.500 15.24 9.58 2.03 3.500 3.05 6.583 14.22 9.67			

Page 140

	Langs	taffRd F	Δ Fyist	ing WestDo	nWaters	hd	
0.583	1.02			6.750	14.22		3.05
0.667	1.02	3.750	3.05		7.11		3.05
0.750	1.02	3.833		6.917	7.11		3.05
0.833		3.917		7.000	7.11		2.03
0.917	2.03		4.06		6.10		2.03
1.000		4.083		7.167	6.10		2.03
1.083	1.02		3.05		6.10		2.03
1.167		4.250	3.05		5.08		2.03
1.250		4.333	5.08		5.08		2.03
1.333		4.417	5.08		5.08		1.02
1.417		4.500	5.08		5.08		1.02
1.500		4.583	6.10		5.08		1.02
1.583	2.03		6.10		5.08		2.03
1.667		4.750	6.10		5.08		2.03
1.750	2.03		6.10		5.08		2.03
1.833	1.02		6.10		5.08		2.03
1.917		5.000		8.083	4.06		2.03
2.000	1.02		5.08		4.06		2.03
2.083	2.03		5.08		4.06		1.02
2.167		5.250		8.333	4.06		1.02
2.250	2.03		10.16		4.06		1.02
2.333	3.05	5.417	10.16	8.500	4.06		2.03
2.417	3.05			8.583	3.05		2.03
2.500	3.05		10.16	8.667	3.05		2.03
2.583	3.05			8.750	3.05		1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05	ĺ	
Max.Eff.Inten.(mm/	hr)=	74.17		53.29			
over (m		5.00		15.00			
	in)=	5.79	(ii)	12.63 (ii)			
Unit Hyd. Tpeak (m	in)=	5.00	` ′	15.00			
	ms)=	0.20		0.08			
					T0	TALS	
PEAK FLOW (c	ms)=	0.10		0.05	0	.145 (iii)	
TIME TO PEAK (h	rs)=	6.25		6.33		5.25 ` ′	
RUNOFF VOLUME (mm)=	80.04		45.99	64	4.03	
TOTAL RAINFALL (mm)=	82.04		82.04	8:	2.04	
RUNOFF COEFFICIENT	=	0.98		0.56	(2.78	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^*=83.0$ Ia=Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 141

LangstaffRd_EA_Existing_WestDowNatersh 2.03 | 5.167 | 5.08 | 8.250 | 4.06 | 2.03 | 5.250 | 5.08 | 8.333 | 4.06 | 2.03 | 5.333 | 10.16 | 8.447 | 4.06 | 3.05 | 5.447 | 10.16 | 8.590 | 4.06 | 3.05 | 5.500 | 10.16 | 8.583 | 3.05 | 3.05 | 5.560 | 10.16 | 8.683 | 3.05 | 3.05 | 5.567 | 10.16 | 8.750 | 3.05 | 3.05 | 5.750 | 10.16 | 8.8750 | 3.05 | 3.05 | 5.533 | 73.15 | 8.917 | 3.05 | 3.05 | 5.750 | 10.16 | 8.833 | 3.05 | 3.05 | 5.750 | 10.16 | 8.833 | 3.05 | 3.05 | 5.750 | 10.16 | 8.833 | 3.05 | 4.06 | 6.903 | 73.15 | 9.000 | 3.05 | 4.06 | 6.003 | 74.17 | 9.167 | 3.05 | 3.05 | 6.167 | 74.17 | 9.250 | 3.05 | 2.083 2.167 2.250 11.33 11.42 11.50 1.02 1.02 1.02 2.03 2.333 3.05 | 5.417 3.05 | 5.500 3.05 | 5.583 3.05 | 5.667 3.05 | 5.750 3.05 | 5.83 4.06 | 6.900 4.06 | 6.008 3.05 | 6.167 11.58 11.67 11.75 11.83 11.92 12.00 12.08 12.17 2.417 2.03 2.41/ 2.500 2.583 2.667 2.750 2.833 2.03 1.02 1.02 1.02 2.03 2.03 2.03 2.917 12.25 3.083 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 74.17 5.00 5.11 (ii) 5.00 0.21 53.29 15.00 11.10 (ii) 15.00 0.09 *TOTALS* 0.06 6.25 80.04 82.04 0.98 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.102 (iii) 6.25 61.64 82.04 0.75 0.04 6.33 45.99 82.04

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0215)| |ID= 1 DT= 5.0 min | CALIB Area (ha)= 0.58 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 (ha)= (mm)= (%)= (m)= Surface Area 0.33 2.00 1.00 0.25 5.00 2.00 Dep. Storage Average Slope Length Mannings n 260.00 30.00 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

- TRANSFORMED HYETOGRAPH -RAIN | TIME RAIN | TIME RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs 0.00 | 3.167 | 3.05 | 6.250 | 74.17 | 9.33 TTME RATN

LangstaffRd_EA_Existing_WestDonWatershd

ADD HYD (0475)				
1 + 2 = 3	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V.
ID1= 1 (0225):	0.90	0.145	6.25	64.03
+ ID2= 2 (0230):	0.70	0.112	6.25	64.30
================			======	
ID = 3 (0475):	1.60	0.257	6.25	64.14

10 = 3 (04	/5): 1	.00 0.2	0.25	64.14		
NOTE: PEAK FLOI	WS DO NOT	INCLUDE BA	ASEFLOWS IF	ANY.		
CALIB						
STANDHYD (0220)	Area	(ha)= 6	9.65			
ID= 1 DT= 5.0 min	Total I	mp(%) = 46	5.00 Dir.	Conn.(%)=	46.00	
		IMPERVIOUS	5 PERVIOL	JS (i)		
Surface Area	(ha)=	0.30	0.35	5		
Dep. Storage	(mm)=	2.00	5.00)		
Average Slope	(%)=	1.00	2.00)		
Length	(m)=	260.00	20.00)		
Mannings n	` =	0.013	0.256)		
· ·						

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				HYETOGR			
TIME	RAIN			' TIME	RAIN		RAIN
hrs	mm/hr	hrs		' hrs			mm/hr
0.083	0.00				74.17		3.05
0.167	0.00				15.24		3.05
0.250	0.00		3.05		15.24		3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02		3.05	6.750	14.22		3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03

	Lange	+affDd E	A Evict	ing WestDo	nlılatono	hd	
0.167		3.250		6.333	15.24		3.05
	0.00		3.05		15.24		3.05
		3.417	3.05		15.24		2.03
		3.500		6.583	14.22		2.03
		3.583	3.05		14.22		2.03
		3.667		6.750	14.22		3.05
		3.750	3.05		7.11		3.05
		3.833		6.917	7.11		3.05
		3.917	4.06		7.11		2.03
		4.000	4.06		6.10		2.03
		4.083		7.167	6.10		2.03
		4.063	3.05		6.10		2.03
		4.167		7.230	5.08		
		4.230					2.03
		4.333	5.08		5.08		2.03
		4.417	5.08		5.08		1.02
		4.583	6.10		5.08		1.02
					5.08		
		4.667		7.750	5.08		2.03
		4.750 4.833	6.10		5.08		2.03
				7.917			
		4.917	6.10		5.08		2.03
		5.000		8.083	4.06		2.03
		5.083	5.08		4.06		2.03
		5.167	5.08		4.06		1.02
		5.250		8.333	4.06		1.02
		5.333			4.06		1.02
		5.417		8.500	4.06		2.03
		5.500			3.05		2.03
		5.583		8.667	3.05		2.03
		5.667	10.16		3.05		1.02
		5.750		8.833	3.05		1.02
		5.833	73.15		3.05		1.02
	4.06		73.15		3.05		2.03
	4.06			9.083		12.17	2.03
	4.06		74.17		3.05		2.03
3.083	3.05	6.167	/4.1/	9.250	3.05		
Max.Eff.Inten.(mm/hr)=	74.17		53.29			
over (min)	5.00		15.00			
Storage Coeff. (min)=	5.11	(ii)	12.75 (ii)		
Unit Hyd. Tpeak (min)=	5.00		15.00	•		
Unit Hyd. peak (cms)=	0.21		0.08			
, , ,					*T01	TALS*	
PEAK FLOW (cms)=	0.07		0.03	0.	.095 (iii)	
TIME TO PEAK (hrs		6.25		6.33		5.25 ` ′	
RUNOFF VOLUME (mm)=	80.04		45.99	65	5.39	
TOTAL RAINFALL (mm	TOTAL RAINFALL (mm)= 82.04 82.04 82.04						
RUNOFF COEFFICIENT	=	0.98		0.56	6	9.80	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

LangstaffRd_EA_Existing_WestDonWatershd THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0470) 1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0215):	0.58	0.095	6.25	65.39
+ ID2= 2 (0220):	0.65	0.102	6.25	61.64
ID = 3 (0470):	1.23	0.197	6.25	63.41

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0480)				
ID1= 1 (0470): + ID2= 2 (0475):	AREA (ha) 1.23 1.60	QPEAK (cms) 0.197 0.257	TPEAK (hrs) 6.25 6.25	R.V. (mm) 63.41 64.14
ID = 3 (0480):	2.83	0.454	6.25	63.82

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

-							
-							
- 1	CALIB						
ij	STANDHYD (0160)	Area	(ha)=	0.43			
- 13	ID= 1 DT= 5.0 min	Total	Imp(%)=	56.00	Dir. Conn.(%)=	56.00	
-							
			IMPERVI	OUS	PERVIOUS (i)		
	Surface Area	(ha)=	0.2	4	0.19		
	Dep. Storage	(mm)=	2.0	0	5.00		
	Average Slope	`(%)=	1.0	0	2.00		
	Length	(m)=	260.0	a	20.00		
	Mannings n	()	0.01		0.250		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02 l	3.667	3.05 l	6.750	14.22	9.83	3.05

Page 145

STANDHYD (0155)	Area	(ha)=	A_Existing_W 0.56		
D= 1 DT= 5.0 min	lotal	Imp(%) = 4	5.00 Dir.	Conn.(%)=	45.00
		IMPERVIOU	S PERVIO	JS (i)	
Surface Area	(ha)=	0.25	0.3	1	
Dep. Storage	(mm)=	2.00	5.00	9	
Average Slope	(%)=	1.00	2.00	9	
Length	(m)=	260.00	25.00	9	
Mannings n	=	0.013	0.29	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	i hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05		

Page 147

	LangstaffRd	FA Fxist	ing WestDon	Waters	hd	
					9.92	3.05
0.750 1	.02 3.750 .02 3.833	1.05	6.033	7 11	10.00	3.05
0.730 1	02 3.033	4.00	7 000	7 11	10.00	2.03
0.033 2	2.03 3.917 2.03 4.000 2.03 4.083 1.02 4.167 1.02 4.250 1.02 4.333	4.00	7.000	7.11	10.00	2.03
0.917 2	.03 4.000	4.00	7.003	6.10	10.17	2.03
1.000 2	1.03 4.083	3.05	/.16/	6.10	10.25	2.03
1.083 1	02 4.16/	3.05	7.250	6.10	10.33	2.03
1.167 1	.02 4.250	3.05	7.333	5.08	10.42	2.03
1.250 1	02 4.333	5.08	7.417	5.08	10.50	2.03
1.333 2	2.03 4.417	5.08	7.500	5.08	10.58	1.02
1.417 2	2.03 4.500	5.08	7.583	5.08	10.67	1.02
1.500 2	2.03 4.583	6.10	7.667	5.08	10.75	1.02
1.583 2	2.03 4.667	6.10	7.750	5.08	10.83	2.03
1.667 2	2.03 4.750	6.10	7.833	5.08	10.92	2.03
1.750 2	2.03 4.833	6.10	7.917	5.08	11.00	2.03
1.833 1	.02 4.917	6.10	8.000	5.08	11.08	2.03
1.917 1	.02 i 5.000	6.10	8.083	4.06	11.17	2.03
2.000 1	02 4.333 2.03 4.417 2.03 4.500 2.03 4.583 2.03 4.667 2.03 4.750 2.03 4.917 2.02 5.000 2.02 5.083 2.03 5.167 2.03 5.250 2.03 5.250	5.08	8.167	4.06	11.25	2.03
2.083	.03 5.167	5.08	8.250	4.06	11.33	1.02
2 167 2	03 5 250	5 08	8 333	4 96	11 42	1 02
2.107 2	2.03 5.250 2.03 5.333 3.05 5.417	10 16	8 417	1 06	11 50	1 02
2.250 2	05 5.555	10.10	0.417	4.00	111.50	2 02
2.333 3	0.05 5.417	10.10	1 0.500	2.00	11.50	2.03
2.41/ 3	0.05 5.500	10.16	0.505	3.05	11.07	2.03
2.500 3	5.05 5.583	10.16	8.667	3.05	111.75	2.03
2.583 3	3.05 5.66/	10.16	8.750	3.05	11.83	1.02
2.667 3	.05 5.750	10.16	8.833	3.05	11.92	1.02
2.750 3	1.05 5.833	73.15	8.917	3.05	12.00	1.02
2.833 4	1.06 5.917	73.15	9.000	3.05	12.08	2.03
2.917 4	1.06 6.000	73.15	9.083	3.05	12.17	2.03
3.000 4	1.06 6.083	74.17	9.167	3.05	12.25	2.03
3.083 3	3.05 5.417 3.05 5.500 5.05 5.583 3.05 5.667 3.05 5.750 3.05 5.833 3.06 5.917 3.06 6.000 3.05 6.083 3.05 6.167	74.17	9.250	3.05	I	
Max.Eff.Inten.(mm/hr)	= 74.17		61.96			
over (min)	5.00		10.00			
Storage Coeff. (min) Unit Hyd. Tpeak (min) Unit Hyd. peak (cms)	= 5.11	(ii)	9.87 (ii)			
Unit Hyd. Tpeak (min)	= 5.00	1	10.00			
Unit Hyd. peak (cms)	= 0.21		0.11			
				T0	TALS	
PEAK FLOW (cms)	= 0.05		0.03	0	.078 (iii)	
TIME TO PEAK (hrs)	= 6.25 = 80.04		6.25		6.25	
RUNOFF VOLUME (mm)	= 80.04		54.74	68	8.90	
TOTAL RAINFALL (mm)	= 82.04		82.04	83	2.04	
RUNOFF COEFFICIENT	= 0.98		0.67		0.84	
(i) CN PROCEDURE SE CN* = 89.0	Ia = Dep.	Storage	(Above)			
(ii) TIME STEP (DT) THAN THE STORAG			EQUAL			
(iii) PEAK FLOW DOES			IF ANY.			
ALIB						

Page 146

```
{\tt LangstaffRd\_EA\_Existing\_WestDonWatershd}
```

Max.Eff.Inten.(mm/hr)=	74.17	59.01	
over (min)	5.00	15.00	
Storage Coeff. (min)=	5.11 (i	ii) 12.29 (ii)	
Unit Hyd. Tpeak (min)=	5.00	15.00	
Unit Hyd. peak (cms)=	0.21	0.09	
			TOTALS
PEAK FLOW (cms)=	0.05	0.04	0.091 (iii)
TIME TO PEAK (hrs)=	6.25	6.33	6.25
RUNOFF VOLUME (mm)=	80.04	51.61	64.39
TOTAL RAINFALL (mm)=	82.04	82.04	82.04
RUNOFF COEFFICIENT =	0.98	0.63	0.78

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 87.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0430)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
ii	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0155):	0.56	0.091	6.25	64.39
+ ID2= 2 (0160):	0.43	0.078	6.25	68.90
=======================================				
TD - 3 (0430).	a 99	a 169	6 25	66 35

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 3.58 0.23	CALIB	Area Total	(ha)= Imp(%)=	3.81 94.00	Dir. (Conn.(%)=	94.00	
			IMPERVIO	ous	PERVIOUS	(i)		
2.00 5.00	Surface Area	(ha)=	3.58	3	0.23			
Dep. Storage (mm)= 2.00 5.00	Dep. Storage	(mm)=	2.00	3	5.00			
Average Slope (%)= 1.00 2.00	Average Slope	(%)=	1.00	3	2.00			
Length (m)= 150.00 40.00	Length	(m)=	150.00	3	40.00			
Mannings n = 0.013 0.250	Mannings n	- '=	0.013	3	0.250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05

```
LangstaffRd_EA_Existing_MestDonWatershd
0.00 | 3.333 | 3.05 | 6.417 | 15.24 | 1.5
2.03 | 3.437 | 3.05 | 6.500 | 15.24 | 1.5
2.03 | 3.500 | 3.05 | 6.583 | 14.22 | 1.5
2.03 | 3.500 | 3.05 | 6.667 | 14.22 | 1.5
2.03 | 3.583 | 3.05 | 6.667 | 14.22 | 1.5
2.03 | 3.583 | 3.05 | 6.683 | 7.12 | 2.5
1.02 | 3.667 | 3.05 | 6.833 | 7.11 | 1.7
2.03 | 3.917 | 4.06 | 7.000 | 7.11 | 1.7
2.03 | 3.917 | 4.06 | 7.000 | 7.11 | 1.7
2.03 | 4.000 | 4.06 | 7.083 | 6.10 | 1.7
2.03 | 4.083 | 3.05 | 7.167 | 6.10 | 1.7
2.03 | 4.083 | 3.05 | 7.157 | 6.10 | 1.7
2.03 | 4.083 | 3.05 | 7.7333 | 5.08 | 1.7
2.03 | 4.17 | 3.05 | 7.250 | 6.10 | 1.7
2.03 | 4.17 | 5.08 | 7.417 | 5.08 | 1.7
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 1.7
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 1.7
2.03 | 4.530 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.530 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.530 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.575 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.533 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.533 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.533 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 4.533 | 6.10 | 7.757 | 5.08 | 1.7
2.03 | 5.567 | 5.08 | 8.250 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06 | 1.7
2.03 | 5.550 | 5.08 | 8.333 | 4.06
   0.250
0.333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.03
0.333
0.417
0.500
0.583
0.667
0.750
0.833
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9.58
9.67
9.75
9.83
9.92
10.00
10.08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.03
2.03
3.05
3.05
3.05
2.03
   0.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 10.17
10.25
10.33
10.42
10.50
10.58
10.67
   1.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.03
2.03
2.03
2.03
1.02
1.02
1.083
1.167
1.250
1.333
1.417
   1.583
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10.83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.03
   1.667
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10.92
1.750
1.833
1.917
2.000
2.083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11.00
11.08
11.17
11.25
11.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.02
   2.167
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    11.42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.02
2.167
2.250
2.333
2.417
2.500
2.583
2.667
2.750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11.42
11.50
11.58
11.67
11.75
11.83
11.92
12.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.02
2.03
2.03
2.03
1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    12.08
   2.833
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.03
   2.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    12.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.03
```

60.48 10.00 6.32 (ii) 10.00 0.15 74.17 5.00 3.67 (ii) over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 0.25 *TOTALS* 0.74 6.25 80.04 82.04

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.04 6.25 53.15 82.04 0.65 0.774 (iii) 6.25 78.43 82.04 0.98

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 88.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

Page 149

	Langs	staffRd E	A Exist	ing WestDon	Waters	hd	
1.667	7 2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.756	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	7 1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	3 2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	7 2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.256	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	7 3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	7 3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.756	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05		
ff.Inten.(m		74.17		47.96			
	(min)	5.00		15.00			
ge Coeff.			(ii)	12.51 (ii)			
Hyd. Tpeak		5.00		15.00			
Jud noak	(cmc)-	a 22		0 00			

Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 0.05 6.25 80.04 PEAK FLOW TIME TO PEAK 0.02 0.070 (iii) 6.25 59.75 (hrs)= 6.33 41.06 RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 82.04 82.04

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

Max.Ef

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 79.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0180) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.65 33.00	Dir. Conn.(%)=	33.00
		IMPERVIO	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.2	1	0.44	
Dep. Storage	(mm)=	2.00	9	5.00	
Average Slope	(%)=	1.00	9	2.00	
Length	(m)=	65.83	3	40.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 151

$Lang staff Rd_EA_Existing_WestDonWatershd \\ THAN \ THE \ STORAGE \ COEFFICIENT.$

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0440) 1 + 2 = 3	AREA (ha) 3.81	QPEAK (cms) 0.774	TPEAK (hrs) 6.25	R.V. (mm) 78.43
+ ID2= 2 (0430):	0.99	0.169	6.25	66.35
ID = 3 (0440):	4.80	0.943	6.25	75.94

NOTE: PEAK FLO	WS DO NO	T INCLUDE	BASEFL	OWS IF	ANY.		
CALIB STANDHYD (0185) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=		Dir.	Conn.(%)=	48.00	
· · · · · · · · · · · · · · · · · · ·					, ,		
		IMPERVIO	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	0.23	3	0.24	1 ` ′		
Dep. Storage	(mm)=	2.00)	5.00)		
Average Slope	(%)=	1.00)	2.00)		
Length	(m)=	240.00)	20.00)		
Mannings n	=	0.013	3	0.356)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03

Page 150

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

		_	_	-			
		TRA	NSFORME	D HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs 6.250 6.333	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.583	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167 7.250 7.333	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.583 7.667 7.750	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	/.91/	5.08	11.00	2.03
1.833	1.02	4.91/	6.10	8.000	5.08	11.08	2.03
1.91/	1.02	5.000	6.10	8.000 8.083 8.167	4.06	11.1/	2.03
2.000	1.02	5.083	5.08	8.16/	4.06	11.25	2.03
2.083	2.03	5.16/	5.08	8.250	4.06	11.33	1.02
2.16/	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.41/	10.16	8.417 8.500 8.583	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.6/	2.03
2.500	3.05	5.583	10.16	8.667 8.750	3.05	11.75	2.03
2.563	3.05	5.00/ F 7F0	10.10	0.750	3.05	111.03	1.02
2.007	3.05	J 5./50	72.10	8.833 8.917	3.05	11.92	1.02
2.750	4.00	5.655 F.017	73.15	9.000	3.05	12.00	2.02
2.033	4.00	5.91/	73.15	1 0 000	3.05	12.00	2.03
2.917	4.00	0.000	73.13	9.083	3.05	12.17	2.03
2.002	2.05	0.003	74.17	9.167	3.05	1 12.25	2.03
3.063	3.05	0.10/	/4.1/	9.250	3.05	1	
ff.Inten.(mm,	/hr)=	74.17		53.29			
over (r ge Coeff. (r Hyd. Tpeak (r	min)	5.00		15.00			
ge Coeff. (r	min)=	2.24	(ii)	11.32 (ii	.)		
Hyd. Tpeak (r	nin)=	5.00		15.00			

over	(min)	5.00	15.00	
Storage Coeff.	(min)=	2.24 (ii)	11.32 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.30	0.09	
				TOTALS
PEAK FLOW	(cms)=	0.04	0.05	0.094 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	80.04	45.99	57.21
TOTAL RAINFALL	(mm)=	82.04	82.04	82.04

Max.Ef

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

ADD HYD (0445)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V
	(ha)	(cms)	(hrs)	(mm
ID1= 1 (0180):	0.65	0.094	6.25	57.21
+ ID2= 2 (0185):	0.47	0.070	6.25	59.75
=======================================				
TD - 3 (0445) ·	1 12	0 164	6 25	58 28

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB	Area Total	(ha)= 0.60 Imp(%)= 40.00		40.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.24	0.36	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	250.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03

Page 153

LangstaffRd_EA_Existing_WestDonWatershd)= 0.25 0.18)= 2.00 5.00)= 1.00 2.00 (ha)= (mm)= (%)= (m)=

0.250

0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Dep. Storage Average Slope Mannings n

		TR	ANSFORMFI	D HYETOGR	APH	-	
TIME	RAIN	l TIME	RAIN	l' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10		2.03
1.000	2.03	4.083	3.05	7.167	6.10		2.03
1.083	1.02	4.167	3.05	7.250	6.10		2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10		4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05	l	

Max.Eff.Inten.(mm/hr)= 74.17 61.96 over (min)
Storage Coeff. (min)= 10.00 9.68 (ii) 4.99 (ii)

Page 155

```
LangstaffRd_EA_Existing_WestDor

1.02 | 4.167 | 3.05 | 7.250

1.02 | 4.250 | 3.05 | 7.333

1.02 | 4.333 | 5.08 | 7.417

2.03 | 4.417 | 5.08 | 7.500

2.03 | 4.500 | 5.08 | 7.583

2.03 | 4.583 | 6.10 | 7.667

2.03 | 4.583 | 6.10 | 7.750

2.03 | 4.833 | 6.10 | 7.933

2.03 | 4.833 | 6.10 | 7.937

1.01 | 7.01 | 7.017

1.02 | 4.017 | 6.10 | 8.000
                                                                                                        4.167
4.250
4.333
4.417
4.508
4.583
4.667
4.750
4.833
4.917
5.000
5.083
5.167
5.250
5.333
                                                    1.083
                                                                                                                                                                                              6.10 | 10.33
5.08 | 10.42
                                                     1.167
                                                                                                                                                                                              5.08
5.08
5.08
5.08
5.08
5.08
                                                    1.250
1.333
1.417
1.500
1.583
                                                                                                                                                                                                                     10.50
10.58
10.67
10.75
10.83
                                                                                                                                                                                                                                                    2.03
1.02
1.02
1.02
2.03
                                                     1.667
                                                                                                                                                                                                                     10.92
                                                    1.750
                                                                                                                                6.10 | 7.917
6.10 | 8.003
5.08 | 8.167
5.08 | 8.159
5.08 | 8.159
10.16 | 8.417
10.16 | 8.590
10.16 | 8.67
10.16 | 8.67
10.16 | 8.833
73.15 | 8.917
73.15 | 9.000
73.15 | 9.000
74.17 | 9.167
74.17 | 9.250
                                                                                                                                                                                               5.08
5.08
                                                                                                                                                                                                                     11.00
11.08
                                                     1.833
                                                                                  1.02
                                                    1.833
1.917
2.000
2.083
2.167
2.250
2.333
                                                                                  1.02
1.02
2.03
2.03
2.03
3.05
                                                                                                                                                                                                                     11.08
11.17
11.25
11.33
11.42
11.50
11.58
                                                                                                                                                                                              4.06
4.06
4.06
4.06
4.06
                                                                                                                                                                                                                                                    2.03
2.03
1.02
1.02
1.02
                                                                                                          5.417
                                                                                                                                                                                               4.06
                                                                                                                                                                                                                                                     2.03
                                                                                                         5.417
5.500
5.583
5.667
5.750
5.833
5.917
6.000
                                                                                                                                                                                              3.05
3.05
3.05
3.05
3.05
3.05
3.05
3.05
                                                                                                                                                                                                                     11.58
11.67
11.75
11.83
11.92
12.00
12.08
                                                    2.417
                                                                                   3.05
                                                                                                                                                                                                                                                    2.03
                                                    2.417
2.500
2.583
2.667
2.750
2.833
                                                                                  3.05
3.05
3.05
3.05
3.05
4.06
4.06
4.06
                                                     2.917
                                                                                                                                                                                                                                                     2.03
                                                                                                         6.083
6.167
                                                                                                                                                                                               3.05
                                                    3.083
                                                                                  3.05
              Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                         53.29
15.00
10.98 (ii)
15.00
                                                                                                                74.17
5.00
4.99 (ii)
5.00
                                                                                                                0.22
                                                                                                                                                            0.09
                                                                                                                                                                                                       *TOTALS*
              PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                             0.05
6.25
80.04
82.04
0.98
                                                                                                                                                                                                          TOTALS*
0.091 (iii)
6.25
59.60
82.04
0.73
                                                                                                                                                             0.04
                                                                                                                                                         6.33
45.99
82.04
0.56
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                (1) CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| STANDHYD ( 0170)|
|ID= 1 DT= 5.0 min |
                                                                          Area (ha)= 0.43
Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00
```

IMPERVIOUS PERVIOUS (i)

Page 154

	Land	rc+affDd EA Ex	isting WestDo	nWatanchd
Unit Hyd. Tpeak		5.00	10.00	ilwa cer silu
Unit Hyd. peak		0.22	0.11	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.03	0.079 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	80.04	54.74	69.15
TOTAL RAINFALL	(mm)=	82.04	82.04	82.04
RUNOFF COEFFICIE	ENT =	0.98	0.67	0.84
** WARNING: STORAG	GE COEFF.	IS SMALLER T	HAN TIME STEP!	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

(1) CN* FINCEDORE SELECT FOR FEATURES LOSSES.

(CN* = 89.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0450)| | 1 + 2 = 3 | QPEAK (cms) 0.091 0.079 R.V. (mm) 59.60 69.15 ΔRFΔ (ha) 0.60 0.43 (hrs) 6.25 6.25 ID1= 1 (0165): + ID2= 2 (0170): ID = 3 (0450): 1.03 0.170 6.25 63.59

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0450)| 3 + 2 = 1 | AREA QPEAK (ha) 1.03 (cms) (hrs) 6.25 (mm) 63.59 ID1= 3 (0450): + ID2= 2 (0445): 1.12 0.164 6.25 58.28

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB							
STANDHYD (0190)	Area	(ha)=	0.86				
ID= 1 DT= 5.0 min	Total	Imp(%)=	42.00	Dir.	Conn.(%)=	42.00	
		IMPERVIO	OUS	PERVIO	JS (i)		
Surface Area	(ha)=	0.36	5	0.5	9		
Dep. Storage	(mm)=	2.00	3	5.00	9		
Average Slope	(%)=	1.00	3	2.00	9		
Length	(m)=	340.00	3	50.00	9		
Mannings n	` ′=	0.013	3	0.25	9		
=							

LangstaffRd_EA_Existing_WestDonWatershd

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---RAIN | TIME RAIN | TIME RAIN | TIME
mmm/hr | hrs mm/hr | hrs mm/hr | hrs
0.00 | 3.167 | 3.05 | 6.250 | 74.17 | 9.33
0.00 | 3.250 | 3.05 | 6.333 | 15.24 | 9.42 hrs 0.083 mm/hr mm/hr 3.05 mm/hr | 6.759
3.05 | 6.250
3.05 | 6.333
3.05 | 6.583
3.05 | 6.583
3.05 | 6.667
3.05 | 6.759
3.05 | 6.759
3.05 | 6.759
3.05 | 6.759
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.350
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 | 7.250
3.05 0.167 0.250 0.00 3.05 3.333 15.24 9.50 3.05 0.250 0.333 0.417 0.500 0.583 0.667 0.750 2.03 2.03 2.03 1.02 1.02 3.333 3.417 3.500 3.583 3.667 3.750 3.833 2.03 2.03 2.03 3.05 3.05 3.05 9.58 9.67 9.75 9.83 9.92 2.03 | 2.03 | 2.03 | 1.02 | 1.02 | 1.02 | 2.03 | 0.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 10.08 10.17 2.03 0.917 10.17 10.25 10.33 10.42 10.50 10.58 2.03 2.03 2.03 2.03 2.03 1.333 1.02 1.417 2.03 10.67 1.02 10.67 10.75 10.83 10.92 11.00 11.08 11.17 1.500 2.03 2.03 2.03 2.03 1.02 1.02 1.02 2.03 1.02 2 03 1.667 1.750 1.833 1.917 2.03 2.03 2.03 2.03 2.03 2.000 11.25 2.03 2.083 5.167 11.33 1.02 2.03 2.03 2.03 3.05 3.05 3.05 3.05 3.05 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 1.02 1.02 2.03 2.03 2.03 1.02 2.167 11.42 2.167 2.250 2.333 2.417 2.500 2.583 11.42 11.50 11.58 11.67 11.75 11.83 2.667 11.92 3.05 | 5.750 3.05 | 5.833 4.06 | 5.917 4.06 | 6.000 4.06 | 6.083 3.05 | 6.167 12.00 12.08 12.17 12.25 2.750 1.02 2.833 2.03 2.917 2.03 Max.Eff.Inten.(mm/hr)= 74.17 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 20.00 6.00 (ii) 16.50 (ii) 5.00 20.00 0.19 0.06 *TOTALS* 0.07 6.25 0.05 6.42 0.119 (iii) 6.25 PEAK FLOW (cms)= TIME TO PEAK (hrs)= Page 157

Langs	staffRd_E	A Existi	ng WestD	onWaters	hd	
2.000 1.02 2.083 2.03 2.167 2.03 2.250 2.03	5.083	5.08	8.167	4.06	11.25	2.03
2.083 2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167 2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250 2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333 3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.333 3.05 2.417 3.05 2.500 3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500 3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583 3.05 2.667 3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667 3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750 3.05 2.750 3.05 2.833 4.06 2.917 4.06 3.000 4.06 3.083 3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833 4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917 4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000 4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083 3.05	6.167	74.17	9.250	3.05		
Max.Eff.Inten.(mm/hr)=	74.17	5	3.29			
over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)=	5.00	1	5.00			
Storage Coeff. (min)=	6.00	(ii) 1	1.99 (i	i)		
Unit Hyd. Tpeak (min)=	5.00	1	5.00			
Unit Hyd. peak (cms)=	0.19		0.09			
				T0	ΓALS	
PEAK FLOW (cms)=	0.07		0.05	0.	.120 (iii)
TIME TO PEAK (hrs)=	6.25		6.33	6	5.25	
RUNOFF VOLUME (mm)=	80.04	4	5.99	66	9.28	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)=	82.04	8	2.04	82	2.04	
RUNOFF COEFFICIENT =	0.98		0.56	(9.73	
(i) CN PROCEDURE SELECT	FD FOR PF	RVTOUS I	OSSES:			
CN* = 83.0 Ia						
(ii) TIME STEP (DT) SHOU						
THAN THE STORAGE CO						
(iii) PEAK FLOW DOES NOT			IF ANY.			
` '						
ADD UND						
ADD HYD (0455)	REA OP					
1 + 2 = 3 A	REA QP	EAK T	PEAK	R.V.		
(ha) (c	ms) (nrs)	(mm)		
ID1= 1 (0190): 0 + ID2= 2 (0195): 0	.86 0.1	19 6	. 25	60.28		
ID = 3 (0455): 1						
10 - 3 (0455): 1	.05 0.2	20 0	.23	00.20		
NOTE: PEAK FLOWS DO NOT	INCLUDE B	ASEFLOWS	IF ANY			

AREA QPEAK

(ha) (cms) 2.15 0.334

TPFAK

(hrs) 6.25

Page 159

(mm) 60.82

ADD HYD (0458) 1 + 2 = 3

ID1= 1 (0450):

LangstaffRd_EA_Existing_WestDonWatershd 1) = 80.04 45.99 60.2 1) = 82.04 82.04 82.0 RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 60.28 82.04

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0195)| |ID= 1 DT= 5.0 min | Area (ha)= 0.79 Total Imp(%)= 42.00 Dir. Conn.(%)= 42.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.33 2.00 1.00 340.00 0.46 5.00 2.00 Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03

Page 158

				Langstaff	Rd_EA_E	kisting_West	DonWater	sho
+	ID2= 2	(0455):	1.65	0.238	6.25	60.28	
	======							
	TD = 3	(0458):	3.80	0.573	6.25	60.59	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS TE ANY.

CALIB	Area Total	(ha)= Imp(%)=	10.00 80.00	Dir.	Conn.(%)=	80.00
		TMPFRVTO	บเร	PERVIO	IS (i)	
Surface Area	(ha)=	8.00)	2.00		
Dep. Storage	(mm)=	1.00	•	5.00	9	
Average Slope	(%)=	1.00)	2.00	9	
Length	(m)=	258.26)	40.00	9	
Mannings n	=	0.01	3	0.25	9	
. 0-						

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH												
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN					
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr					
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05					
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05					
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05					
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03					
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03					
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03					
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05					
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05					
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05					
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03					
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03					
1.000	2.03	4.083	3.05		6.10		2.03					
1.083	1.02	4.167	3.05		6.10		2.03					
1.167	1.02	4.250	3.05		5.08		2.03					
1.250	1.02		5.08		5.08		2.03					
1.333	2.03		5.08		5.08		1.02					
1.417	2.03		5.08		5.08		1.02					
1.500	2.03		6.10		5.08		1.02					
1.583	2.03	4.667	6.10		5.08		2.03					
1.667	2.03	4.750	6.10		5.08		2.03					
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03					
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03					
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03					
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03					
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02					
2.167	2.03	5.250	5.08		4.06	11.42	1.02					
2.250	2.03	5.333	10.16		4.06		1.02					
2.333	3.05	5.417	10.16		4.06		2.03					
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03					
			Bago	160								

	Langs	taffRd_E	A_Exist	ing_WestDon	Waters	hd	
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	7 3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.756	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	3 4.06	j 5.917	73.15	9.000	3.05 İ	12.08	2.03
2.917	7 4.06	i 6.000	73.15	9.083	3.05 İ	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05 İ		
Max.Eff.Inten.(r	nm/hr)=	74.17		47.96			
over	(min)	5.00		10.00			
Storage Coeff.	(min)=	5.09	(ii)	9.65 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		10.00			
Unit Hyd. peak	(cms)=	0.21		0.11			
					T01	TALS	
PEAK FLOW	(cms)=	1.64		0.23	1.	.871 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.25	6	5.25 ` ´	
RUNOFF VOLUME	(mm)=	81.04		41.06	73	3.04	
TOTAL RAINFALL	(mm)=	82.04		82.04	82	2.04	
RUNOFF COEFFICIE	ENT =	0.99		0.50		3.89	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0350)	Area	(ha)=	0.90			
ID= 1 DT= 5.0 min	Total	Imp(%) = 7	0.00 Dir.	Conn.(%)=	70.00	
		IMPERVIOU:	S PERVIO	JS (i)		
Surface Area	(ha)=	0.63	0.2	7		
Dep. Storage	(mm)=	1.00	5.00	9		
Average Slope	(%)=	1.00	2.00	9		
		77.46	40.00			
Length	(m)=	//.46	40.0)		
Mannings n	=	0.013	0.25	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORMED	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03

Page 161

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

	(H 90): 10. 50): 0.	na) (cms .00 1.871 .90 0.157	6.25 6.25	(mm) 73.04 69.04		
ID = 3 (03 NOTE: PEAK FLO	•			72.71		
**************************************	********	** **				
READ STORM		ata\Loc 278a4b5	s\ray.zhao\Ap al\Temp\ 4-8409-4519-9 2hrSCS		900a1c25\!	571caf6d
0.2 0.5 0.7 1.0 1.2 1.5 1.7 2.0 2.2 2.5 2.7	mm/hr 6.00 2.03 5.203 1.02 5.203 2.03 2.03 5.203 6.203	hrs m 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 1 5.75 1 6.00 8	RAIN TIME m/hr hrs 4.06 6.75 hrs 4.06 7.25 3.05 7.00 4.06 7.25 3.05 7.11 7.75 6.10 8.25 6.10 8.50 6.10 8.50 6.10 8.50 6.10 8.50 6.10 8.50 6.10 8.50 6.10 8.50 6.10 8.75 1.18 9.00 0.26 9.75 1.28 9.50 6.26 9.75	mm/hr 16.26 7.11 7.11 5.08 5.08 6.10 5.08 4.06 3.05 4.06 3.05 3.05	hrs 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25	mm/hr 2.03 3.05 2.03 1.02 2.03 2.03 2.03 1.02 2.03
CALIB STANDHYD (0145) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope	(ha)= (mm)= (%)=	1.89 2.00 1.00	PERVIOUS (1.16 5.00 2.00		52.00	
Length Mannings n	(m)= =	531.00 0.013	40.00 0.250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 163

	staffRd_EA_					
	3.667			14.22		3.05
	3.750		6.833	7.11		3.05
	3.833		6.917	7.11		3.05
	3.917		7.000	7.11		2.03
	4.000		7.083	6.10		2.03
	4.083		7.167	6.10		2.03
	4.167		7.250	6.10		2.03
1.167 1.02	4.250	3.05	7.333	5.08		2.03
1.250 1.02	4.333	5.08	7.417	5.08		2.03
1.333 2.03 1.417 2.03	4.417	5.08	7.500	5.08		1.02
1.41/ 2.03	4.500		7.583	5.08		1.02
1.500 2.03			7.667	5.08		1.02
	4.667		7.750	5.08		2.03
	4.750		7.833	5.08		2.03
	4.833		7.917	5.08		2.03
1.833 1.02	4.917	6.10	8.000	5.08		2.03
1.917 1.02	5.000	6.10	8.083	4.06		2.03
2.000 1.02	5.083	5.08	8.167	4.06		2.03
2.083 2.03	5.167	5.08	8.250	4.06		1.02
	5.250			4.06		1.02
			8.417	4.06		1.02
			8.500	4.06		2.03
			8.583	3.05		2.03
2.500 3.05	5.583	10.16	8.667	3.05		2.03
2.583 3.05	5.667	10.16	8.750	3.05		1.02
2.583 3.05 2.667 3.05 2.750 3.05	5.750	10.16	8.833	3.05		1.02
				3.05		1.02
	5.917	73.15	9.000	3.05		2.03
2.917 4.06			9.083	3.05		2.03
3.000 4.06	6.167	74.17	9.167	3.05		2.03
3.083 3.05	6.16/	/4.1/	9.250	3.05	l	
Max.Eff.Inten.(mm/hr)=	74.17		47.96			
over (min)	5.00		15.00			
Storage Coeff. (min)=	2.47 (ii)	11.94 (ii)			
Unit Hyd. Tpeak (min)=	5.00		15.00			
Unit Hyd. peak (cms)=	0.29		0.09	*****	TALS*	
PEAK FLOW (cms)=	0.13		0.03		.157 (iii)	
TIME TO PEAK (hrs)=	6.25		6.33		5.25	
RUNOFF VOLUME (mm)=	81.04		41.06		9.04	
TOTAL RAINFALL (mm)=	82.04		82.04		2.04	
RUNOFF COEFFICIENT =	0.99		0.50		0.84	
***** WARNING: STORAGE COEFF.	IS SMALLER	THAN	TIME STEP!			

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 162

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

		TP/	NNS EODME	D HYETOGRA	\DH		
TIME	RAIN		RAIN		RAIN	TIME	RAIN
	mm/hr		mm/hr		mm/hr		mm/hr
0.083	0.00		3.05		81.28		3.05
0.167	0.00			6.333	16.26		3.05
0.250		3.333		6.417	16.26		3.05
0.333		3.417	4.06		16.26		3.05
0.417		3.500	4.06		16.26		3.05
0.500	2.03		3.05		16.26		3.05
0.583		3.667	3.05		16.26		2.03
0.667		3.750	3.05		7.11		2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833		3.917	4.06		7.11		3.05
0.917		4.000	4.06	7.083	7.11	10.17	3.05
1.000		4.083	3.05		7.11		3.05
1.083		4.167	3.05		7.11		2.03
1.167		4.250	3.05	7.333	5.08	10.42	2.03
1.250		4.333	7.11		5.08		2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917		8.000	6.10		2.03
1.917	1.02	5.000	6.10	8.083	5.08		2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03			8.250	5.08		2.03
2.167		5.250	6.10		4.06		2.03
2.250		5.333		8.417	4.06		2.03
2.333		5.417		8.500	4.06		1.02
2.417	4.06		11.18		3.05		1.02
2.500		5.583		8.667	3.05		1.02
2.583		5.667		8.750	3.05		2.03
2.667	3.05		11.18		4.06		2.03
2.750		5.833	80.26		4.06		2.03
2.833		5.917	80.26		4.06		2.03
2.917		6.000		9.083	3.05		2.03
3.000		6.083		9.167	3.05		2.03
3.083	3.05	6.167	81.28	9.250	3.05		
Max.Eff.Inten.(mm/h	n)-	81.28		64.97			
over (mi		10.00		20.00			
	n)=	7.56	(ii)	15.94 (ii)	١		
Unit Hyd. Tpeak (mi		10.00	(11)	20.00	,		
	15)=	0.13		0.07			
onize nyar peak (en	.5)-	0.13		0.07	*T01	TALS*	
PEAK FLOW (cm	ıs)=	0.42		0.15		.550 (iii)	
	`s)=	6.25		6.33		5.25	
	ım)=	87.92		57.11		5.21	
	ım)=	89.92		89.92		9.92	
,							
			Page	164			

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0140)	Area	(ha)=	1.27			
ID= 1 DT= 5.0 min	Total	Imp(%)=	52.00	Dir.	Conn.(%)=	52.00
		IMPERVI	OUS	PERVIOU	JS (i)	
Surface Area	(ha)=	0.6	6	0.61		
Dep. Storage	(mm)=	2.0	10	5.00)	
Average Slope	(%)=	1.0	0	2.00)	
Length	(m)=	503.0	0	25.00)	
Mannings n	` =	0.01	.3	0.250)	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03

Page 165

	Langs	taffRd_E	A Existi	ng WestD	onWaters	hd	
0.250	0.00		4.06		16.26		3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10		5.08		2.03
1.667	2.03	4.750	6.10		6.10		2.03
1.750	2.03	4.833	6.10		6.10	11.00	2.03
1.833	1.02	4.917	6.10		6.10		2.03
1.917	1.02	5.000	6.10		5.08		2.03
2.000	1.02	5.083	6.10		5.08		2.03
2.083	2.03	5.167	6.10		5.08		2.03
2.167	2.03	5.250	6.10		4.06	11.42	2.03
2.250	2.03	5.333	11.18		4.06	11.50	2.03
2.333	4.06	5.417	11.18		4.06	11.58	1.02
2.417	4.06	5.500	11.18		3.05	11.67	1.02
2.500	4.06	5.583	11.18		3.05	11.75	1.02
2.583	3.05	5.667	11.18		3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26		4.06	12.00	2.03
2.833	4.06	5.917	80.26		4.06	12.08	2.03
2.917	4.06	6.000	80.26		3.05	12.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05	l	
ten.(mm/	hr)=	81.28		52.01			

- Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 81.28 5.00 7.32 (ii) 5.00 0.17 62.01 15.00 14.51 (ii) 15.00 0.08 *TOTALS*
 0.234 (iii)
 6.25
 67.62
 89.92
 0.75 PEAK FLOW (cms)=
 TIME TO PEAK (hrs)=
 RUNOFF VOLUME (mm)=
 TOTAL RAINFALL (mm)=
 RUNOFF COEFFICIENT = 0.13 6.25 87.92 89.92 0.98 0.11 6.33 54.09 89.92 0.60
- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 84.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

Page 167

		+~EED4 F	A Fudami	ina HastDa		la al		
2 165				ing_WestDo 8.333			2.03	
2 256	2.03	5 333	11 18	8 417	4.00	11.72	2.03	
2.23	3 4 96	5 417	11 18	8.417 8.500 8.583	4.00	11.50	1.02	
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02	
2 500	4 96	5 583	11 18	8 667	3 05	11 75	1 02	
2.58	3.05	5.667	11.18	8.383 8.667 8.750 8.833 8.917 9.000 9.083 9.167	3.05	11.83	2.03	
2.667	7 3.05	5.750	11.18	8.833	4.06	11.92	2.03	
2.756	3.05	5.833	80.26	8.917	4.06	12.00	2.03	
2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03	
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03	
3.006	4.06	6.083	81.28	9.167	3.05	12.25	2.03	
3.083	3.05	6.167	81.28	9.250	3.05			
Max.Eff.Inten.(m								
max.err.inten.(/min/ 111.) =	01.20		60.55				
over Storage Coeff. Unit Hyd. Tpeak	(min)	5.00	(::)	12 02 (44)				
Unit Hud Thook	(min)=	7.32 E 00	(11)	15.62 (11)				
Unit Hyd. peak	(mIII)=	0.17		0.08				
onit nyu. peak	(CIIIS)=	0.17		0.00	*****	TALS*		
DEAK ELON	(cmc)-	0 15		0 00		.222 (iii	`	
PEAK FLOW TIME TO PEAK	(bnc)-	6.13		0.08 6.33		.222 (111 5.25	,	
DINOEE VOLUME	(III'S)-	97 02		52 66		3.23 3.98		
RUNOFF VOLUME TOTAL RAINFALL	(mm)-	80 02		52.66 89.92		9.92		
RUNOFF COEFFICIE	(IIIII) - INT -	0.98		0.59		9.92 9.79		
NONOTT COLITICIE		0.50		0.55	,	5.75		
CN* = 8 (ii) TIME STEP THAN THE S	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFTCIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.							
CALIB								
CALIB STANDHYD (0135) ID= 1 DT= 5.0 min	Area	(ha)=	1.43					
ID= 1 DT= 5.0 min	Total I	np(%)= 4	10.00	Dir. Conn.	(%)=	40.00		
		TMPERVTOL	IS PE	RVIOUS (i)				
Surface Area	(ha)=	0.57		0.86				
Dep. Storage	(mm)=	2.00		5.00				
Average Slope	(%)=	1.00		2.00				
	(%)= (m)=	503.00		30.00				
Length Mannings n	=	0.013		0.250				
					THE CT			
NOTE: RAINF	ALL WAS II	KANSFURME	יט וט	5.0 MIN. I	TWE SII	EP.		
		TD	NCCODMC	D HYETOGRA	DII			
TTM	DATM			TIME			RAIN	
I IME	RAIN mm/h=	l ithe	mm/h=	hrs	mm/b-	IIIIE	mm/hr	
nrs a ao	0 00	1 2 167	11111/11P	1 6 250	01 20	1 0 33	mm/nr 3.05	
0.08	7 0 00	3.10/	3.05	6.250	16 26	9.33	3.05	
0.10	0.00	3.230	3.05	1 0.333	10.20	9.42	3.03	

				Lang	staffRd_	EA_	Existi	ng_	WestDonWatershd
12221	DEAK	FLOU	DOLC	MOT	TNCLUDE	D A	CEELOU	TE	ANIX

Page 166

1 + 2 = 3	ARE			
	(ha			(mm)
ID1= 1 (01		3 0.234	6.25	67.62
+ ID2= 2 (01	40): 1.2	7 0.222	6.25	70.98
ID = 3 (04	20): 2.7	0.456	6.25	69.20

ADD HYD (0425)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0145):	3.05	0.550	6.25	76.21
+ ID2= 2 (0420):	2.70	0.456	6.25	69.20
=======================================				
ID = 3 (0425):	5.75	1.006	6.25	72.92

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0210) ID= 1 DT= 5.0 min	Area Total	(ha)= 6 Imp(%)= 44	9.96 1.00	Dir. Conn.(%)=	44.00
		IMPERVIOUS	5	PERVIOUS (i)	
Surface Area	(ha)=	0.42		0.54	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	470.00		20.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03

	Langs	taffRd F	Δ Frist	ing_WestDon	Waters	hd	
0.750		3.833		6.917	7.11		2.03
	1.02				7.11		3.05
	1.02			7.083	7.11		3.05
1.000		4.083		7.167	7.11		3.05
		4.167	3.05		7.11		2.03
		4.250		7.333	5.08		2.03
		4.333		7.417	5.08		2.03
		4.417	7.11		5.08		1.02
		4.500		7.583	5.08		1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417		8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
		5.667		8.750	3.05		2.03
		5.750			4.06		2.03
		5.833		8.917	4.06		2.03
		5.917		9.000	4.06		2.03
		6.000			3.05		2.03
				9.167	3.05		2.03
3.083	3.05	6.167	81.28	9.250	3.05		
Max.Eff.Inten.(mm/hr		81.28		60.55			
over (min		5.00		15.00			
Storage Coeff. (min			(ii)	12.72 (ii)			
Unit Hyd. Tpeak (min		5.00		15.00			
Unit Hyd. peak (cms	5)=	0.17		0.08	*****	TALS*	
PEAK FLOW (cms	;)=	0.09		0.07		.162 (iii)	
TIME TO PEAK (hrs		6.25		6.33		5.25	
RUNOFF VOLUME (mm		87.92		52.66		3.16	
TOTAL RAINFALL (mm		89.92		89.92		9.92	
RUNOFF COEFFICIENT	=	0.98		0.59		9.76	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 169

LangstaffRd_EA_Existing_WestDonWatershd)= 81.28 60.55) 5.00 15.00)= 7.02 (ii) 12.72 (ii) Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 0.17 15.00

0.08 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.09 6.25 87.92 89.92 0.181 (iii) 6.25 66.05 89.92 0.98

QPEAK (cms) 0.181 TPEAK (hrs) 6.25 R.V. (mm) 66.05 (ha) 1.11 ID1= 1 (0205): + ID2= 2 (0210): 0.96 0.162 6.25 68.16 ID = 3 (0460): 2.07 0.344 6.25 67.03

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

STANDHYD (0230) (ha)= 0.70 | ID= 1 DT= 5.0 min | Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 TMPERVTOUS PERVIOUS (i)

Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.30 5.00 2.00 0.40 2.00 1.00 Length 320.00 Mannings n 0.013 0.290

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---
RAIN | TIME RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs |

0.00 | 3.167 | 3.05 | 6.250 | 81.28 | 9.33 |

0.00 | 3.250 | 3.05 | 6.333 | 6.26 | 9.42 |

0.00 | 3.333 | 4.06 | 6.417 | 16.26 | 9.50 RAIN mm/hr 3.05 3.05 hrs 0.083

 $LangstaffRd_EA_Existing_WestDonWatershd\\ |\,ID=\,1\,\,DT=\,5.0\,\,min\,\mid\quad Total\,\,Imp(\%)=\,\,38.00\quad Dir.\,\,Conn.(\%)=\,\,38.00$

IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= Surface Area Dep. Storage Average Slope Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---RAIN | TIME RAIN | TIME RAIN | TIME
mm/hp | hos mm/hp | hos mm/hp | hos hrs mm/hr 0.00 hrs 3.167 mm/hr hrs mm/hr | 81.28 | mm/hr 0.083 6.250 3.05 3.05 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 9.33 9.42 9.50 9.58 9.67 9.75 9.83 0.167 0.00 3.250 16.26 3.05 0.250 0.00 3.333 2.03 2.03 2.03 2.03 2.03 2.03 0.333 0.417 0.500 0.583 3.417 3.500 3.583 3.667 3.750 16.26 16.26 16.26 16.26 3.05 3.05 3.05 2.03 0.667 3.05 4.06 7.11 7.11 9.92 2.03 0.750 3.833 6.917 7.000 10.00 2.03 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 10.00 10.08 10.17 10.25 10.33 10.42 10.50 3.05 3.05 3.05 2.03 2.03 2.03 1.02 4.06 7.11 1.02 1.02 1.02 2.03 2.03 2.03 4.06 3.05 3.05 3.05 7.11 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 2.03 7.11 5.08 5.08 10.58 1.02 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 1.417 2.03 7.11 10.67 1.02 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.03 2.03 2.03 2.03 2.03 1.02 1.02 6.10 6.10 6.10 6.10 6.10 6.10 10.67 10.75 10.83 10.92 11.00 11.08 11.17 1.02 2.03 2.03 2.03 2.03 2.03 5.08 5.08 2.000 6.10 2.083 2.03 5.167 6.10 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250 5.08 11.33 2.03 2.167 2.03 5.250 6.10 4.06 11.42 2.03 2.250 2.333 2.417 2.500 2.583 2.03 4.06 4.06 4.06 3.05 3.05 5.250 5.333 5.417 5.500 5.583 5.667 5.750 11.18 11.18 11.18 11.18 11.18 4.06 4.06 3.05 3.05 11.50 11.58 11.67 11.75 11.83 2.03 1.02 1.02 1.02 2.03 3.05 2.667 11.18 11.92 2.03 2.750 3.05 5.833 5.917 80.26 4.06 12.00 12.08 2.03 2.833 4.06 80.26 4.06 2.03 80.26 | 81.28 | 81.28 | 2.03 2.917 4.06 4.06 6.000 3.05 12.17

Page 170

	Lange	taffRd F	Δ Frist	ing_WestDo	waters	hd	
0.333		3.417			16.26		3.05
0.417		3.500			16.26		3.05
0.500		3.583			16.26		3.05
0.583		3.667			16.26		2.03
0.667				6.833	7.11		2.03
0.750		3.833		6.917	7.11		2.03
0.833		3.917		7.000		10.08	3.05
0.917		4.000		7.083	7.11		3.05
1.000		4.083		7.167		10.25	3.05
1.083		4.167		7.250		10.33	2.03
1.167		4.250		7.333		10.42	2.03
1.250	2.03	4.333	7.11		5.08	10.50	2.03
1.333	2.03	4.417	7.11	7 500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000		5.083	6.10	8.167	5.08	11.25	2.03
2.083		5.167	6.10	1 8.250	5.08	11.33	2.03
2.167		5.250	6.10	8.333	4.06	11.42	2.03
2.250		5.333	11.18	8.417	4.06	11.50	2.03
2.333		5.417		8.500	4.06	11.58	1.02
2.417			11.18				
2.500		5.583		8.667		11.75	1.02
2.583		5.667		8.750		11.83	2.03
2.667		5.750		8.833		11.92	2.03
2.750		5.833		8.917		12.00	2.03
2.833		5.917		9.000		12.08	2.03
2.917		6.000		9.083		12.17	2.03
3.000			81.28		3.05		2.03
3.083	3.05	6.167	81.28	9.250	3.05	l	
Max.Eff.Inten.(mr	m/hr)=	81.28		57.69			
over		5.00		15.00			
	(min)=	5.58		12.83 (ii)			
Unit Hyd. Tpeak		5.00		15.00			
Unit Hyd. peak	(cms)=	0.20		0.08			

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

6.25 87.92

(cms)=

PEAK FLOW

TIME TO PEAK

RUNOFF VOLUME TOTAL RAINFALL

TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

CN* = 81.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 172

6.33

0.126 (iii)

6.25 71.56

LangstaffRd_EA_Existing_WestDonWatershd

CALIB				
STANDHYD (0225)	Area	(ha)= 0.90)	
ID= 1 DT= 5.0 min	Total	Imp(%) = 53.00	Dir. Conn.(%)=	53.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.48	0.42	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	320.00	25.00	
Mannings n	` =	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03

Page 173

	Langs	taffRd E	A Existi	ing WestDo	nWaters	hd	
TIME	RAIN		RAIN		RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs			mm/hr
0.083	0.00		3.05	6.250			3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00		4.06		16.26		3.05
0.333	2.03		4.06	6.500			3.05
0.417		3.500		6.583	16.26		3.05
0.500	2.03		3.05		16.26		3.05
0.583		3.667		6.750	16.26		2.03
0.667	2.03	3.750		6.833	7.11		2.03
0.750		3.833		6.917	7.11		2.03
0.833		3.917		7.000	7.11		3.05
0.917		4.000		7.083	7.11		3.05
1.000				7.167	7.11		3.05
1.083		4.167	3.05		7.11		2.03
1.167		4.250	3.05		5.08		2.03
1.250		4.333	7.11		5.08		2.03
1.333		4.417		7.500		10.58	1.02
1.417		4.500	7.11		5.08		1.02
1.500		4.583	6.10		5.08		1.02
1.583		4.667		7.750		10.83	2.03
1.667		4.750			6.10		2.03
1.750		4.833	6.10		6.10		2.03
1.833		4.917	6.10			11.08	2.03
1.917		5.000			5.08		2.03
2.000		5.083	6.10		5.08		2.03
2.083		5.167		8.250	5.08		2.03
2.167		5.250	6.10		4.06		2.03
2.250		5.333	11.18			11.50	2.03
2.333		5.417		8.500	4.06		1.02
2.417		5.500			3.05		1.02
2.500		5.583		8.667		11.75	1.02
2.583		5.667		8.750	3.05		2.03
2,667		5.750			4.06		2.03
2.750		5.833		8.917	4.06		2.03
2.833	4.06				4.06		2.03
2.917					3.05		2.03
3.000	4.06			9.167	3.05		2.03
3.083		6.167		9.250	3.05		2.03
/							
Max.Eff.Inten.(mm/		81.28		60.55			
over (r		5.00		15.00			
	min)=	4.92		10.62 (ii)		
Unit Hyd. Tpeak (r		5.00		15.00			
Unit Hyd. peak (d	cms)=	0.22		0.09			
						TALS*	
	cms)=	0.07		0.05		.115 (iii)	
	nrs)=	6.25		6.33		5.25	
	(mm)=	87.92		52.66		3.87	
	(mm)=	89.92		89.92		9.92	
RUNOFF COEFFICIENT	Γ =	0.98		0.59	(9.77	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

Page 175

Lan 2.833 4.06 2.917 4.06 3.000 4.06 3.083 3.05	gstaffRd_EA_Exis 5 5.917	ting_WestDonWate 5 9.000 4.6 5 9.083 3.6 3 9.167 3.6 3 9.250 3.6	ershd 16 12.08 2.03 15 12.17 2.03 15 12.25 2.03 15				
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	81.28 5.00 5.58 (ii) 5.00 0.20	60.55 15.00 12.08 (ii) 15.00 0.09	:TOTAL S*				
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.11 6.25 87.92 89.92 0.98	0.06 6.33 52.66 89.92 0.59	0.162 (iii) 6.25 71.34 89.92 0.79				
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.							
ADD HYD (0475) 1 + 2 = 3 101= 1 (0225): + 1D2= 2 (0230):							
ID = 3 (0475): NOTE: PEAK FLOWS DO NOT	1.60 0.287	6.25 71.43	:				
CALIB	(ha)= 0.65 Imp(%)= 46.00	Dir. Conn.(%)=					
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	1.00 260.00	0.35					
NOTE: RAINFALL WAS		5.0 MIN. TIME MED HYETOGRAPH -					

 ${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0215)	Area	(ha)=	0.58				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
		IMPERVI	OUS	PERVIOL	IS (i)		
Surface Area	(ha)=	0.33		0.25			
Dep. Storage	(mm)=	2.00		5.00)		
Average Slope	(%)=	1.00		2.00			
Length	(m)=	260.00		30.00			
Mannings n				0.250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH													
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN						
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr						
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05						
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05						
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05						
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05						
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05						
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05						
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03						
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03						
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03						
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05						
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05						
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05						
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03						
1.167	2.03		3.05	7.333	5.08	10.42	2.03						
1.250	2.03		7.11	7.417	5.08		2.03						
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02						
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02						
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02						
1.583	2.03	4.667	6.10	7.750	5.08		2.03						
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03						
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03						
1.833	1.02	4.917	6.10		6.10		2.03						
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03						
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03						
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03						
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03						
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03						

```
LangstaffRd EA Existing MestDonWatershd
4.06 | 5.417 | 11.18 | 8.590 | 4.06 | 1
4.06 | 5.590 | 11.18 | 8.583 | 3.05 | 1
4.06 | 5.583 | 11.18 | 8.657 | 3.05 | 1
3.05 | 5.667 | 11.18 | 8.750 | 3.05 | 1
3.05 | 5.750 | 11.18 | 8.833 | 4.06 | 1
3.05 | 5.833 | 80.26 | 8.917 | 4.06 | 1
4.06 | 5.917 | 80.26 | 9.080 | 4.06 | 1
4.06 | 6.000 | 80.26 | 9.083 | 3.05 | 1
4.06 | 6.008 | 80.26 | 9.083 | 3.05 | 1
3.05 | 6.167 | 81.28 | 9.250 | 3.05 |
                                                                                                                                                                                                                                                      NWATERSHO
4.06 | 11.58
3.05 | 11.67
3.05 | 11.73
3.05 | 11.83
4.06 | 11.92
4.06 | 12.00
4.06 | 12.08
3.05 | 12.17
3.05 | 12.25
3.05 |
                                                                     2.333
2.417
                                                                                                                                                                                                                                                                                                                                1.02
                                                                     2.583
2.667
2.750
2.833
                                                                                                                                                                                                                                                                                                                               1.02
2.03
2.03
2.03
2.03
                                                                      2.917
                  Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                              81.28
5.00
4.92 (ii)
5.00
0.22
                                                                                                                                                                                                       60.55
15.00
12.18 (ii)
15.00
0.09
                                                                                                                                                                                                                                                                 *TOTALS*
0.107 (iii)
6.25
72.74
89.92
0.81
                   PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                               0.07
6.25
87.92
89.92
0.98
                                                                                                                                                                                                         0.03
6.33
52.66
89.92
0.59
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

ADD HYD (0470) 1 + 2 = 3 	AREA (ha) 0.58 0.65	QPEAK (cms) 0.107 0.115	TPEAK (hrs) 6.25 6.25	R.V. (mm) 72.74 68.87
ID = 3 (0470):	1.23	0.221	6.25	70.69

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0480) 1 + 2 = 3 	AREA (ha) 1.23 1.60	QPEAK (cms) 0.221 0.287	TPEAK (hrs) 6.25 6.25	R.V. (mm) 70.69 71.43
ID = 3 (0480):	2.83	0.508	6.25	71.11

Page 177

	Langs	staffRd_E	A_Existing	_WestDon	Watershd		
2.750	3.05	5.833	80.26	8.917	4.06 12	.00	2.03
2.83	3 4.06	5.917	80.26	9.000	4.06 12	.08	2.03
2.91	7 4.06	6.000	80.26	9.083	3.05 12	.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05 12	.25	2.03
3.08	3.05	6.167	81.28	9.250	3.05		
Max.Eff.Inten.(r	mm/hr)=	81.28	69	.46			
over	(min)	5.00	10	.00			
Storage Coeff.	(min)=	4.92	(ii) 9	.52 (ii)			
Unit Hyd. Tpeak	(min)=	5.00	10	.00			
Unit Hyd. peak	(cms)=	0.22	0	.12			
					*TOTALS	*	
PEAK FLOW	(cms)=	0.05	0	.03	0.087	(iii)	
TIME TO PEAK	(hrs)=	6.25	6	.25	6.25		
RUNOFF VOLUME	(mm)=	87.92	62	.00	76.50		
TOTAL RAINFALL	(mm)=	89.92	89	.92	89.92		
RUNOFF COEFFICIE	ENT =	0.98	0	.69	0.85		

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= 0 Imp(%)= 4	0.56 5.00 Dir.	Conn.(%)=	45.00	
		IMPERVIOUS	5 PERVIOL	JS (i)		
Surface Area	(ha)=	0.25	0.31			
Dep. Storage	(mm)=	2.00	5.00)		
Average Slope	(%)=	1.00	2.00)		
Length	(m)=	260.00	25.00)		
Mannings n	` =	0.013	0.296)		

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03

Page 179

LangstaffRd_EA_Existing_WestDonWatershd

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB						
STANDHYD (0160)	Area	(ha)=	0.43			
ID= 1 DT= 5.0 min	Total	Imp(%)=	56.00	Dir.	Conn.(%)=	56.00
		IMPERVIO	US	PERVIOL	IS (i)	
Surface Area	(ha)=	0.24	ļ.	0.19)	
Dep. Storage	(mm) =	2.00)	5.00)	
Average Slope	(%)=	1.00)	2.00)	
Length	(m)=	260.00)	20.00)	
Mannings n	` =	0.013	3	0.250)	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03

Page 178

	Lange	+>ffpd E	A Evict	ing WestDon	Watone	hd	
0.750	2.03		4.06		7.11		2.03
0.833		3.917	4.06		7.11		3.05
0.917	1.02		4.06		7.11		3.05
1.000		4.083	3.05		7.11		3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333		4.417	7.11	7.500	5.08		1.02
1.417		4.500	7.11		5.08		1.02
1.500		4.583	6.10		5.08		1.02
1.583		4.667	6.10		5.08		2.03
1.667		4.750	6.10		6.10		2.03
1.750		4.833	6.10		6.10		2.03
1.833		4.917	6.10		6.10		2.03
1.917		5.000	6.10		5.08		2.03
2.000		5.083	6.10		5.08		2.03
2.083 2.167		5.167 5.250	6.10	8.250	5.08 4.06		2.03
2.167		5.333	11.18		4.06		2.03
2.333		5.417		8.500	4.06		1.02
2.417	4.06		11.18		3.05		1.02
2.500		5.583		8.667	3.05		1.02
2.583	3.05		11.18		3.05		2.03
2.667		5.750	11.18		4.06		2.03
2.750		5.833	80.26		4.06		2.03
2.833		5.917	80.26		4.06		2.03
2.917	4.06 İ	6.000	80.26	9.083	3.05	12.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05	ĺ	
Max.Eff.Inten.(mm/	hr)=	81.28		66.47			
over (m		5.00		15.00			
	in)=	4.92	(ii)	11.78 (ii)			
Unit Hyd. Tpeak (m.	in)=	5.00	. ,	15.00			
Unit Hyd. peak (co	ms)=	0.22		0.09			
					T0	TALS	
	ms)=	0.06		0.05		.102 (iii))
	rs)=	6.25		6.33		5.25	
	mm)=	87.92		58.69		1.83	
	mm)=	89.92		89.92		9.92	
RUNOFF COEFFICIENT	=	0.98		0.65	(9.80	
* WARNING: STORAGE	COEFF. I	S SMALLE	ER THAN	TIME STEP!			
(i) CN PROCEDURE	SELECTE	D FOR PE	RVTOUS	LOSSES:			

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 87.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

LangstaffRd_EA_Existing_WestDonWatershd

ADD H	YD (0436	ا ((و					
1 +	2 =	3	1	AREA	QPEAK	TPEAK	R.V.	
				(ha)	(cms)	(hrs)	(mm)	
	ID1= 1	1 (0155):	0.56	0.102	6.25	71.83	
+	ID2= 2	2 (0160):	0.43	0.087	6.25	76.50	
	=====							
	ID = 3	3 (0430):	0.99	0.189	6.25	73.86	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0150) ID= 1 DT= 5.0 min	Area Total	(ha)= 3.8 Imp(%)= 94.0		94.0
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	3.58	0.23	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	150.00	40.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
					5.08		

Page 181

LangstaffRd_EA_Existing_WestDonWatershd
(mm)= 2.00 5.00
(%)= 1.00 2.00
(m)= 240.00 20.00
= 0.013 0.350

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Dep. Storage Average Slope Length

Mannings n

Max.Eff.Inten.(mm/hr)=

over (min) Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06		7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10		6.10	11.08	2.03
1.917	1.02	5.000	6.10		5.08	11.17	2.03
2.000	1.02	5.083	6.10		5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03
2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05		

5.00 15.00 4.69 (ii) 11.94 (ii) 5.00 15.00

Page 183

54.91

	Langs	taffRd_E/	A_Existi	.ng_WestDo	onWaters	hd	
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.41/	4.06	11.50	2.03
2.333	4.06	5.41/	11.18	8.500	4.06	11.58	1.02
2.41/	4.06	5.500	11.18	8.583	3.05	11.6/	1.02
2.500	4.06	5.583	11.18	8.66/	3.05	11.75	1.02
2.565	2.05	5.00/	11.10	0.750	4.00	11.03	2.03
2.007	3.05 J	5./50	90 26	0.033	4.00	11.92	2.03
2.730	1 06	5.033 E 017	90.20	0.917	4.00	12.00	2.03
2.033	4.00	6 000	80.20	0 083	3 05	12.00	2.03
3 000	4 96	6 083	81 28	9 167	3.05	12.17	2.03
3.083	3.05	6.167	81.28	9.250	3.05	hd	2.03
Max.Eff.Inten.(mm/h							
over (mi	in)	5.00		10.00			
over (mi Storage Coeff. (mi Unit Hyd. Tpeak (mi	in)=	3.54	(ii)	6.09 (ii)		
Unit Hvd. Tpeak (mi	in)=	5.00	(/	10.00	,		
Unit Hyd. peak (cr	ns)=	0.26		0.15			
					T0	TALS	
PEAK FLOW (cr	ns)=	0.81		0.04	0	.849 (iii)	
TIME TO PEAK (hr	rs)=	6.25		6.25		5.25 `´	
RUNOFF VOLUME (n	nm)=	87.92		60.31	86	5.26	
PEAK FLOW (cm TIME TO PEAK (hm RUNOFF VOLUME (m TOTAL RAINFALL (m RUNOFF COEFFICIENT	nm)=	89.92		89.92	89	9.92	
RUNOFF COEFFICIENT	=	0.98		0.67	(9.96	
CN* = 88.6 (ii) TIME STEP (DI THAN THE STOR (iii) PEAK FLOW DOR	r) SHOUL	D BE SMA FFICIENT	LLER OR	EQUAL			
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (0150) + ID2= 2 (0430)	AR (h : 3.	EA QP a) (c 81 0.8 99 0.1	EAK ms) 49 89	TPEAK (hrs) 6.25 8 6.25 7	R.V. (mm) 6.26 3.86		
ID = 3 (0440):	: 4.	80 1.0	38	6.25 8	3.70		
NOTE: PEAK FLOWS D							
CALIB	Total Im	p(%)= 4	8.00			18.00	
Surface Area (1		MPERVIOU 0.23		RVIOUS (i 0.24)		

 ${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

Unit Hyd. peak	(cms)=	0.22	0.09	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.03	0.079 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	87.92	47.30	66.78
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICI	ENT =	0.98	0.53	0.74

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT:

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

IMPERVIOUS 0.21 2.00 1.00 65.83 PERVIOUS (i) 0.44 5.00 2.00 Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO $\,$ 5.0 MIN. TIME STEP.

- TRANSFORMED HYETOGRAPH ---
IME RAIN | TIME RAIN | TIME
hrs mm/hr | hrs mm/hr | hrs
167 3.05 6.250 81.28 9.33
250 3.05 6.333 16.26 9.59
417 4.06 6.417 16.26 9.50
417 4.06 6.500 16.26 9.58
500 4.06 6.500 16.26 9.58
500 4.06 6.583 16.26 9.67
583 3.05 6.667 16.26 9.67
583 3.05 6.667 16.26 9.83
750 3.05 6.653 7.11 10.00
917 4.06 7.000 7.11 10.00
917 4.06 7.000 7.11 10.08
000 4.06 7.083 7.11 10.17
083 3.05 7.167 7.11 10.25
167 3.05 7.250 7.11 10.23
250 3.05 7.250 7.11 10.33
250 3.05 7.250 7.11 10.33
250 3.05 7.250 7.11 10.33
250 7.11 7.583 5.08 10.58
500 7.11 7.583 5.08 10.58
500 7.11 7.583 5.08 10.55 TIME RAIN hrs 0.083 mm/hr 3.05 0.167 0.250 0.333 0.417 0.500 0.583 3.05 3.05 3.05 3.05 3.05 3.05 2.03 0.667 0.750 0.833 0.917 1.000 1.083 2.03 2.03 | 3.750 2.03 | 3.833 1.02 | 3.917 1.02 | 4.000 1.02 | 4.083 2.03 | 4.167 2.03 | 4.250 2.03 | 4.333 2.03 | 4.417 2.03 | 4.500 2.03 | 4.583 3.05 3.05 3.05 2.03 2.03 1.167 1.250 2.03 1.333 1.02 1 417

```
nWatershd
5.88 | 10.83
6.10 | 10.92
6.10 | 11.00
6.10 | 11.00
6.10 | 11.00
6.10 | 11.01
5.08 | 11.25
5.08 | 11.33
4.06 | 11.42
4.06 | 11.50
4.06 | 11.50
4.06 | 11.50
4.06 | 11.50
4.06 | 11.50
4.06 | 12.08
3.05 | 16.07
3.05 | 17.57
3.05 | 12.25
3.05 | 12.25
                               1.583
                                1.667
                               1.750
1.833
1.917
2.000
2.083
                                                                                                                                                                                                2.03
2.03
2.03
2.03
2.03
2.03
                                2.167
                                2.250
                                2.333
                               2.533
2.417
2.500
2.583
2.667
2.750
                                                                                                                                                                                                1.02
1.02
2.03
2.03
2.03
                                2.833
                                                                                                                                                                                                2.03
                                2.917
                                                                                                                                                                                                2.03
                                3.083
                                                                               81.28
5.00
2.16 (ii)
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                15.00
10.79 (ii)
15.00
                                                                                 5.00
0.31
                                                                                                                       0.09
                                                                                                                                                          *TOTALS*
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                               0.05
6.25
87.92
89.92
                                                                                                                    0.06
6.33
52.66
89.92
                                                                                                                                                               0.107 (iii)
6.25
64.28
89.92
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

0.98

0.59

0.71

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0445) 1 + 2 = 3 	0.65	QPEAK (cms) 0.107 0.079	6.25	R.V. (mm) 64.28 66.78
ID = 3 (0445): NOTE: PEAK FLOWS DO 1	1.12	0.186	6.25	65.33

Page 185

LangstaffRd_EA_Existing_WestDonWatershd									
3.000	4.06 6.083	81.28 9.167	3.05 12.25	2.03					
3.083	3.05 6.167	81.28 9.250	3.05						

Max.Eff.Inten.(r	nm/hr)=	81.28	60.55	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	4.81 (ii)	10.50 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.22	0.09	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.05	0.103 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	87.92	52.66	66.75
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICIE	ENT =	0.98	0.59	0.74

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0170)	Area	(ha)=	0.43				
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir.	Conn.(%)=	57.00	
		IMPERVI	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	0.2	5	0.18	3		
Dep. Storage	(mm)=	2.0	0	5.00)		
Average Slope	(%)=	1.0	0	2.00)		
Length	(m)=	250.0	0	20.00)		
Mannings n	=	0.01	3	0.250)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05

LangstaffRd_EA_Existing_WestDonWatershd

CALIB STANDHYD (0165) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)= 4	0.60 10.00	Dir. Conn.(%)=	40.00
		IMPERVIO	JS	PERVIOUS (i)	
Surface Area	(ha)=	0.24		0.36	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	250.00		20.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03
2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03

Page 186

	Langs	taffRd E	A Existi	ng WestDo	onWaters	hd	
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03
2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05	I	

max.ETT.Inten.(r	nm/nr)=	81.28	69.46		
over	(min)	5.00	10.00		
Storage Coeff.	(min)=	4.81	(ii) 9.33	(ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00		
Unit Hyd. peak	(cms)=	0.22	0.12		
				TOTALS	*
PEAK FLOW	(cms)=	0.06	0.03	0.087	(iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25	
RUNOFF VOLUME	(mm)=	87.92	62.00	76.76	
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92	
RUNOFF COEFFICIE	ENT =	0.98	0.69	0.85	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* PROCEDURE SELECT FOR FEATURES LOSSES.

 (M* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0450)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.
	(ha)	(cms)	(hrs)	(m

LangstaffRd_EA_Existing_WestDonWatershd 0.60 0.103 6.25 66.75 0.43 0.087 6.25 76.76 ID1= 1 (0165): + ID2= 2 (0170): ID = 3 (0450): 1.03 0.190 6.25 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0450)| | 3 + 2 = 1 | AREA OPEAK TPEAK R.V.

	(ha)	(cms)	(hrs)	(mm)
ID1= 3 (0450):	1.03	0.190	6.25	70.93
+ ID2= 2 (0445):	1.12	0.186	6.25	65.33
=======================================		=======		
ID = 1 (0450):	2.15	0.376	6.25	68.01
NOTE: PEAK FLOWS DO NO	OT INCL	UDE BASEFL	OWS IF A	NY.

CALIB STANDHYD (0190) ID= 1 DT= 5.0 min	(ha)= Imp(%)=		Dir. Conn.(%)=	42.00
	IMPERVI	ous	PERVIOUS (i)	

		IMPERVIOUS	PERVIOUS (i
Surface Area	(ha)=	0.36	0.50	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	340.00	50.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02

Page 189

${\tt LangstaffRd_EA_Existing_WestDonWatershd}$

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583		3.667		6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03				7.11		2.03
0.833	1.02			7.000	7.11	10.08	3.05
0.917		4.000		7.083	7.11		3.05
1.000		4.083		7.167			3.05
1.083	2.03				7.11		2.03
1.167		4.250		7.333	5.08		2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
		4.417		7.500		10.58	
1.417							
1.500	2.03		6.10		5.08		1.02
1.583		4.667		7.750	5.08		2.03
1.667		4.750		7.833		10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10		2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000				8.167			2.03
2.083	2.03			8.250			
2.167	2.03		6.10		4.06		2.03
2.250		5.333		8.417	4.06		2.03
2.333		5.417		8.500	4.06		1.02
2.417		5.500		8.583			
2.500	4.06			8.667			1.02
2.583		5.667		8.750	3.05		2.03
2.667		5.750		8.833	4.06		2.03
2.750	3.05			8.917			2.03
2.833	4.06		80.26		4.06		2.03
2.917	4.06		80.26		3.05	12.17	2.03
3.000	4.06		81.28		3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05		
Max.Eff.Inten.(mm	/hr)=	81.28		60.55			

max.cii.tiiceii.(i	IIII/ III / –	01.20	00.33	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	5.78 (ii)	11.48 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.20	0.09	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.06	0.135 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25

Page 191

onWaters	shd	
	10.67	1.02
5 08	10.75	1.02
5.08	10.83	2.03
6.10	10.92	2.03
6.10	11.00	2.03
6.10	11.08	2.03
5.08	11.17	2.03
5.08	11.25	
	11.33	
	11.42	2.03
4.06	11.50	
4.06		
	11.67	
3.05 3.05	11.75	1.02
3.05	11.83	2.03
4.06	11.92	2.03
4.06	1 12.00	2.03
4.06	12.08	2.03
3.05	12.17	2.03
3.05	12.25	2.03
3.05	İ	
i)		
	TALS*	
).134 (ii	i)
	6.25	
	7.45	
	0.75	
8	67.45 89.92 0.75	

CALIB							
STANDHYD (0195)	Area	(ha)=	0.79				
ID= 1 DT= 5.0 min	Total	Imp(%)=	42.00	Dir. Conn.	(%)=	42.00	
		IMPERVI	OUS	PERVIOUS (i)			
Surface Area	(ha)=	0.3	3	0.46			
Dep. Storage	(mm) =	2.0	10	5.00			

Average Slope Length Mannings n 1.00 340.00 0.013 2.00 20.00 0.250

Page 190

	Lang	staffRd_EA_E	kisting_WestDo	nWatershd
RUNOFF VOLUME	(mm)=	87.92	52.66	67.46
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICIE	NT =	0.98	0.59	0.75

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STOP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0455)| | 1 + 2 = 3 | | ID1= 1 (0190): + ID2= 2 (0195): QPEAK (cms) 0.134 0.135 TPEAK (hrs) 6.25 6.25 R.V. (mm) 67.45 67.46 0.79 ID = 3 (0455): 1.65 0.269 6.25 67.45

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| ADD HYD (0458)| | 1 + 2 = 3 | QPEAK (cms) 0.376 0.269 R.V. (mm) 68.01 67.45 AREA TPEAK (hrs) 6.25 6.25 ID1= 1 (0450): + ID2= 2 (0455): ========== ID = 3 (0458): 3.80 0.645 6.25 67.77

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

..... | CALIB | | STANDHYD (0300) | |ID= 1 DT= 5.0 min | Area (ha)= 10.00 Total Imp(%)= 80.00 Dir. Conn.(%)= 80.00 IMPERVIOUS PERVIOUS (i) 8.00 1.00 1.00 258.20 0.013 2.00 5.00 2.00 40.00 0.250 Surface Area (ha)= Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= =

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

LangstaffRd EA Existing WestDonWatershd						
hrs mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083 0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167 0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250 0.00	3.333	4.06	6.333	16.26	9.50	3.05
	3.417	4.06		16.26		3.05
	3.500			16.26		3.05
0.500 2.03	3.583	3 05		16.26		3.05
0.583 2.03	3 667	3 05		16.26		2.03
0.667 2.03	3.667	3 05	6.833	7.11		2.03
	3.833		6.917		10.00	2.03
0.833 1.02			7.000		10.08	3.05
0.917 1.02	4.000	4.00	7.083		10.17	3.05
			7.167		10.17	3.05
1.000 1.02	4.083	3.05	7.167		10.23	2.03
1.167 2.03	4.250	3.05	7.333		10.42	2.03
1.250 2.03	4.333	7.11	7.417		10.50	2.03
	4.417		7.500		10.58	1.02
1.417 2.03 1.500 2.03	4.500	7.11	7.583		10.67	1.02
1.500 2.03	4.583	6.10	7.667		10.75	1.02
1.583 2.03	4.667	6.10	7.750		10.83	2.03
1.583 2.03 1.667 2.03 1.750 2.03	4.750	6.10	7.833		10.92	2.03
1.750 2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833 1.02	4.917	6.10	8.000		11.08	2.03
1.917 1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000 1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083 2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167 2.03	5.167	6.10	8.333	4.06	11.42	2.03
2.250 2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333 4.06	j 5.417	11.18	8.500	4.06	11.58	1.02
	5.500			3.05	11.67	1.02
					11.75	1.02
2.583 3.05	5.667	11.18	8.667 8.750		11.83	2.03
2.667 3.05	5.750	11.18	8.833		11.92	2.03
	5.833				12.00	2.03
			9.000		12.08	2.03
2.917 4.06	6 999	80.26	0 083	3 05	12.17	2.03
3.000 4.06	6 083	81 28	9.083	3.05	12.25	2.03
	6.167			3.05		2.03
3.003 3.03	0.107	01.20	7 3.230	5.05		
Max.Eff.Inten.(mm/hr)=	81.28		54.91			
over (min)	5.00		10.00			
Storage Coeff. (min)=	4.90		9.31 (ii)			
Unit Hyd. Tpeak (min)=	5.00		10.00			
Unit Hyd. peak (cms)=	0.22		0.12			
onize nya. peak (ems)=	0.22		0.12	*T0	TALS*	
PEAK FLOW (cms)=	1.80		0.26		.067 (iii)	
TIME TO PEAK (hrs)=	6.25		6.25		5.25	
RUNOFF VOLUME (mm)=	88.92		47.30		9.59	
TOTAL RAINFALL (mm)=	89.92		89.92		9.92	
RUNOFF COEFFICIENT =	0.99		0.53		9.92	
MONOFF COEFFECTENT =	0.39		0.33	,		
***** WARNING: STORAGE COEFF.	IS SMALLE	R THAN	TIME STEP!			

Page 193

			Lang	staffR	d FΔ Fyis	ting We	stDonWaters	.hd	
		2.417			0 11.18			11.67	1.02
		2.500					7 3.05		
		2.583					0 3.05		2.03
		2.667		5.75			3 4.06		
		2.756					7 4.06		
							0 4.06		
			4.06				3.05		
							7 3.05		
		3.083		6.16		9.25			
						,			
	Max.Eff.In	ten.(n	nm/hr)=	81.	28	54.91			
		over	(min)	5.	00	15.00			
	Storage Co	eff.	(min)=	2.	38 (ii)	11.35	(ii)		
	Unit Hyd.					15.00	` '		
	Unit Hyd.	oeak	(cms)=	0.	30	0.09			
	,		(/				*T0	TALS*	
	PEAK FLOW		(cms)=	0.	14	0.03	0	.174 (iii	i)
	TIME TO PE	AΚ	(hrs)=	6.	25	6.33		6.25	
	RUNOFF VOL	JME	(mm)=	88.	92	47.30	7	6.42	
	TOTAL RAIN	FALL	(mm)=	89.	92	89.92	8	9.92	
	RUNOFF COE	FFICIE		0.		0.53		0.85	
***	* WARNING:	STORAG	GE COEFF.	IS SMA	LLER THAN	TIME S	TEP!		
	(i) CN PI	ROCEDL	JRE SELEC	TED FOR	PERVIOUS	LOSSES	:		
	, ,						1.		

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 I a= Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0375)	AREA	QPEAK	TPEAK	R.V.
1 + 2 = 3	(ha)	(cms)	(hrs)	(mm)
TD1= 1 (0300):	10.00	2.067	6.25	80.59
+ ID2= 2 (0350):	0.90	0.174	6.25	76.42
ID = 3 (0375):	10.90	2.240	6.25	80.25

- LangstaffRd_EA_Existing_WestDonWatershd

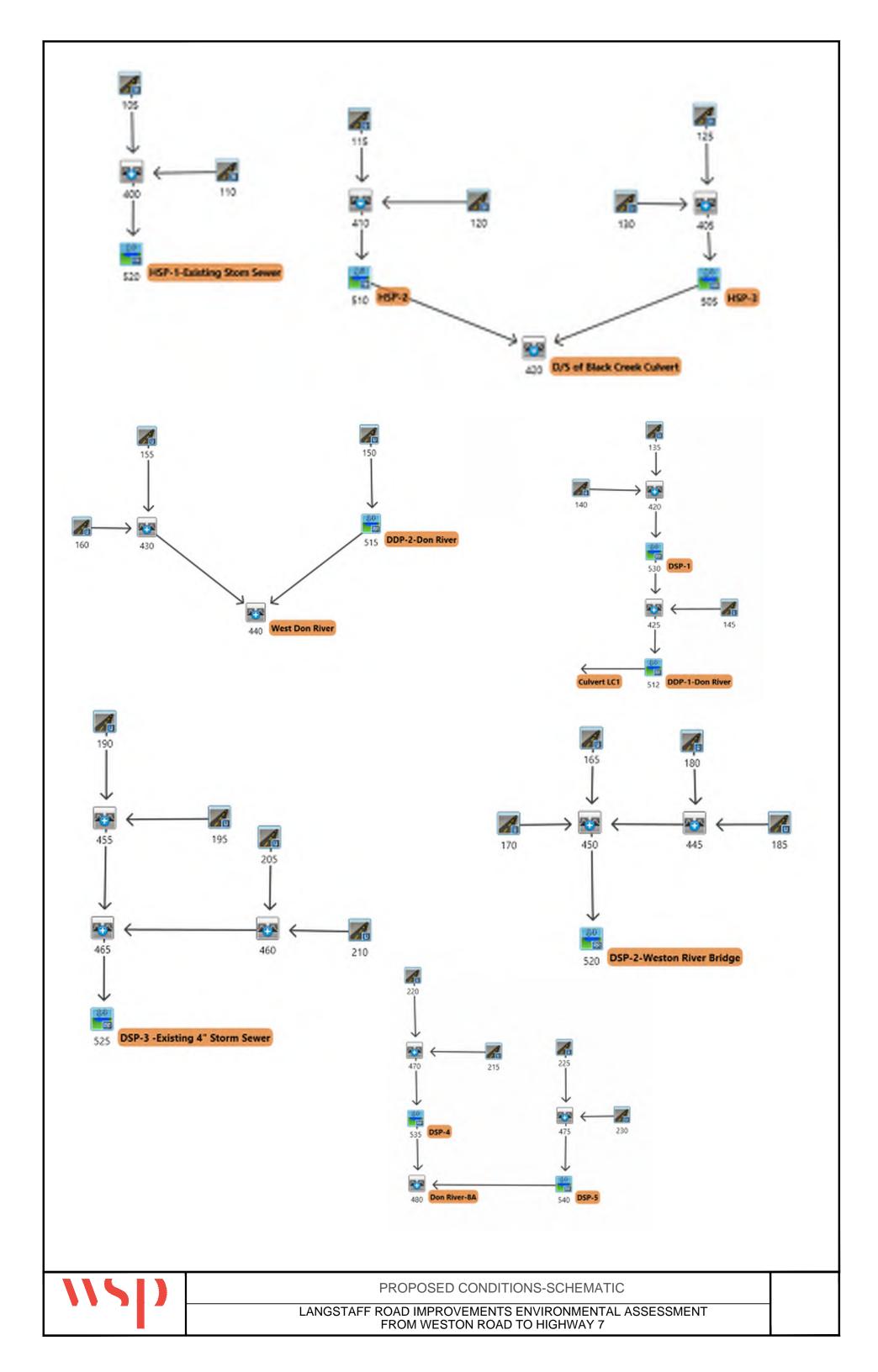
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.


CALIB						
STANDHYD (0350)	Area	(ha)=	0.90			
ID= 1 DT= 5.0 min		Imp(%)=		Dir.	Conn.(%)=	70.00
		1 ()				
		IMPERVI	OUS	PERVIOL	JS (i)	
Surface Area	(ha)=	0.6	3	0.27	7 ` ´	
Dep. Storage	(mm)=	1.0	0	5.00	9	
Average Slope	(%)=	1.0	0	2.00	9	
Length	(m)=	77.4	6	40.00	9	
Mannings n	- =	0.01	3	0.256	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26		3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08		2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02

York Region Langstaff Road EA

Proposed Conditions Hydrologic Summary

Summary of Proposed Conditions Hydrologic Modelling Parameters

16M-01457-01 Langstaff Rd EA

Sub- Catchment	IUH	Drainage Area		Imper	viousne (%)	ess		SCS Curve		straction nm)		ning's n'	Time to Peak	Number Flow Length (m)			Slope (%)		
ID	Class	(ha)	Direct	+	Indirect	=	Total	Number	h	Impervious		Impervious	(hours)			Impervious		Impervious	CN AMC III
105	Standard	1.63	69	+	0	=	69	86	5.0	2.0	0.25	0.013	n/a	n/a	25	650	2.0	1.0	
110	Standard	1.58	70	+	0	=	70	85	5.0	2.0	0.25	0.013	n/a	n/a	25	650	2.0	1.0	
115	Standard	1.00	63	+	0	=	63	83	5.0	2.0	0.25	0.013	n/a	n/a	17	475	2.0	1.0	
120	Standard	1.24	73	+	0	=	73	83	5.0	2.0	0.25	0.013	n/a	n/a	17	475	2.0	1.0	
125	Standard	2.27	77	+	0	=	77	83	5.0	2.0	0.25	0.013	n/a	n/a	20	800	2.0	1.0	
130	Standard	2.08	82	+	0	=	82	83	5.0	2.0	0.25	0.013	n/a	n/a	20	800	2.0	1.0	
135	Standard	1.43	99	+	0	=	99	84	5.0	2.0	0.25	0.013	n/a	n/a	30	503	2.0	1.0	
140	Standard	1.27	91	+	0	=	91	83	5.0	2.0	0.25	0.013	n/a	n/a	25	503	2.0	1.0	
145	Standard	3.05	76	+	0	=	76	86	5.0	2.0	0.25	0.013	n/a	n/a	40	531	2.0	1.0	
150	Standard	3.81	95	+	0	=	95	88	5.0	2.0	0.25	0.013	n/a	n/a	40	150	2.0	1.0	
155	Standard	0.56	93	+	0	=	93	87	5.0	2.0	0.29	0.013	n/a	n/a	25	260	2.0	1.0	
160	Standard	0.43	95	+	0	=	95	89	5.0	2.0	0.25	0.013	n/a	n/a	20	260	2.0	1.0	
165	Standard	0.60	72	+	0	=	72	83	5.0	2.0	0.25	0.013	n/a	n/a	20	250	2.0	1.0	
170	Standard	0.43	98	+	0	=	98	89	5.0	2.0	0.25	0.013	n/a	n/a	20	250	2.0	1.0	
180	Standard	0.65	52	+	0	=	52	83	5.0	2.0	0.25	0.013	n/a	n/a	40	66	2.0	1.0	
185	Standard	0.47	72	+	0	=	72	79	5.0	2.0	0.35	0.013	n/a	n/a	20	240	2.0	1.0	
190	Standard	0.86	57	+	0	=	57	83	5.0	2.0	0.25	0.013	n/a	n/a	50	340	2.0	1.0	
195	Standard	0.79	75	+	0	=	75	83	5.0	2.0	0.25	0.013	n/a	n/a	20	340	2.0	1.0	
205	Standard	1.11	77	+	0	=	77	83	5.0	2.0	0.25	0.013	n/a	n/a	20	470	2.0	1.0	
210	Standard	0.96	78	+	0	=	78	83	5.0	2.0	0.25	0.013	n/a	n/a	20	470	2.0	1.0	
215	Standard	0.58	81	+	0	=	81	83	5.0	2.0	0.25	0.013	n/a	n/a	30	260	2.0	1.0	
220	Standard	0.65	66	+	0	=	66	83	5.0	2.0	0.25	0.013	n/a	n/a	20	260	2.0	1.0	
225	Standard	0.90	53	+	0	=	53	83	5.0	2.0	0.25	0.013	n/a	n/a	25	320	2.0	1.0	
230	Standard	0.70	66	+	0	=	66	81	5.0	2.0	0.30	0.013	n/a	n/a	25	320	2.0	1.0	
235	Standard	0.66	67	+	0	=	67	83	5.0	2.0	0.25	0.013	n/a	n/a	20	320	2.0	1.0	
240	Standard	0.72	67	+	0	=	67	83	5.0	2.0	0.25	0.013	n/a	n/a	20	320	2.0	1.0	
350	Standard	0.90	70	+	0	=	70	79	5.0	2.0	0.25	0.013	n/a	n/a	40	77	2.0	1.0	
Total/Ave		41.33	78	+	0	=	78	83	5.00										

Humber River Watershed Visual OTTHYMO Summary - Proposed

LangstaffRd_EA_Proposed_HumberWatershed

*	*	s	Ι	М	U	L	Α	т	Ι	0	N	:	R	u	n	0	2						*	*	

READ STORM	Filenar	ata\	Local\Te	.zhao∖App mp∖ e-43ba-b1		a28109d\	f5bec23e
Ptotal= 42.00 mm	Commen	ts: 2Y12					
TIME hrs	RAIN	TIME hrs	RAIN	' TIME	RAIN mm/hr	TIME	RAIN
0.25	mm/hr 0.00	3.50	mm/hr 7.14	6.75	2.94	10.00	mm/hr 0.42
0.50 0.75	0.42 0.42	3.75 4.00	7.14 7.14	7.00	2.94	10.25 10.50	0.42
1.00 1.25	0.42	4.25	7.14 19.32	7.50 7.75	1.68	10.75 11.00	0.42 0.42
1.50	0.42	4.75	19.32	8.00	1.68	11.25	0.42
1.75 2.00	0.42 0.42	5.00	19.32 19.32	8.25 8.50	1.68 0.84	11.50 11.75	0.42 0.42
2.25 2.50	0.42 2.52	5.50 5.75	5.46 5.46	8.75 9.00	0.84 0.84	12.00 12.25	0.42 0.42
2.75	2.52	6.00	5.46	9.25	0.84	12.23	0.42
3.00 3.25	2.52 2.52	6.25	5.46 2.94	9.50 9.75	0.42 0.42		

CALIB STANDHYD (0105) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.63 69.00	Dir. Conn.(%)=	69.00
		IMPERVI	ous	PERVIOUS (i)	
Surface Area	(ha)=	1.1	2	0.51	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	650.0	0	25.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42
0.250	0.00	3.333	7.14	6.417	2.94	9.50	0.42
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42
0.417	0.42	3.500	7.14	6.583	2.94	9.67	0.42
0.500	0.42	3.583	7.14	6.667	2.94	9.75	0.42
0.583	0.42	3.667	7.14	6.750	2.94	9.83	0.42

Page 1

LangstaffRd	EA	Proposed	_HumberWatershed

Langstattkd_EA_Proposed_Humberwatersned										
OUTFLOW	STORAG	3E	OUTFLOW	STORAGE						
(cms)	(ha.m.	.)	(cms)	(ha.m.)						
0.0000	0.000	90	0.0181	0.0161						
0.0081	0.003	31	0.0584	0.0204						
0.0123	0.007	74	0.0920	0.0259						
0.0155	0.01	18	0.0000	0.0000						
,	AREA (QPEAK	TPEAK	R.V.						
	(ha) ((cms)	(hrs)	(mm)						
0105)	1.630	0.069	5.25	33.01						
0520)	1.630	0.050	5.50	32.95						
	OUTFLOW (cms) 0.0000 0.0081 0.0123 0.0155	OUTFLOW STORAI (cms) (ha.m 0.0000 0.000 0.0081 0.000 0.0123 0.000 0.0155 0.01: AREA (ha)	OUTFLOW STORAGE (cms) (ha.m.) 0.0000 0.0000 0.0000 0.0001 0.0031 0.0123 0.0074 0.0155 0.0118 AREA QPEAK (ha) (cms) 0.005) 1.630 0.0609	OUTFLOW STORAGE OUTFLOW (cms) (ha.m.) (cms) (0.0000 0.0000 0.0181 0.0051 0.0181 0.0051 0.0181 0.0051 0.0181 0.0051 0.0181 0.0000 0.0181 0.0000 0.0181 0.0000 0.0181 0.0000 0.0181 0.0000 0.0181 0.0000 0.0181 0.00000 0.000000						

PEAK FLOW REDUCTION [Qout/Qin](%)= 72.39 TIME SHIFT OF PEAK FLOW (min)= 15.00 MAXIMUM STORAGE USED (ha.m.)= 0.0195

CALIB					
STANDHYD (0130)	Area	(ha)=	2.08		
ID= 1 DT= 5.0 min	Total	Imp(%)=	82.00	Dir. Conn.(%)=	82.00
		IMPERVI	ous	PERVIOUS (i)	
Surface Area	(ha)=	1.7	1	0.37	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	800.0	0	20.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMFI	HYETOGR	ΔPH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42
0.167	0.00	3.250	2.52	6.333	2.94	9.42	0.42
0.250	0.00	3.333	7.14	6.417	2.94	9.50	0.42
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42
0.417	0.42	3.500	7.14	6.583	2.94	9.67	0.42
0.500	0.42	3.583	7.14	6.667	2.94	9.75	0.42
0.583	0.42	3.667	7.14	6.750	2.94	9.83	0.42
0.667	0.42	3.750	7.14	6.833	2.94	9.92	0.42
0.750	0.42	3.833	7.14	6.917	2.94	10.00	0.42
0.833	0.42	3.917	7.14	7.000	2.94	10.08	0.42
0.917	0.42	4.000	7.14	7.083	2.94	10.17	0.42
1.000	0.42	4.083	7.14	7.167	2.94	10.25	0.42
1.083	0.42	4.167	7.14	7.250	2.94	10.33	0.42
1.167	0.42	4.250	7.14	7.333	1.68	10.42	0.42
1.250	0.42	4.333	19.32	7.417	1.68	10.50	0.42
1.333	0.42	4.417	19.32	7.500	1.68	10.58	0.42
1.417	0.42	4.500	19.32	7.583	1.68	10.67	0.42
			Page	3			

	Langs	taffRd_E	A_Propo	sed_HumberW	latersh	ed	
0.667	0.42	3.750	7.14	6.833	2.94	9.92	0.
0.750	0.42	3.833	7.14	6.917	2.94	10.00	0.
0.833	0.42	3.917	7.14	7.000	2.94	10.08	0.
0.917		4.000	7.14		2.94		0.
1.000		4.083	7.14		2.94		0.
1.083		4.167	7.14		2.94		0.
1.167		4.250	7.14		1.68		0.
1.250		4.333	19.32		1.68		0.
1.333		4.417	19.32		1.68		0.
1.417		4.500	19.32		1.68		0.
1.500		4.583	19.32		1.68		0.
1.583		4.667	19.32		1.68		0.
1.667		4.750	19.32		1.68		0.
1.750		4.833	19.32			11.00	0.
1.833		4.917	19.32		1.68		0.
1.917		5.000	19.32			11.17	0.
2.000		5.083	19.32		1.68		0.
2.083		5.167	19.32		1.68		0.
2.167		5.250	19.32		0.84		0.
2.250		5.333	5.46		0.84		0.
2.333		5.417	5.46		0.84		0.
2.417	2.52		5.46		0.84		0.
2.500		5.583		8.667	0.84		0.
2.583		5.667	5.46		0.84		0.
2.667		5.750		8.833	0.84		0.
2.750		5.833	5.46		0.84		0.
2.833	2.52		5.46		0.84		0.
2.917		6.000		9.083		12.17	0.
3.000		6.083	5.46		0.84		0.
3.083		6.167	5.46		0.84		0.
Max.Eff.Inten.(mm/h	n)-	19.32		11.18			
over (mi		15.00		30.00			
	n)=	15.16	(11)	27.95 (ii)			
Unit Hyd. Tpeak (mi		15.00	(11)	30.00			
	s)=	0.07		0.04			
onic nyu. peak (ciii	3)-	0.07		0.04	*T0	TALS*	
	s)=	0.06		0.01	0	.069 (iii)
TIME TO PEAK (hr	s)=	5.25		5.50		5.25	
RUNOFF VOLUME (m	m)=	40.00		17.47	3	3.01	
	m)=	42.00		42.00	4	2.00	
TOTAL RAINFALL (m							

(1) CN PROJECUME SELECTED FOR PERVIOUS LOSSES:

CN* = 86.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0520)| OVERFLOW IS OFF

Page 2

				sed_HumberW			
1.500			19.32		1.68		0.42
1.58		4.667	19.32	7.750	1.68	10.83	0.42
1.66			19.32		1.68		0.42
1.75		4.833	19.32		1.68		0.42
1.83			19.32		1.68		0.42
1.91			19.32		1.68		0.42
2.000		5.083	19.32		1.68		0.42
2.083		5.167	19.32	8.250	1.68	11.33	0.42
2.16			19.32	8.333	0.84	11.42	0.42
2.256			5.46	8.417	0.84		0.42
2.33			5.46		0.84		0.42
2.41	7 2.52	5.500	5.46	8.583	0.84	11.67	0.42
2.500	2.52	5.583	5.46	8.667	0.84	11.75	0.42
2.583	3 2.52	5.667	5.46	8.750	0.84	11.83	0.42
2.66	7 2.52	5.750	5.46	8.833	0.84	11.92	0.42
2.75	2.52	5.833	5.46	8.917	0.84	12.00	0.42
2.83	3 2.52	5.917	5.46	9.000	0.84	12.08	0.42
2.91	7 2.52	6.000	5.46	9.083	0.84	12.17	0.42
3.000	2.52	6.083	5.46	9.167	0.84	12.25	0.42
3.083	3 2.52	6.167	5.46	9.250	0.84	ĺ	
Max.Eff.Inten.(r	nm/hr)=	19.32		10.08			
over	(min)	15.00		25.00			
Storage Coeff.	(min)=	17.17	(ii)	22.07 (ii)			
Unit Hyd. Tpeak	(min)=	15.00		25.00			
Unit Hyd. peak	(cms)=	0.07		0.05			
					T0	TALS	
PEAK FLOW	(cms)=	0.09		0.01	0	.096 (iii)	
TIME TO DEAK	(hnc)-	E 2E		E 42		- 25 ` ′	

over	(min)	15.00	25.00	
Storage Coeff.	(min)=	17.17 (ii)	22.07 (ii)	
Unit Hyd. Tpeak	(min)=	15.00	25.00	
Unit Hyd. peak	(cms)=	0.07	0.05	
				TOTALS
PEAK FLOW	(cms)=	0.09	0.01	0.096 (iii)
TIME TO PEAK	(hrs)=	5.25	5.42	5.25
RUNOFF VOLUME	(mm)=	40.00	15.38	35.56
TOTAL RAINFALL	(mm)=	42.00	42.00	42.00
RUNOFF COEFFICIE	ENT =	0.95	0.37	0.85

					. ,
			IMPERVIOUS	PERVIOUS (i)
Surfa	ace Area	(ha)=	1.75	0.52	
Dep.	Storage	(mm)=	2.00	5.00	
Avera	age Slope	(%)=	1.00	2.00	
Lengt	th	(m)=	800.00	20.00	
Manni	ings n	=	0.013	0.250	

LangstaffRd_EA_Proposed_HumberWatershed NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGRA	PH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.52	6.250	5.46	9.33	0.42
0.167	7 0.00	3.250	2.52	6.333	2.94	9.42	0.42
0.256	0.00	3.333	7.14	6.417	2.94	9.50	0.42
0.333	0.42	3.417	7.14	6.500	2.94	9.58	0.42
0.417		3.500	7.14	6.583	2.94	9.67	0.42
0.506	0.42	3.583	7.14	6.667	2.94	9.75	0.42
0.583	0.42	3.667	7.14	6.750	2.94	9.83	0.42
0.667	0.42	3.750	7.14	6.833	2.94	9.92	0.42
0.756	0.42	3.833	7.14	6.917	2.94	10.00	0.42
0.833	0.42	3.917	7.14	7.000	2.94	10.08	0.42
0.917	0.42	4.000	7.14	7.083	2.94	10.17	0.42
1.000	0.42	4.083	7.14	7.167	2.94	10.25	0.42
1.083	0.42	4.167	7.14	7.250	2.94	10.33	0.42
1.167	0.42	4.250	7.14	7.333	1.68	10.42	0.42
1.256	0.42	4.333	19.32	7.417	1.68	10.50	0.42
1.333	0.42	4.417	19.32	7.500	1.68	10.58	0.42
1.417	0.42	4.500	19.32	7.583	1.68	10.67	0.42
1.506	0.42	4.583	19.32	7.667	1.68	10.75	0.42
1.583		4.667	19.32	7.750	1.68	10.83	0.42
1.583 1.667 1.756	0.42	4.750	19.32	7.833	1.68	10.92	0.42
1.756	0.42	4.833	19.32	7.917	1.68	11.00	0.42
1.83	0.42	4.917	19.32	8.000	1.68	11.08	0.42
1.917	0.42	5.000	19.32	8.083	1.68	11.17	0.42
2.000		5.083		8.167	1.68	11.25	0.42
2.083	0.42	5.167	19.32	8.250	1.68	11.33	0.42
2.167			19.32	8.333	0.84	11.42	0.42
2.256	0.42	5.333	5.46	8.417	0.84	11.50	0.42
2.333	3 2.52	5.417	5.46	8.500	0.84	11.58	0.42
2.417		5.500		8.583	0.84		0.42
2.500		5.583		8.667	0.84		0.42
2.583		5.667	5.46	8.750	0.84		0.42
2.667		5.750	5.46	8.833		11.92	0.42
2.756	2.52	5.833		8.917			0.42
2.833	3 2.52	5.917	5.46	9.000	0.84	12.08	0.42
2.917	7 2.52	6.000	5.46			12.17	0.42
3.000		6.083	5.46	9.167	0.84		0.42
3.083	3 2.52	6.167	5.46	9.250	0.84		
.Eff.Inten.(r		19.32		9.87			
	(min)	15.00		30.00			
rage Coeff.	(min)=	17.17	(ii)	28.93 (ii)			
t Hyd. Tpeak		15.00		30.00			
t Hyd. peak	(cms)=	0.07		0.04			
V 51011	(0.00		0.01		TALS*	
K FLOW	(cms)=	0.09		0.01		.100 (iii)	
E TO PEAK	(hrs)=	5.25		5.50		5.25	
OFF VOLUME	(mm)=	40.00		15.38	34	1.33	
			Page	- 5			
			1 46				

 ${\tt LangstaffRd_EA_Proposed_HumberWatershed}$ Mannings n

Unit

Unit

over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=

(cms)=

PEAK FLOW

0.08

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				D HYETOGRA			
TIME	RAIN	:	RAIN		RAIN		
hrs	mm/hr	hrs	mm/hr			hrs	
0.083	0.00	hrs 3.167 3.250	2.52	6.250	5.46		0.42
0.167	0.00	3.250	2.52	6.333	2.94		0.42
0.250	0.00	3.333	7.14	6.417	2.94		0.42
0.333	0.42	3.41/	7.14	6.500	2.94		0.42
0.417		3.500		6.583			
0.500	0.42	3.583	7.14	6.667	2.94		0.42
0.583		3.667	7.14	6.750	2.94		0.42
0.667	0.42	3.750	7.14	6.833	2.94		0.42
0.750	0.42	3.750	7.14	6.917		10.00	0.42
0.833	0.42	3.917	7.14	7.000	2.94	10.08	0.42
0.917	0.42	4.000	7.14	7.083	2.94	10.17	0.42
1.000	0.42	4.083	7.14	7.167	2.94	10.25	0.42
1.083	0.42	4.083 4.167 4.250	7.14	7.250	2.94	10.33	0.42
1.167	0.42	4.250	7.14	7.333	1.68	10.42	0.42
1.250	0.42	4.333	19.32	7.417	1.68	10.50	0.42
1.333	0.42	4.417	19.32	7.500	1.68	10.58	0.42
1.417	0.42	4.500	19.32	7.583	1.68	10.67	0.42
1.500		4.583		7.667	1.68	10.75	0.42
1.583	0.42	4.667	19.32	7.750	1.68	10.83	0.42
1.667	0.42	4.750	19.32	7.833	1.68	10.92	0.42
1.750	0.42	4.833	19.32	7.917	1.68	11.00	0.42
1.833	0.42	4.917	19.32	8.000	1.68	11.08	0.42
1.917	0.42	5.000	19.32	8.083	1.68	11.17	0.42
2.000	0.42	5.083	19.32	8.167	1.68	11.25	0.42
2.083	0.42	5.167	19.32	8.250	1.68	11.33	0.42
2.167	0.42	5.250	19.32	8.250	0.84	11.42	0.42
2.250	0.42	5.333	5.46	8.417	0.84	11.50	0.42
2.333	2.52	5.417	5.46	8.500	0.84	11.58	0.42
2.417	2.52	5.500	5.46	8.583	0.84	11.67	0.42
2.500				8.667	0.84	11.75	0.42
2.583	2.52	5.583 5.667	5.46	8.750	0.84	11.83	0.42
2.667	2.52	5.750	5.46	8.833	0.84	11.92	0.42
2.750	2.52	5.833	5.46	8.917		12.00	0.42
2.833	2.52	5.917	5.46	9.000	0.84	12.08	0.42
2.917	2.52	6.000	5.46	9.083	0.84	12.17	0.42
3.000	2.52	6.000	5.46	9.167	0.84	12.25	0.42
3.083	2.52	6.167	5.46	9.250	0.84		
Max.Eff.Inten.(mm/	hr)=	19.32		9.87			
over (m		15.00		25.00			
Storage Coeff. (m		12.56	(ii)	23.22 (ii)			
Unit Hyd. Tpeak (m	in)=	15.00		25.00			
Unit Hyd neak (c	mc)-	0 08		0 05			

TOTALS 0.05 0.01 0.055 (iii) Page 7

0.05

LangstaffRd_EA_Proposed_HumberWatershed (mm)= 42.00 42.00 42.0 NT = 0.95 0.37 0.8 TOTAL RAINFALL

RUNOFF COEFFICIENT

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0405)| | 1 + 2 = 3 | QPEAK (cms) 0.100 0.096 R.V. (mm) 34.33 (ha) 2.27 (hrs) 5.25 ID1= 1 (0125): + ID2= 2 (0130): 5.25 ID = 3 (0405): 4.35 0.196 5.25 34.92

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0505)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW OUTFLOW STORAGE STORAGE (cms) 0.0000 0.0185 (ha.m.) 0.0000 0.0030 (cms) 0.2110 0.2743 (ha.m.) 0.0383 0.0515 0.0302 0.0120 0.3250 0.0792 0.0120 | 0.0251 | 0.1102 0.0000 QPEAK (cms) 0.196 0.171 AREA TPFΔK R V

| CALIB | | STANDHYD (0120) | |ID= 1 DT= 5.0 min | Area (ha)= 1.24 Total Imp(%)= 73.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= 0.33 5.00 2.00 17.00

Page 6

LangstaffRd_EA_Proposed_HumberWatershed
TIME TO PEAK (hrs)= 5.25 5.42 5.2
RUNOFF VOLUME (mm)= 40.00 15.38 33.3
TOTAL RAINFALL (mm)= 42.00 42.00 42 n
RUNOFF COEFFICIENT = 0.95 5.25 33.34 42.00

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0115) |ID= 1 DT= 5.0 min Area (ha)= 1.00 Total Imp(%)= 63.00 Dir. Conn.(%)= 63.00 IMPERVIOUS PERVIOUS (i) 0.63 2.00 1.00 475.00 0.013 Surface Area 0.37 5.00 2.00 Dep. Storage Average Slope Length (mm)= (%)= (m)= Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH -RAIN | mm/hr | 0.00 | 0.00 | 0.00 | PH ---RAIN | TIME
mm/hr | hrs
5.46 | 9.33
2.94 | 9.42
2.94 | 9.50
2.94 | 9.58 TIME hrs 3.167 mm/hr 0.42 0.42 0.167 3.250 0.250 3.333 0.42 0.333 0.42 3.417 9.58 9.67 0.42 0.42 | 3.590 0.42 | 3.590 0.42 | 3.583 0.42 | 3.667 0.42 | 3.750 0.42 | 3.917 0.42 | 3.917 0.42 | 4.083 0.42 | 4.083 0.42 | 4.167 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.593 0.42 | 4.917 0.417 0.42 2.94 0.42 2.94 2.94 2.94 2.94 2.94 2.94 2.94 0.500 0.583 0.667 0.750 0.42 0.42 0.42 0.42 0.42 0.833 10.08 10.17 0.917 0.42 1.000 2.94 10.25 0.42 1.083 0.42 1.083 1.167 1.250 1.333 1.417 1.500 1.583 0.42 0.42 0.42 0.42 0.42 0.42 10.42 10.50 10.58 10.67 1.68 10.75 1.68 10.83 1.667 1.68 10.92 0.42

		+- ((n) =					
				sed_HumberW			
1.917					1.68		0.42
2.000		5.083		8.167	1.68	11.25	0.42
2.083				8.250	1.68		0.42
2.167			19.32		0.84		0.42
2.256			5.46		0.84		0.42
2.333				8.500	0.84		0.42
2.417		5.500	5.46	8.583	0.84		0.42
2.500	2.52	5.583	5.46	8.667	0.84	11.75	0.42
2.583	3 2.52	5.667	5.46	8.750	0.84	11.83	0.42
2.667	7 2.52	5.750	5.46	8.833	0.84	11.92	0.42
2.756	2.52	5.833	5.46	8.917	0.84	12.00	0.42
2.833	3 2.52	5.917	5.46	9.000	0.84	12.08	0.42
2.917	7 2.52	6.000	5.46	9.083	0.84	12.17	0.42
3.000	2.52	6.083	5.46	9.167	0.84	12.25	0.42
3.083	2.52	6.167	5.46	9.250	0.84		
Max.Eff.Inten.(r	nm/hr)=	19.32		9.87			
over	(min)	15.00		25.00			
Storage Coeff.	(min)=	12.56	(ii)	23.22 (ii)			
Unit Hyd. Tpeak	(min)=	15.00		25.00			
Unit Hvd. peak	(cms)=	0.08		0.05			
7	,				*T01	ΓALS*	
PEAK FLOW	(cms)=	0.03		0.01	0.	.041 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.42		5.25	
RUNOFF VOLUME	(mm)=	40.00		15.38	36	3.88	
TOTAL RAINFALL	(mm)=	42.00		42.00	42	2.00	
RUNOFF COEFFICIE	ENT =	0.95		0.37		3.74	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE	COEFFI	CIENT.			
(iii) PEAK FLOW DOES N	OT INCL	JDE BASEFL	OW IF AN'	Υ.	
ADD HYD (0410)					
1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.	
ii	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0115):	1.00	0.041	5.25	30.88	
+ ID2= 2 (0120):	1.24	0.055	5.25	33.34	
=======================================	======				
ID = 3 (0410):	2.24	0.095	5.25	32.24	
(,					
NOTE: PEAK FLOWS DO N	OT TNCL	IDE BASEEL	OWS TE A	WY.	
NOTE: TEAK TEONS DO II				···	

RESERVOIR(0510) IN= 2> OUT= 1	OVERFLOW	IS OFF		
DT= 5.0 min	OUTFLOW (cms)	STORAGE (ha.m.)	 OUTFLOW (cms)	STORAGE (ha.m.)

Page 9

0.750 0.833 0.917 10.00 10.08 10.17 0.42 0.42 0.42 0.42 1.000 10.25 10.33 10.42 10.50 10.58 10.67 10.75 1.083 0.42 1 167 0 42 1.167 1.250 1.333 1.417 1.500 1.583 0.42 0.42 0.42 0.42 0.42 0.42 1.667 10.92 11.08 11.17 11.25 11.33 11.42 1.750 0.42 0.42 0.42 0.42 0.42 0.42 1.833 1.917 2.000 2.083 2.167 11.50 2.250 2.333 11.58 0.42 2.333 2.417 2.500 2.583 2.667 2.750 2.833 11.58 11.67 11.75 11.83 11.92 12.00 12.08 0.42 0.42 0.42 0.42 0.42 0.42 2.917 12.17 0.42 12.25 0.42 3.083 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 19.32 15.00 15.16 (ii) 15.00 10.72 30.00 28.16 (ii) 30.00 0.07 0.04 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.06 5.25 40.00 42.00 0.95 0.01 0.067 (iii) 5.25 33.01 42.00 5.50 16.73 42.00 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

- (1) CN* = 85.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0525)| | IN= 2---> OUT= 1 | OVERFLOW IS OFF

Page 11

LangstaffRd_EA_Proposed_HumberWatershed 0.0000 0.0000 0.0699 0.0792 0.0309 0.0414 0.0264 0.0457 0.0099 0.0876 (ha) 2.240 (cms) 0.095 (hrs) INFLOW : ID= 2 (0410) OUTFLOW: ID= 1 (0510) 5.25 5.58 2.240 0.056 32.24 PEAK FLOW REDUCTION [Qout/Qin](%)= 58.59 TIME SHIFT OF PEAK FLOW (min)= 20.00 MAXIMUM STORAGE USED (ha.m.)= 0.0179ADD HYD (0420)| 1 + 2 = 3 | QPEAK (cms) 0.171 0.056 TPEAK (hrs) 5.42 5.58 R.V. (mm) 34.91 32.24 ARFA (ha) 4.35 2.24 ID = 3 (0420): 6.59 0.226 34.00 5.42 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | CALIB | | STANDHYD (0110) | |ID= 1 DT= 5.0 min | Area (ha)= 1.58 Total Imp(%)= 70.00 Dir. Conn.(%)= 70.00 PERVIOUS (i) IMPERVIOUS Surface Area Dep. Storage Average Slope Length Mannings n (ha)= (mm)= (%)= (m)= 1.11 2.00 1.00 650.00 0.013 0.47 5.00 2.00 25.00 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH NSFORMED HYETOGR RAIN | TIME mm/hr | hrs 2.52 | 6.250 2.52 | 6.333 7.14 | 6.541 7.14 | 6.580 7.14 | 6.667 7.14 | 6.750 7.14 | 6.750 7.14 | 6.833 RAIN | mm/hr | 5.46 | 2.94 | 2.94 | 2.94 | 2.94 | 2.94 | 2.94 | 2.94 | RAIN mm/hr 0.00 0.00 0.00 TIME hrs 0.083 0.167 TIME hrs 3.167 TIME hrs 9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92 RAIN mm/hr 0.42 0.42 3.250 0.250 3.333 0.42 0.42 0.42 0.42 0.42 0.42 0.42 3.417 0.417 0.500 0.583 0.667 0.42 0.42 0.42 0.42 3.500 3.583 3.667 3.750 Page 10

DT= 5.0 min	I OUTFL	ow sto	A_Propose DRAGE a.m.) .0000 .0031	OUTFLO	W STO	DRAGE	
	0.00	00 0	.0000	0.018	1 (0.0161	
	0.00	81 0	.0031	0.058	4 (0.0204	
	0.01	55 0	.0074 .0118	0.000	0 6	0.0000	
		AREA	QPEAK (cms)	TPEA	ĸ	R.V.	
		(ha)	(cms)	(hrs)	(mm)	
INFLOW : ID= 2 (OUTFLOW: ID= 1 (0110) 0525)	1.580	0.06 0.04	7 5 8 5	.25 .50	33.01 32.95	
	PEAK FLOW						
	TIME SHIFT						
	MAXIMUM ST	ORAGE I	JSED	(min (ha.m.)= 0.01	193	
************		**					
SIMULATION:Run 6	/ 						
		**					
	_						
READ STORM	Filena	me · C · \ II ·	sers\rav	zhan\ Anni	D		
MEAD STORM	1 111000						
	1	ata\I	local\Tem				
			Local∖Tem f5d6-df0e	p\		9a28109d\	4ca76b
Ptotal= 54.38 mm	Commen	efdd:	f5d6-df0e	p\		9a28109d\	4ca76b
	. <u>.</u>	efdd ts: 5Y12	f5d6-df0e	p\ -43ba-b1	39-2f589		
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T]	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI P 0. 0. 1. 1. 1. 2. 2. 2. 2. 3. 3.	 IME RAIN	efdd ts: 5Y12 TIME	f5d6-df0e RAIN	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
T) 0. 0. 0. 1. 1. 2. 2. 2. 3. 3.	ME RAIN mm/hr 0.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54	efddts: 5Y12 TIME	RAIN mm/hr 9.25 9.25 9.25 9.25 9.25 25.02 25.02 25.02 7.07 7.07 7.07 7.07 3.81	p\ -43ba-b1 ' TIME	39-2f589 RAIN	TIME	RAI
TI P 0. 0. 1. 1. 1. 2. 2. 2. 2. 3. 3.	MIR RAIN mm/hr 25 0.05 0.54 0.54 0.54 0.54 0.54 0.54 0.5	efdd: ts: 5Y12 TIME	RAIN mm/hr 9.25 9.25 9.25 9.25 9.25 25.02 25.02 25.02 7.07 7.07 7.07 7.07 3.81	p\-43ba-b1 ' TIME ' hrs 6.75 7.00 7.25 7.50 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75	RAIN mm/hr 3.81 3.81 2.18 2.18 2.18 2.18 1.09 1.09 1.09 1.09 0.54	TIME hrs 10.00 10.25 10.50 11.75 11.00 11.25 11.50 12.00 12.25	RAI

1.12

0.51

Page 12

Surface Area

LangstaffRd_EA_Proposed_HumberWatershed

Average Slope	(%)=	1.00	2.00	
Length	(m)=	650.00	25.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	D HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54
2.583	3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667	3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09	12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09	12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09		

Max.Eff.Inten.(mm/hr)= 16.71 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 15.00 25.00 13.67 (ii) 24.56 (ii) 15.00 25.00 0.08 0.05

Page 13

	Langs	staffRd E	A Propos	ed Humber	rWatersh	ed	
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54
2.583	3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667	3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09	12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09	12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09	l	

Max.Eff.Inten.(r	nm/hr)=	25.02	15.31	
over	(min)	15.00	20.00	
Storage Coeff.	(min)=	15.48 (ii)	19.90 (ii)	
Unit Hyd. Tpeak	(min)=	15.00	20.00	
Unit Hyd. peak	(cms)=	0.07	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.12	0.01	0.129 (iii)
TIME TO PEAK	(hrs)=	5.25	5.33	5.25
RUNOFF VOLUME	(mm)=	52.38	24.05	47.28
TOTAL RAINFALL	(mm)=	54.38	54.38	54.38
RUNOFF COEFFICIE	NT =	0.96	0.44	0.87

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 83.0$ Ia = Dep. Storage (Above)

Page 15

LangstaffRd_EA_Proposed_HumberWatershed

			TOTALS
PEAK FLOW (c	ms)= 0.08	0.02	0.094 (iii)
TIME TO PEAK (h	rs)= 5.25	5.42	5.25
RUNOFF VOLUME (mm)= 52.38	26.88	44.47
TOTAL RAINFALL (mm)= 54.38	54.38	54.38
RUNOFF COEFFICIENT	= 0.96	0.49	0.82

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 86.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(iii) PEAK FLOW	DOES NOT INC	LUDE BASEFLO	W IF ANY.		
RESERVOIR(0520)	OVERFLOW	IS OFF			
IN= 2> OUT= 1 DT= 5.0 min	OUTELOW	STORAGE	I OUTFLOW	STORAGE	
			(cms)		
		0.0000			
		0.0031			
		0.0031			
			0.0000		
	0.0133	0.0110	1 0.0000	0.0000	
	Δ	REA OPEA	K TPEAK	R V	
	7	ha) (cms	(hrs)	(mm)	
INFLOW: ID= 2 (0105) 1	630 0	094 5 25	44 47	
OUTFLOW: ID= 1 (0520) 1	.630 0.	075 5.50	44.41	
,	,				
PE	AK FLOW	REDUCTION [out/Qin](%)=	79.51	
TI	ME SHIFT OF	PEAK FLOW	(min)=	15.00	
MA	XIMUM STORA	GE USED	(ha.m.)=	0.0232	
CALIB					
STANDHYD (0130)					
ID= 1 DT= 5.0 min	Total Imp(%)= 82.00	Dir. Conn.(%	5)= 82.00	
		ERVIOUS F			
Surface Area					
Dep. Storage	(mm)=	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length Mannings n	(m)= 8	00.00	20.00		
Mannings n	=	0.013	0.250		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME
hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs

Page 14

LangstaffRd_EA_Proposed_HumberWatershed
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COFFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0125) |ID= 1 DT= 5.0 min | Area (ha)= 2.27 Total Imp(%)= 77.00 Dir. Conn.(%)= 77.00 IMPERVIOUS PERVIOUS (i) 1.75 2.00 1.00 800.00 0.013 Surface Area (ha)= 0.52 5.00 2.00 20.00 0.250 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)=

				HYETOGR.			
TIME	RAIN		RAIN	' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.26	6.250	7.07		0.54
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25		3.81		0.54
0.417	0.54	3.500	9.25		3.81		0.54
0.500	0.54		9.25		3.81		0.54
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54
1.667	0.54	4.750	25.02	7.833	2.18	10.92	0.54
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	8.083	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54

	Langs	staffRd_E/	_Propo	sed_HumberW	atersh	ed	
2.583	3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667	3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09	12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09	12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09		
Max.Eff.Inten.(m	m/hr)=	25.02		15.31			
	(min)	15.00		25.00			
Storage Coeff.				20.48 (ii)			
Unit Hyd. Tpeak				25.00			
Unit Hyd. peak		0.07		0.05			
	()				*T0	ΓALS*	
PEAK FLOW	(cms)=	0.12		0.02	0.	136 (iii)
TIME TO PEAK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOLUME	(mm)=	52.38		24.05	45	.86	
TOTAL RAINFALL	(mm)=	54.38		54.38	54	1.38	
RUNOFF COEFFICIE	NT =	0.96		0.44	6	9.84	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0405) 1 + 2 = 3 	AREA (ha) 2.27 2.08	QPEAK (cms) 0.136 0.129	TPEAK (hrs) 5.25 5.25	R.V. (mm) 45.86 47.28
ID = 3 (0405):	4.35	0.265	5.25	46.54

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0505) IN= 2> OUT= 1	OVERFL	OW IS (OFF		
DT= 5.0 min	OUTFLO	W S1	ORAGE	OUTFLOW	STORAGE
ii	(cms)	(h	na.m.) İ	(cms)	(ha.m.)
	ò.000	o e	9.0000 j	0.2110	0.0383
	0.018	5 6	9.0030 j	0.2743	0.0515
	0.030	2 6	9.0120 j	0.3250	0.0792
	0.110	2 6	9.0251	0.0000	0.0000
		AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)
INFLOW : ID= 2 (0405)	4.350	0.26	5 5.25	46.54

Page 17

	Langs	taffRd E	A Propos	sed Humberw	latersh	ed	
2.417		5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09	11.75	0.54
2.583	3.26	5.667	7.07	8.750	1.09	11.83	0.54
2.667	7 3.26	5.750	7.07	8.833	1.09	11.92	0.54
2.756	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09	12.08	0.54
2.917	7 3.26	6.000	7.07	9.083	1.09	12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09	12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09	l	
Max.Eff.Inten.(r	nm/hr)=	25.02		15.31			
	(min)	10.00		20.00			
Storage Coeff.		11.33	(ii)	16.26 (ii)			
Unit Hyd. Tpeak	(min)=	10.00		20.00			
Unit Hyd. peak	(cms)=	0.10		0.06			
					T0	TALS	
PEAK FLOW	(cms)=	0.06		0.01	0	.074 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33	!	5.25	
RUNOFF VOLUME	(mm)=	52.38		24.05	4	4.72	
TOTAL RAINFALL	(mm)=	54.38		54.38	54	4.38	
RUNOFF COEFFICIE	ENT =	0.96		0.44	(0.82	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

()				
CALIB				
STANDHYD (0115)	Area	(ha)= 1.0	0	
ID= 1 DT= 5.0 min	Total	Imp(%) = 63.0	<pre>0 Dir. Conn.(%)=</pre>	63.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.63	0.37	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54		
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54		
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54		
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54		
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54		

LangstaffRd_EA_Proposed_HumberWatershed OUTFLOW: ID= 1 (0505) 4.350 0.227 5.42 4

PEAK FLOW REDUCTION [Qout/Qin](%)= 85.84 TIME SHIFT OF PEAK FLOW (min)= 10.00 MAXIMUM STORAGE USED (ha.m.)= 0.0417

| CALIB | | STANDHYD (0120) |ID= 1 DT= 5.0 min | Area (ha)= 1.24 Total Imp(%)= 73.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i)
0.91 0.33
2.00 5.00
1.00 2.00
475.00 17.00 Surface Area Dep. Storage Average Slope Length Mannings n (ha)= (mm)= (%)= (m)=

TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	3.26	6.250	7.07	9.33	0.54			
0.167	0.00	3.250	3.26	6.333	3.81	9.42	0.54			
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54			
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54			
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54			
0.500	0.54	3.583	9.25	6.667	3.81	9.75	0.54			
0.583	0.54	3.667	9.25	6.750	3.81	9.83	0.54			
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54			
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54			
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54			
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54			
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54			
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54			
1.167	0.54		9.25	7.333	2.18	10.42	0.54			
1.250	0.54	4.333	25.02	7.417	2.18		0.54			
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54			
1.417	0.54	4.500	25.02	7.583	2.18		0.54			
1.500	0.54	4.583	25.02	7.667	2.18	10.75	0.54			
1.583	0.54	4.667	25.02	7.750	2.18	10.83	0.54			
1.667	0.54	4.750	25.02	7.833	2.18		0.54			
1.750	0.54	4.833	25.02	7.917	2.18	11.00	0.54			
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54			
1.917	0.54	5.000	25.02	8.083	2.18		0.54			
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54			
2.083	0.54	5.167	25.02	8.250	2.18	11.33	0.54			
2.167	0.54	5.250	25.02	8.333	1.09	11.42	0.54			
2.250	0.54	5.333	7.07	8.417	1.09	11.50	0.54			
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54			

Page 18

		+- CCD4 =		4 10			
0.500	0.54		A_Propo 9.25	sed_HumberW 6.667	3.81		0.54
0.583	0.54		9.25		3.81		0.54
0.667	0.54		9.25		3.81		0.54
0.750		3.833	9.25		3.81		0.54
0.833		3.917	9.25		3.81		0.54
0.917		4.000		7.083	3.81		0.54
1.000		4.083	9.25		3.81		0.54
1.083		4.167		7.250	3.81		0.54
1.167		4.250	9.25		2.18		0.54
1.250		4.333		7.417	2.18		0.54
1.333		4.417	25.02		2.18		0.54
1.417		4.500		7.583	2.18		0.54
1.500		4.583	25.02		2.18		0.54
1.583		4.667		7.750	2.18		0.54
1.667		4.750			2.18		0.54
1.750		4.833		7.917	2.18		0.54
1.833		4.917			2.18		0.54
1.917		5.000		8.083	2.18		0.54
2.000	0.54 İ	5.083	25.02	8.167	2.18	11.25	0.54
2.083	0.54 İ	5.167	25.02	8.250	2.18	11.33	0.54
2.167		5.250	25.02		1.09	11.42	0.54
2.250	0.54 İ	5.333	7.07	8.417	1.09	11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09	11.58	0.54
2.417	3.26 İ	5.500	7.07	8.583	1.09	11.67	0.54
2.500	3.26 İ	5.583	7.07	8.667	1.09	11.75	0.54
2.583	3.26 İ	5.667	7.07	8.750	1.09	11.83	0.54
2.667	3.26 İ	5.750	7.07	8.833	1.09	11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09	12.00	0.54
2.833	3.26 İ	5.917	7.07	9.000	1.09	12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09	12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09	12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09		
Max.Eff.Inten.(mm/hr	-)=	25.02		15.31			
over (mir		10.00		25.00			
Storage Coeff. (mir	ı)=	11.33	(ii)	20.27 (ii)			
Unit Hyd. Tpeak (mir	ı)=	10.00	` '	25.00			
Unit Hyd. peak (cms		0.10		0.05			
, , , , , , , , , , , , , , , , , , , ,	,				*T01	TALS*	
PEAK FLOW (cms	s)=	0.04		0.01		.055 (iii)	
TIME TO PEAK (hrs		5.25		5.33		5.25	
	n)=	52.38		24.05		1.89	
TOTAL RAINFALL (mr	n)=	54.38		54.38		1.38	
RUNOFF COEFFICIENT	´=	0.96		0.44		9.77	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

LangstaffRd_EA_Proposed_HumberWatershed

ADD HYD (0410) AREA QPEAK TPEAK R.V. 1 + 2 = 3 AREA QPEAK TPEAK R.V. 101=1 (0115): 1.00 0.055 5.25 41.89 1D2= 2 (0120): 1.24 0.074 5.25 44.72
ID = 3 (0410): 2.24 0.130 5.25 43.46
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
RESERVOIR(0510) OVERFLOW IS OFF
0.0264 0.0024 0.0792 0.0414
0.0457 0.0099 0.0876 0.0666 0.0590 0.0204 0.0000 0.0000
AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW: ID= 2 (0410) 2.240 0.130 5.25 43.46 OUTFLOW: ID= 1 (0510) 2.240 0.067 5.58 43.45 PEAK FLOW REDUCTION [Qout/Qin](%)= 51.77 TIME SHIFT OF PEAK FLOW (min)= 20.00 MAXIMUM STORAGE USED (ha.m.)= 0.0283
ADD HYD (0420) AREA QPEAK TPEAK R.V. 1 + 2 = 3
ID = 3 (0420): 6.59 0.293 5.42 45.48
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
STANDHYD (0110) Area (ha)= 1.58 ID= 1 DT= 5.0 min Total Imp(%)= 70.00 Dir. Conn.(%)= 70.00
IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.11 0.47 Dep. Storage (mm)= 2.00 5.00 Average Slope (%)= 1.00 2.00

Page 21

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 85.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0525)	OVERFLOW IS OF	F		
IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW STO	RAGE OU	JTFLOW :	STORAGE
	(cms) (ha	.m.) (cms)	(ha.m.)
	0.0000 0.	0000 e	.0181	0.0161
	0.0081 0.	0031 0	.0584	0.0204
	0.0123 0.	0074 0	.0920	0.0259
	0.0155 0.	0118 0	.0000	0.0000
	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (01:	1.580	0.091	5.25	44.42
OUTFLOW: ID= 1 (052	25) 1.580	0.073	5.50	44.37
PEAK	FLOW REDUCT	ION [Qout/Qi	.n](%)= 79	.32
TIME	SHIFT OF PEAK F	LOW	(min) = 15	.00
MAXIN	NUM STORAGE U	SED (h	nà.m.)= 0	.0228
		,	,	

Filename: C:\Users\ray.zhao\AppD ata\Local\Temp\ efddf5d6-df0e-43ba-b139-2f589a28109d\1f25e1d6 READ STORM Ptotal= 62.71 mm Comments: 10Y12 RAIN | TIME mm/hr | hrs 0.00 | 3.50 0.63 | 3.75 0.63 | 4.00 0.63 | 4.25 0.63 | 4.50 0.63 | 4.75 0.63 | 5.00 RAIN | TIME mm/hr | hrs 10.66 | 6.75 10.66 | 7.00 10.66 | 7.50 10.66 | 7.50 28.84 | 7.75 28.84 | 8.00 28.84 | 8.25 RAIN | TIME mm/hr | hrs 4.39 | 10.00 4.39 | 10.25 4.39 | 10.50 2.51 | 10.75 2.51 | 11.00 2.51 | 11.25 2.51 | 11.50 RAIN mm/hr 0.63 0.63 0.63 0.63 0.63 0.63 TIME hrs 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Page 23

LangstaffRd_EA_Proposed_HumberWatershed (m) = 650.00 25.00 = 0.013 0.250 Length Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	NSEORM	ED HYETOGRA	он		
TIME	RAIN		RAIN		RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr		mm/hr
0.083	0.00	3.167	3.26	6.250	7.07		0.54
0.167		3.250	3.26		3.81		0.54
0.250	0.00		9.25		3.81	9.50	0.54
0.333		3.417	9.25		3.81	9.58	0.54
0.417	0.54		9.25		3.81	9.67	0.54
0.500		3.583		6.667	3.81		0.54
0.583		3.667	9.25		3.81		0.54
0.667	0.54	3.750	9.25	6.833	3.81	9.92	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81		0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.167	9.25	7.250	3.81	10.33	0.54
1.167	0.54	4.250	9.25	7.333	2.18	10.42	0.54
1.250		4.333	25.02	7.417	2.18		0.54
1.333		4.417	25.02		2.18		0.54
1.417		4.500	25.02		2.18		0.54
1.500		4.583		7.667	2.18		0.54
1.583		4.667	25.02		2.18		0.54
1.667		4.750		7.833	2.18		0.54
1.750		4.833	25.02		2.18		0.54
1.833		4.917	25.02		2.18		0.54
1.917		5.000	25.02		2.18		0.54
2.000		5.083	25.02		2.18		0.54
2.083		5.167		8.250	2.18		0.54
2.167	0.54		25.02		1.09		0.54
2.250		5.333		8.417	1.09		0.54
2.333	3.26		7.07		1.09		0.54
2.417		5.500		8.583	1.09		0.54
2.500		5.583		8.667	1.09		0.54
2.583		5.667	7.07		1.09		0.54
2.667		5.750		8.833	1.09		0.54
2.750		5.833	7.07		1.09		0.54
2.833		5.917		9.000	1.09		0.54
2.917	3.26		7.07		1.09		0.54
3.000		6.083	7.07		1.09		0.54
3.083	3.26	6.167	7.07	9.250	1.09		
Max.Eff.Inten.(mm	/hr)=	25.02		16.14			
over (i	min)	15.00		25.00			
	min)=	13.67	(ii)	24.71 (ii)			
Unit Hyd. Tpeak (15.00		25.00			
Unit Hyd. peak (cms)=	0.08		0.05			
					T01	TALS	

Page 22

TOTALS

LangstaffRd_EA_Proposed_HumberWatershed								
2.00	0.63	5.25	28.84	8.50	1.25	11.75	0.63	
2.25	0.63	5.50	8.15	8.75	1.25	12.00	0.63	
2.50	3.76	5.75	8.15	9.00	1.25	12.25	0.63	
2.75	3.76	6.00	8.15	9.25	1.25			
3.00	3.76	6.25	8.15	9.50	0.63			
3.25	3.76	6.50	4.39	9.75	0.63			

CALIB STANDHYD (0105) ID= 1 DT= 5.0 min	Area Total	(ha)= 1.63 Imp(%)= 69.00		69.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	1.12	0.51	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	650.00	25.00	
Mannings n	=	0.013	0.250	

		TP	ANS EORME	D HYETOGR	ADH		
TIME	RAIN	l TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs		hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083		3.167	3.76	6.250	8.15	9.33	0.63
0.167		3.250	3.76	6.333	4.39	9.42	0.63
0.256		3.333	10.66	6.417	4.39	9.50	0.63
0.333		3.417	10.66	6.500	4.39	9.58	0.63
0.417		3.500	10.66	6.583	4.39	9.67	0.63
0.500		3.583	10.66	6.667	4.39	9.75	0.63
0.583		3.667	10.66	6.750	4.39	9.83	0.63
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63
0.833	0.63	3.917	10.66	7.000	4.39	10.08	0.63
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63
1.000	0.63	4.083	10.66	7.167	4.39	10.25	0.63
1.083	0.63	4.167	10.66	7.250	4.39	10.33	0.63
1.167	0.63	4.250	10.66	7.333	2.51	10.42	0.63
1.250	0.63	4.333	28.84	7.417	2.51	10.50	0.63
1.333	0.63	4.417	28.84	7.500	2.51	10.58	0.63
1.417	0.63	4.500	28.84	7.583	2.51	10.67	0.63
1.500	0.63	4.583	28.84	7.667	2.51	10.75	0.63
1.583	0.63	4.667	28.84	7.750	2.51	10.83	0.63
1.667	0.63	4.750	28.84	7.833	2.51	10.92	0.63
1.750	0.63	4.833	28.84	7.917	2.51	11.00	0.63
1.833	0.63	4.917	28.84	8.000	2.51	11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63
2.000	0.63	5.083	28.84	8.167	2.51	11.25	0.63
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63

	Lang	staffRd_E	A_Propo	sed_HumberW	latersh	ed	
2.256	0.63	5.333	8.15	8.417	1.25	11.50	0.63
2.333	3 3.76	5.417	8.15	8.500	1.25	11.58	0.63
2.417	7 3.76	5.500	8.15	8.583	1.25	11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25	11.75	0.63
2.583	3 3.76	5.667	8.15	8.750	1.25	11.83	0.63
2.667	7 3.76	5.750	8.15	8.833	1.25	11.92	0.63
2.756	3.76	5.833	8.15	8.917	1.25	12.00	0.63
2.833	3 3.76	5.917	8.15	9.000	1.25	12.08	0.63
2.917	7 3.76	6.000	8.15	9.083	1.25	12.17	0.63
3.000	3.76	6.083	8.15	9.167	1.25	12.25	0.63
3.083	3.76	6.167	8.15	9.250	1.25		
Max.Eff.Inten.(r	nm/hr)-	28.84		20.82			
	(min)	15.00		25.00			
Storage Coeff.			(ii)	22.89 (ii)			
Unit Hyd. Tpeak		15.00	(11)	25.00			
Unit Hyd. peak	(cms)=	0.08		0.05	*****		
						TALS*	
PEAK FLOW	(cms)=	0.09		0.02		.111 (ii	li)
TIME TO PEAK	(hrs)=	5.25		5.33	5	5.25	
RUNOFF VOLUME	(mm)=	60.71		33.62	52	2.30	
TOTAL RAINFALL	(mm)=	62.71		62.71	62	2.71	
RUNOFF COEFFICIE	ENT =	0.97		0.54	6	3.83	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0520)	OVERFLOW 1	S OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0.0181	0.0161	
	0.0081	0.0031	0.0584	0.0204	
	0.0123	0.0074	0.0920	0.0259	
	0.0155	0.0118	0.0000	0.0000	
	ARE	A QPEAK	TPEAK	R.V.	
	(ha	a) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0	105) Ì.6	30 0.11	11 5.25	52,30	
	520) 1.6			52.25	
•	•				
PFA	K FLOW RE	DUCTTON [Ooi	ut/Qin](%)= 8	81.20	
TTM	E SHIFT OF PE				
	IMUM STORAGE		(ha.m.)=		
1000			()-		

Page 25

LangstaffRd_EA_Proposed_HumberWatershed								
3.08	3 3.76	6.167 8	.15 9.250	1.25				
Max.Eff.Inten.(mm/hr)=	28.84	19.01					
over	(min)	15.00	20.00					
Storage Coeff.	(min)=	14.63 (ii) 18.80 (ii)					
Unit Hyd. Tpeak	(min)=	15.00	20.00					
Unit Hyd. peak	(cms)=	0.08	0.06					
				TOTALS				
PEAK FLOW	(cms)=	0.13	0.02	0.151 (iii)				
TIME TO PEAK	(hrs)=	5.25	5.33	5.25				
RUNOFF VOLUME	(mm)=	60.71	30.35	55.24				
TOTAL RAINFALL	(mm)=	62.71	62.71	62.71				
RUNOFF COFFETCT	FNT =	0.97	0.48	0.88				

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0125) ID= 1 DT= 5.0 min	Area Total	(ha)= 2.27 Imp(%)= 77.00		77.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)=	IMPERVIOUS 1.75 2.00 1.00 800.00 0.013	PERVIOUS (i) 0.52 5.00 2.00 20.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	3.76	6.250	8.15	9.33	0.63	
0.167	0.00	3.250	3.76	6.333	4.39	9.42	0.63	
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63	
0.333	0.63	3.417	10.66	6.500	4.39	9.58	0.63	
0.417	0.63	3.500	10.66	6.583	4.39	9.67	0.63	
0.500	0.63	3.583	10.66	6.667	4.39	9.75	0.63	
0.583	0.63	3.667	10.66	6.750	4.39	9.83	0.63	
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63	
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63	
0.833	0.63	3.917	10.66	7.000	4.39	10.08	0.63	
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63	
1.000	0.63	4.083	10.66	7.167	4.39	10.25	0.63	
1.083	0.63	4.167	10.66	7.250	4.39	10.33	0.63	

Page 27

LangstaffRd_EA_Proposed_HumberWatershed

CALIB					
STANDHYD (0130)	Area	(ha)=	2.08		
ID= 1 DT= 5.0 min	Total	Imp(%)=	82.00	Dir. Conn.(%)=	82.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	1.7	1	0.37	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	800.0	0	20.00	
Mannings n	=	0.01	3	0.250	

		TR	ANSFORME	HYETOGR.	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15	9.33	0.63
0.167	0.00	3.250	3.76	6.333	4.39	9.42	0.63
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63
0.333	0.63	3.417	10.66	6.500	4.39	9.58	0.63
0.417	0.63	3.500	10.66	6.583	4.39	9.67	0.63
0.500	0.63	3.583	10.66	6.667	4.39	9.75	0.63
0.583	0.63	3.667	10.66	6.750	4.39	9.83	0.63
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63
0.833	0.63	3.917	10.66	7.000	4.39	10.08	0.63
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63
1.000	0.63	4.083	10.66	7.167	4.39	10.25	0.63
1.083	0.63	4.167	10.66	7.250	4.39	10.33	0.63
1.167	0.63	4.250	10.66	7.333	2.51	10.42	0.63
1.250	0.63	4.333	28.84	7.417	2.51	10.50	0.63
1.333	0.63	4.417	28.84	7.500	2.51	10.58	0.63
1.417	0.63	4.500	28.84	7.583	2.51	10.67	0.63
1.500	0.63	4.583	28.84	7.667	2.51	10.75	0.63
1.583	0.63	4.667	28.84	7.750	2.51	10.83	0.63
1.667	0.63	4.750	28.84	7.833	2.51	10.92	0.63
1.750	0.63	4.833	28.84	7.917	2.51	11.00	0.63
1.833	0.63	4.917	28.84	8.000	2.51	11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63
2.000	0.63	5.083	28.84	8.167	2.51	11.25	0.63
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25	11.50	0.63
2.333	3.76	5.417	8.15	8.500	1.25	11.58	0.63
2.417	3.76	5.500	8.15	8.583	1.25	11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25	11.75	0.63
2.583	3.76	5.667	8.15	8.750	1.25	11.83	0.63
2.667	3.76	5.750	8.15	8.833	1.25	11.92	0.63
2.750	3.76	5.833	8.15	8.917	1.25	12.00	0.63
2.833	3.76	5.917	8.15	9.000	1.25	12.08	0.63
2.917	3.76	6.000	8.15	9.083	1.25	12.17	0.63
3.000	3.76	6.083	8.15	9.167	1.25	12.25	0.63

Page 26

				ed_Humber			
1.167	0.63	4.250	10.66	7.333	2.51	10.42	0.63
1.250	0.63	4.333	28.84	7.417	2.51	10.50	0.63
1.333	0.63	4.417	28.84	7.500	2.51	10.58	0.63
1.417	0.63	4.500	28.84	7.583	2.51	10.67	0.63
1.500	0.63	4.583	28.84	7.667	2.51	10.75	0.63
1.583	0.63	4.667	28.84	7.750	2.51	10.83	0.63
1.667	0.63	4.750	28.84	7.833	2.51	10.92	0.63
1.750	0.63	4.833	28.84	7.917	2.51	11.00	0.63
1.833	0.63	4.917	28.84	8.000	2.51	11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63
2.000	0.63	5.083	28.84	8.167	2.51	11.25	0.63
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25	11.50	0.63
2.333	3.76	5.417	8.15	8.500	1.25	11.58	0.63
2.417	3.76	5.500	8.15	8.583	1.25	11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25	11.75	0.63
2.583	3.76	5.667	8.15	8.750	1.25	11.83	0.63
2.667	3.76	5.750	8.15	8.833	1.25	11.92	0.63
2.750	3.76	5.833	8.15	8.917	1.25	12.00	0.63
2.833	3.76	5.917	8.15	9.000	1.25	12.08	0.63
2.917	3.76	6.000	8.15	9.083	1.25	12.17	0.63
3.000	3.76	6.083	8.15	9.167	1.25	12.25	0.63
3.083	3.76	6.167	8.15	9.250	1.25	i	
						•	

Max.Eff.Inten.(mm/hr)=	28.84	19.01	
over	(min)	15.00	20.00	
Storage Coeff.	(min)=	14.63 (ii)	19.35 (ii)	
Unit Hyd. Tpeak	(min)=	15.00	20.00	
Unit Hyd. peak	(cms)=	0.08	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.14	0.02	0.160 (iii)
TIME TO PEAK	(hrs)=	5.25	5.33	5.25
RUNOFF VOLUME	(mm)=	60.71	30.35	53.72
TOTAL RAINFALL	(mm)=	62.71	62.71	62.71
RUNOFF COEFFICI	ENT =	0.97	0.48	0.86

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0405)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0125):	2.27	0.160	5.25	53.72
+ ID2= 2 (0130):	2.08	0.151	5.25	55.24

$\label{eq:loss_loss} LangstaffRd_EA_Proposed_HumberWatershed \\ ID = 3 (0405): 4.35 0.311 5.25 54.45$

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

SERVOIR(0505)	OVERFLOW	IS OFF			
I= 2> OUT= 1					
5.0 min	OUTFLOW	STORAG		OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.000	0	0.2110	0.0383
	0.0185	0.003	0 İ	0.2743	0.0515
	0.0302	0.012	ø i	0.3250	0.0792
	0.1102	0.025	1 İ	0.0000	0.0000
	А	REA O	PEAK	TPEAK	R.V.
	(ha) (cms)	(hrs)	(mm)
FLOW : ID= 2 (0					
TFLOW: ID= 1 (0			0.261		
	K FLOW E SHIFT OF IMUM STORA	PEAK FLOW		'Qin](%)= 8 (min)= 1 (ha.m.)=	0.00

LOUTE

CALIB					
STANDHYD (0120)	Area	(ha)=	1.24		
ID= 1 DT= 5.0 min	Total	Imp(%)= 7	73.00	Dir. Conn.(%)=	73.00
		IMPERVIOL	JS	PERVIOUS (i)	
Surface Area	(ha)=	0.91		0.33	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	475.00		17.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGRA	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15	9.33	0.63
0.167	0.00	3.250	3.76	6.333	4.39	9.42	0.63
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63
0.333	0.63	3.417	10.66	6.500	4.39	9.58	0.63
0.417	0.63	3.500	10.66	6.583	4.39	9.67	0.63
0.500	0.63	3.583	10.66	6.667	4.39	9.75	0.63
0.583	0.63	3.667	10.66	6.750	4.39	9.83	0.63
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63
0.833	0.63	3.917	10.66	7.000	4.39	10.08	0.63
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63

Page 29

	Lang	staffRd EA P	roposed Humberl	Watershed
Surface Area	(ha)=	0.63	0.37	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORMFI	HYETOGR	ΔPH		
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	I TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15	9.33	0.63
0.167	0.00	3.250	3.76	6.333	4.39	9.42	0.63
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63
0.333	0.63	3.417	10.66	6.500	4.39	9.58	0.63
0.417	0.63	3.500	10.66	6.583	4.39	9.67	0.63
0.500	0.63	3.583	10.66	6.667	4.39	9.75	0.63
0.583	0.63	3.667	10.66	6.750	4.39	9.83	0.63
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63
0.833	0.63	3.917	10.66	7.000	4.39	10.08	0.63
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63
1.000	0.63		10.66	7.167	4.39	10.25	0.63
1.083	0.63	4.167	10.66	7.250	4.39	10.33	0.63
1.167	0.63	4.250	10.66	7.333	2.51	10.42	0.63
1.250	0.63	4.333	28.84	7.417	2.51	10.50	0.63
1.333	0.63	4.417	28.84	7.500	2.51	10.58	0.63
1.417	0.63	4.500	28.84	7.583	2.51	10.67	0.63
1.500	0.63	4.583	28.84	7.667	2.51	10.75	0.63
1.583	0.63	4.667	28.84	7.750	2.51	10.83	0.63
1.667	0.63	4.750	28.84	7.833	2.51	10.92	0.63
1.750	0.63	4.833	28.84	7.917	2.51	11.00	0.63
1.833	0.63	4.917	28.84	8.000	2.51	11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63
2.000	0.63	5.083	28.84	8.167	2.51	11.25	0.63
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25	11.50	0.63
2.333	3.76	5.417	8.15	8.500	1.25	11.58	0.63
2.417	3.76	5.500	8.15	8.583	1.25	11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25	11.75	0.63
2.583	3.76	5.667	8.15	8.750	1.25	11.83	0.63
2.667	3.76	5.750	8.15	8.833	1.25	11.92	0.63
2.750	3.76	5.833	8.15	8.917	1.25	12.00	0.63
2.833	3.76	5.917	8.15	9.000	1.25	12.08	0.63
2.917	3.76	6.000	8.15	9.083	1.25	12.17	0.63
3.000	3.76	6.083	8.15	9.167	1.25	12.25	0.63
3.083	3.76	6.167	8.15	9.250	1.25		

Page 31

```
LangstaffRd_EA_Proposed_HumberWatershed

0.63 | 4.083 | 10.66 | 7.167 | 4.39 | 18

0.63 | 4.167 | 10.66 | 7.259 | 4.39 | 18

0.63 | 4.250 | 10.66 | 7.333 | 2.51 | 18

0.63 | 4.333 | 28.84 | 7.417 | 2.51 | 19

0.63 | 4.333 | 28.84 | 7.580 | 2.51 | 18

0.63 | 4.500 | 28.84 | 7.580 | 2.51 | 18

0.63 | 4.500 | 28.84 | 7.567 | 2.51 | 18

0.63 | 4.567 | 28.84 | 7.750 | 2.51 | 18

0.63 | 4.583 | 28.84 | 7.750 | 2.51 | 18

0.63 | 4.667 | 28.84 | 7.750 | 2.51 | 18

0.63 | 4.672 | 28.84 | 7.750 | 2.51 | 18

0.63 | 4.750 | 28.84 | 7.833 | 2.51 | 18

0.63 | 4.833 | 28.84 | 7.917 | 2.51 | 11

0.63 | 5.808 | 28.84 | 8.883 | 2.51 | 11

0.63 | 5.500 | 28.84 | 8.893 | 2.51 | 11

0.63 | 5.55 | 28.84 | 8.250 | 2.51 | 12

0.63 | 5.55 | 28.84 | 8.250 | 2.51 | 12

0.63 | 5.583 | 28.84 | 8.333 | 2.51 | 12

0.63 | 5.583 | 28.84 | 8.333 | 2.51 | 12

0.63 | 5.583 | 8.15 | 8.417 | 1.25 | 12

0.63 | 5.588 | 8.15 | 8.590 | 1.25 | 12

0.76 | 5.590 | 8.15 | 8.590 | 1.25 | 12

0.76 | 5.583 | 8.15 | 8.667 | 1.25 | 12

0.76 | 5.667 | 8.15 | 8.750 | 1.25 | 12

0.76 | 5.833 | 8.15 | 8.833 | 1.25 | 12

0.76 | 5.833 | 8.15 | 8.831 | 1.25 | 12

0.76 | 5.600 | 8.15 | 8.833 | 1.25 | 12

0.76 | 5.600 | 8.15 | 8.833 | 1.25 | 12

0.76 | 5.600 | 8.15 | 8.833 | 1.25 | 12

0.76 | 5.600 | 8.15 | 8.833 | 1.25 | 12

0.76 | 5.600 | 8.15 | 8.833 | 1.25 | 12

0.76 | 5.600 | 8.15 | 9.000 | 1.25 | 12

0.76 | 6.083 | 8.15 | 9.017 | 1.25 | 12

0.76 | 6.608 | 8.15 | 9.017 | 1.25 | 12

0.77 | 1.25 | 12

0.78 | 1.25 | 12

0.79 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

0.70 | 1.25 | 12

                                                                                                   1.000
                                                                                                                                                                                                                                                                                                                                                                           4.39 | 10.25
4.39 | 10.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.63
0.63
0.63
0.63
0.63
                                                                                                   1.083
1.167
1.250
1.333
1.417
1.500
1.583
                                                                                                                                                                                                                                                                                                                                                                                                                    10.42
10.50
10.58
10.67
10.75
10.83
10.92
11.00
11.08
11.17
11.25
11.33
11.42
11.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.63
                                                                                                   1.667
1.750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.63
                                                                                                   1.833
1.917
2.000
2.083
2.167
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.63
0.63
0.63
0.63
0.63
                                                                                                   2,250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.63
                                                                                                                                                                                                                                                                                                                                                                       1.25 | 11.50

1.25 | 11.58

1.25 | 11.67

1.25 | 11.75

1.25 | 11.83

1.25 | 11.92

1.25 | 12.00

1.25 | 12.08

1.25 | 12.17

1.25 | 12.25

1.25 | 12.25
                                                                                                   2.333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.63
0.63
                                                                                                   2.417
2.500
2.583
2.667
2.750
2.833
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.63
0.63
0.63
0.63
                                                                                                   2.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.63
                                                                                                   3.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.63
                           Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                                                                               28.84 19.01
10.00 20.00
10.70 (ii) 15.37 (ii)
                                                                                                                                                                                                                 10.00
                                                                                                                                                                                                                                                                                                      20.00
0.07
                                                                                                                                                                                                                       0.11
                                                                                                                                                                                                                                                                                                                                                                                           *TOTALS*
                           PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                                                                 0.07
5.25
60.71
62.71
0.97
                                                                                                                                                                                                                                                                                                                                                                                                  TOTALS*
0.087 (iii)
5.25
52.51
62.71
0.84
                                                                                                                                                                                                                                                                                                    0.02
5.33
30.35
62.71
0.48
                                         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                            (1) CN* PROCEDURE SELECTED FOR FEXTURES USED SELECTED FOR FEXTURE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD ( 0115) | Area (ha)= 1.00
|ID= 1 DT= 5.0 min | Total Imp(%)= 63.00 Dir. Conn.(%)= 63.00
                                                                                                                                                                                            IMPERVIOUS PERVIOUS (i)
                                                                                                                                                                                                                                                                       Page 30
```

		ffRd_EA_			rWate	rshed
Unit Hyd. Tpeak (m	in)=	10.00	26	0.00		
Unit Hyd. peak (c	ms)=	0.11	(0.06		TOTALS*
BEAK ELON (6	mc) -	0.05		2 02	-	0.066 (iii)
PEAK FLOW (C TIME TO PEAK (H RUNOFF VOLUME (TOTAL RAINFALL (ms)=	0.05 E 2E	,	2.02		0.000 (111)
PLINGE VOLUME (mm)-	60 71	30	3.33		19 17
TOTAL PATNEALL (mm) =	62 71	61	71		62 71
RUNOFF COEFFICIENT		0 97		2 48		0.79
NONOTT COLTTELLA		0.57	•	31.40		0175
(i) CN PROCEDURE	SELECTED	EOR DER	TOUS 10	necec.		
CN* = 83.						
(ii) TIME STEP (D						
THAN THE STO				LQUAL		
(iii) PEAK FLOW DO				TF ANY.		
(,						
ADD HYD (0410)						
1 + 2 = 3	AREA	A QPE	AK TI	PEAK	R.V.	
ADD HYD (0410) 1 + 2 = 3	(ha)	(cm	s) (1	nrs)	(mm)	
ID1= 1 (0115)	: 1.06	0.06	b 5.	. 25 4	19.4/	
+ 1D2= 2 (0120)	: 1.24	0.08	/ 5.	. 25	2.51	
ID = 3 (0410)						
(/						
NOTE: PEAK FLOWS						
	OVEREI ON	I TS OFF				
IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STOR	AGE	OUTFLO	W	STORAGE
·	(cms)	(ha.ı	n.) j	(cms))	(ha.m.)
	0.0000	0.0	900 j	0.069	99	0.0309
	0.0264	0.0	924 j	0.079	92	0.0414
	0.0457	0.0	999	0.087	76	0.0666
RESERVOIR(0510) IN= 2> OUT= 1 DT= 5.0 min	0.0590	0.0	204	0.000	90	0.0000
		RFA	OPFAK	TPF	ıĸ	R.V.
	,	ha)	(cms)	(hrs	:)	(mm)
INFLOW: ID= 2 (04	10)	.240	0.154	4	.25	51.15
INFLOW : ID= 2 (04 OUTFLOW: ID= 1 (05	10) 2	2.240	0.074	4 5	.58	51.15 51.14
	FLOW					
	SHIFT OF					
	MUM STORA					
PIAXI	31000	03		(110.111.	,- 6	.0501

AREA OPEAK TPEAK

Page 32

ADD HYD (0420)

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0110) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.58 70.00	Dir. Conn.(%)=	70.00
		IMPERVI	ous	PERVIOUS (i)	
Surface Area	(ha)=	1.1	1	0.47	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	650.0	0	25.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15	9.33	0.63
0.167	0.00	3.250	3.76	6.333	4.39	9.42	0.63
0.250	0.00	3.333	10.66	6.417	4.39	9.50	0.63
0.333	0.63	3.417	10.66	6.500	4.39	9.58	0.63
0.417	0.63	3.500	10.66	6.583	4.39	9.67	0.63
0.500	0.63	3.583	10.66	6.667	4.39	9.75	0.63
0.583	0.63	3.667	10.66	6.750	4.39	9.83	0.63
0.667	0.63	3.750	10.66	6.833	4.39	9.92	0.63
0.750	0.63	3.833	10.66	6.917	4.39	10.00	0.63
0.833	0.63	3.917	10.66	7.000	4.39	10.08	0.63
0.917	0.63	4.000	10.66	7.083	4.39	10.17	0.63
1.000	0.63	4.083	10.66	7.167	4.39	10.25	0.63
1.083	0.63	4.167	10.66	7.250	4.39	10.33	0.63
1.167	0.63	4.250	10.66	7.333	2.51	10.42	0.63
1.250	0.63	4.333	28.84	7.417	2.51	10.50	0.63
1.333	0.63	4.417	28.84	7.500	2.51	10.58	0.63
1.417	0.63	4.500	28.84	7.583	2.51	10.67	0.63
1.500	0.63	4.583	28.84	7.667	2.51	10.75	0.63
1.583	0.63	4.667	28.84	7.750	2.51	10.83	0.63
1.667	0.63	4.750	28.84	7.833	2.51	10.92	0.63
1.750	0.63	4.833	28.84	7.917	2.51	11.00	0.63
1.833	0.63	4.917	28.84	8.000	2.51	11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51	11.17	0.63
2.000	0.63	5.083	28.84	8.167	2.51	11.25	0.63
2.083	0.63	5.167	28.84	8.250	2.51	11.33	0.63
2.167	0.63	5.250	28.84	8.333	1.25	11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25	11.50	0.63

Page 33

LangstaffRd_EA_Proposed_HumberWatershed

READ STORM	ata	Users\ray.zhao\App \Local\Temp\ df5d6-df0e-43ba-b1 12		a28109d\4	4f82851c
TIME hrs 0.25 0.59 0.59 0.75 1.00 1.25 1.50 2.00 2.25 2.59 2.75 3.00 3.25	RAIN TIME mmm/hr hrs 0.00 3.50 0.73 3.75 0.73 4.00 0.73 4.50 0.73 4.55 0.73 5.25 0.73	mm/hr ' hrs 12.43 6.79 12.43 7.90 12.43 7.50 33.63 7.55 33.63 8.25 33.63 8.25 33.63 8.25 9.50 9.90 9.50 9.25 9.50 9.95	RAIN mm/hr 5.12 5.12 5.12 2.92 2.92 2.92 1.46 1.46 1.46 0.73 0.73	TIME hrs 10.00 10.25 10.50 11.75 11.00 11.25 11.25 11.25 12.00 12.25	RAIN mm/hr 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73

CALIB						
STANDHYD (0105)	Area	(ha)=	1.63			
ID= 1 DT= 5.0 min	Total	Imp(%)=	69.00	Dir.	Conn.(%)=	69.00

- 1 01- 3.0 11111	IOCAL	Imp(%)- 05.00	D11. COIII.()
		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	1.12	0.51
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	650.00	25.00
Mannings n	=	0.013	0.250
=			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73				
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73				
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73				
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73				
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73				
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73				
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73				
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73				
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73				
Page 35											

RESERVOIR(0525 IN= 2> OUT= 1 DT= 5.0 min INFLOW: ID= 2 OUTFLOW: ID= 1	(0110)	ERFLOW IS (TFLOW S TFLOW S TMS) (.0000 .0081 .0123 .0155 .0144 .	TORAGE ha.m.) 0.0000 0.0031 0.0074 0.0118 QPEAR (cms)	OUTFLOW (cms)	25	RAGE .m.) .0161 .0204 .0259 .0000 R.V. (mm) 52.23	
(iii) PEAK FL RESERVOIR(0525 IN= 2> OUT= 1 DT= 5.0 min	OVI	ERFLOW IS (COME) (10000) (10000 (10000 (10000 (10000) (10000 (10000) (10000 (10000) (10000 (10000) (10000 (10000) (10000 (10000)	TORAGE ha.m.) 0.0000 0.0031 0.0074 0.0118	OUTFLOW (cms) 0.0181 0.0584 0.0920 0.0000	0	R.V. (mm)	
(iii) PEAK FL RESERVOIR(0525 IN= 2> OUT= 1 DT= 5.0 min	OVI	ERFLOW IS (COME) (10000) (10000 (10000 (10000 (10000) (10000 (10000) (10000 (10000) (10000 (10000) (10000 (10000) (10000 (10000)	TORAGE ha.m.) 0.0000 0.0031 0.0074 0.0118	OUTFLOW (cms) 0.0181 0.0584 0.0920 0.0000	0	.0000	
(iii) PEAK FL	0) OVI	ERFLOW IS TFLOW S cms) ((.0000 .0081 .0123	TORAGE ha.m.) 0.0000 0.0031 0.0074	OUTFLOW (cms) 0.0181 0.0584 0.0920	STOI (ha 0 0	RAGE .m.) .0161 .0204 .0259	
(iii) PEAK FL		ERFLOW IS			STOI (ha 0	RAGE .m.) .0161 .0204	
(iii) PEAK FL		ERFLOW IS			STOI (ha	RAGE .m.) .0161	
(iii) PEAK FL		ERFLOW IS			STOI (ha	RAGE .m.)	
(iii) PEAK FL		ERFLOW IS			STO	RAGE	
(iii) PEAK FL							
	.OW DUES N						
(ii) TIME ST	: 85.0 EP (DT) SI IE STORAGE	Ia = Dep. HOULD BE SI COEFFICIE	Storage MALLER OF NT.	(Above) R EQUAL			
TIME TO PEAK RUNOFF VOLUME TOTAL RAINFAL RUNOFF COEFFI	CIENT =	0.9	7	0.52	0	.83	
TOTAL RAINFAL	.L (mm)=	62.7	1	62.71	62		
RUNOFF VOLUME	(mm)=	60.7	1	32.48	52		
PEAK FLOW TIME TO PEAK	(cms)= (hrs)=	5.2	5	5.33		108 (iii .25)
DEAK ELON	(cmc)	0.0	0	0.02	*T0T		١.
Unit Hyd. pea	ık (cms)=	0.0	8	0.05			
Unit Hyd. Tpe Unit Hyd. pea	ak (min)=	15.0	0	25.00			
Storage Coeff	. (min)=	12.9	1 (ii)	23.06 (ii)			
Max.Eff.Inten ov Storage Coeff Unit Hyd. Tpe	er (min)	15.0	9	25.00			
3.	083 3.	76 6.167	8.15	8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250	1.25		
3.	000 3.	76 6.083	8.15	9.167	1.25	12.25	0.6
2.	917 3.	76 6.000	8.15	9.083	1.25	12.17	0.6
2.	833 3.	76 5.917	8.15	9.000	1.25	12.08	0.6
2.	750 3.	76 5.833	8.15	8.917	1.25	12.00	0.6
2.	667 3.	76 5.750	8.15	8.833	1.25	11.92	0.6
	583 3	76 5.565 76 5.667	8 15	8.007	1 25	11 83	0.0
۷.	EGG 2 '	76 5.500 76 E E05	0.15	8.583	1 25	11.0/	0.0
2.	41/ 3.			0 500	1 25 1	11.58	0.6

Page 34

	LangstaffRd		sed_HumberV	Natersh	ed	
	0.73 3.917			5.12		0.73
	0.73 4.000		7.083	5.12		0.73
	0.73 4.083			5.12		0.73
	0.73 4.167			5.12		0.73
	0.73 4.250			2.92		0.73
	0.73 4.333 0.73 4.417			2.92		0.73
	0.73 4.417 0.73 4.500			2.92		0.73
	0.73 4.500 0.73 4.583			2.92		0.73
	0.73 4.567			2.92		0.73
	0.73 4.750			2.92		0.73
	0.73 4.833				11.00	0.73
	0.73 4.917			2.92		0.73
	0.73 5.000				11.17	0.73
	0.73 5.083			2.92		0.73
	0.73 5.167			2.92		0.73
2.167	0.73 5.250	33.63	8.333	1.46	11.42	0.73
	0.73 5.333			1.46	11.50	0.73
2.333	4.39 5.417	9.50	8.500	1.46	11.58	0.73
2.417	4.39 5.500	9.50	8.583	1.46	11.67	0.73
2.500	4.39 5.583	9.50	8.667	1.46	11.75	0.73
	4.39 5.667	9.50	8.750	1.46	11.83	0.73
	4.39 5.750			1.46		0.73
	4.39 5.833				12.00	0.73
	4.39 5.917			1.46		0.73
	4.39 6.000				12.17	0.73
	4.39 6.083				12.25	0.73
3.083	4.39 6.167	9.50	9.250	1.46	l	
Max.Eff.Inten.(mm/hr)= 33.6	3	25.75			
over (min			25.00			
Storage Coeff. (min)= 12.1	4 (ii)	21.31 (ii)			
Unit Hyd. Tpeak (min)= 10.0	10	25.00			
Unit Hyd. peak (cms)= 0.1	.0	0.05			
					TALS*	
PEAK FLOW (cms			0.03		.133 (iii))
TIME TO PEAK (hrs			5.33		5.25	
RUNOFF VOLUME (mm			42.37		2.19	
TOTAL RAINFALL (mm			73.10		3.10	
RUNOFF COEFFICIENT	= 0.9	17	0.58	,	0.85	
(i) CN PROCEDURE S						
CN* = 86.0		Storage				
(ii) TIME STEP (DT)			EQUAL			
THAN THE STORA						
(iii) PEAK FLOW DOES	NOT INCLUDE	BASEFLOW	IF ANY.			

**** WARNING : STOR	LangstaffRd_E (cms) (ha 0.0000 0. 0.0081 0. 0.0123 0. 0.0155 0. AGE-DISCHARGE	0000 0 0001 0 0074 0 0118 0	(cms) (0.0181 0.0584 0.0920 0.0000	ha.m.) 0.0161 0.0204 0.0259
TIME	(ha) 5) 1.630	0.110 TION [Qout/Qi LOW	(hrs) 5.25 5.42 n](%)= 82. (min)= 10.	(mm) 62.19 62.13
	IMPERVIOL a)= 1.71 m)= 2.00	32.00 Dir. JS PERVIOU 0.37 5.00 2.00 20.00	US (i)	82.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				D HYETOGRA			
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.833	0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.917	0.73	4.000	12.43	7.083	5.12	10.17	0.73
1.000	0.73	4.083	12.43	7.167	5.12	10.25	0.73
1.083	0.73	4.167	12.43	7.250	5.12	10.33	0.73
1.167	0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.250	0.73	4.333	33.63	7.417	2.92	10.50	0.73
1.333	0.73	4.417	33.63	7.500	2.92	10.58	0.73
1.417	0.73	4.500	33.63	7.583	2.92	10.67	0.73
1.500	0.73	4.583	33.63	7.667	2.92	10.75	0.73

Page 37

LangstaffRd_EA_Proposed_HumberWatershed

		TR	ANSFORM	D HYETOGRA	PH	_	
TIM	E RAIN		RAIN		RAIN		RAIN
hr:	s mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.08	3 0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.16	7 0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.25		3.333		6.417	5.12	9.50	0.73
0.33	3 0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.41		3.500		6.583	5.12	9.67	0.73
0.50	0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.58					5.12		0.73
0.66		3.750		6.833	5.12		0.73
0.75	0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.83		3.917		7.000		10.08	0.73
0.91				7.083		10.17	0.73
1.00				7.167		10.25	0.73
1.08		4.167				10.33	0.73
1.16		4.250		7.333		10.42	0.73
1.25	0.73	4.333	33.63	7.417		10.50	0.73
1.33						10.58	0.73
1.41	7 0.73	4.500	33.63	7.583		10.67	0.73
1.50				7.667		10.75	0.73
1.58	3 0.73	4.667	33.63	7.750		10.83	0.73
1.66						10.92	0.73
1.75		4.833		7.917		11.00	0.73
1.83		4.917				11.08	0.73
1.91	7 0.73	5.000	33.63	8.083		11.17	0.73
2.00	0.73	5.083	33.63	8.167		11.25	0.73
2.08	3 0.73	5.16/	33.63	8.250		11.33	0.73
2.16				8.333		11.42	0.73
2.25		5.333		8.417		11.50	0.73
2.33		5.417		8.500		11.58	0.73
2.41		5.500		8.583		11.67	0.73
2.50		5.583		8.667		11.75 11.83	0.73
2.58		5.667		8.750			0.73
2.66		5.750		8.833		11.92	0.73
2.75		5.833	9.50	8.917 9.000		12.00	0.73
2.83		5.917		9.000		12.08 12.17	0.73 0.73
2.91		6.083		9.065		12.17	0.73
3.00		6.167		9.167	1.46		0.75
3.00	3 4.39	0.10/	9.50	9.250	1.40	ı	
Max.Eff.Inten.(mm/hr)-	33.63		23.77			
	(min)	15.00		20.00			
Storage Coeff.	(min)=	13.76		18.20 (ii)			
Unit Hyd. Tpeak		15.00	(11)	20.00			
Unit Hyd. peak		0.08		0.06			
onize nyu. peak	(======================================	0.00		0.00	*T0	TALS*	
PEAK FLOW	(cms)=	0.16		0.03		.190 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOLUME	(mm)=	71.10		38.61	6	3.62	
TOTAL RAINFALL	(mm)=	73.10		73.10	7	3.10	

```
Page 39
```

```
LangstaffRd_EA_Proposed_Humber

0.73 | 4.667 | 33.63 | 7.759

0.73 | 4.750 | 33.63 | 7.833

0.73 | 4.833 | 33.63 | 8.080

0.73 | 4.834 | 33.63 | 8.080

0.73 | 5.080 | 33.63 | 8.167

0.73 | 5.167 | 33.63 | 8.167

0.73 | 5.265 | 33.63 | 8.157

0.73 | 5.255 | 33.63 | 8.157

0.73 | 5.255 | 33.63 | 8.259

0.73 | 5.255 | 33.63 | 8.333

0.73 | 5.333 | 9.50 | 8.417

4.39 | 5.417 | 9.50 | 8.580

4.39 | 5.583 | 9.50 | 8.759

4.39 | 5.583 | 9.50 | 8.759

4.39 | 5.583 | 9.50 | 8.831

4.39 | 5.583 | 9.50 | 8.831

4.39 | 5.583 | 9.50 | 8.817

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083

4.39 | 6.080 | 9.50 | 9.083
                                                1.583
                                                                                                                                                                                  2.92 | 10.83
2.92 | 10.92
                                                 1.667
                                                                                                                                                                                                                                     0.73
                                                                                                                                                                                                       10.92
11.00
11.08
11.17
11.25
11.33
11.42
11.50
                                                1.750
1.833
1.917
2.000
2.083
                                                                                                                                                                                  2.92
2.92
2.92
2.92
2.92
                                                                                                                                                                                                                                    0.73
0.73
0.73
0.73
                                                                                                                                                                                  2.92
                                                                                                                                                                                                                                     0.73
                                                2.167
                                                                                                                                                                                  1.46
                                                                                                                                                                                                                                     0.73
                                                2.250
                                                                                                                                                                                  1.46
                                                                                                                                                                                                                                     0.73
                                                 2.333
                                                                            4.39 |
4.39 |
4.39 |
4.39 |
4.39 |
4.39 |
4.39 |
4.39 |
4.39 |
                                                                                                                                                                                  1.46
                                                                                                                                                                                                                                     0.73
                                                2.333
2.417
2.500
2.583
2.667
2.750
                                                                                                                                                                                                       11.58
11.67
11.75
11.83
11.92
12.00
                                                                                                                                                                                  1.46
1.46
1.46
1.46
1.46
                                                                                                                                                                                                                                    0.73
0.73
0.73
0.73
                                                                                                                                                                                                                                    0.73
                                                                                                                                                                                  1.46
                                                 2.833
                                                                                                                                                                                                                                    0.73
                                                2.917
                                                                                                                                                                                  1.46
                                                                                                                                                                                                       12.17
12.25
                                                                                                                                                                                                                                    0.73
                                                                                                                                                                                  1.46
                                                 3.083
                                                                                                                                                                                  1.46
               Max.Eff.Inten.(mm/hr)=
                                                                                                      33.63
                                                                                                                                               23.77
              over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                       15.00
13.76 (ii)
                                                                                                                                              20.00
17.68 (ii)
                                                                                                       15.00
                                                                                                                                                20.00
                                                                                                         0.08
                                                                                                                                                   0.06
                                                                                                                                                                                          *TOTALS*
             PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                       0.16
5.25
71.10
73.10
                                                                                                                                                                                              0.178 (iii)
5.25
65.25
73.10
                                                                                                                                                  0.02
                                                                                                                                               5.33
38.61
73.10
                                                                                                         0.97
                                                                                                                                                   0.53
                                                                                                                                                                                                 0.89
             (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   CAL TB
| CALIB
| STANDHYD ( 0125)|
|ID= 1 DT= 5.0 min |
                                                                      Area (ha)= 2.27
Total Imp(%)= 77.00 Dir. Conn.(%)= 77.00
                                                                                                                                         PERVIOUS (i)
                                                                                             IMPERVIOUS
               Surface Area
                                                                                                       1.75
2.00
1.00
                                                                                                                                                 0.52
5.00
              Dep. Storage
Average Slope
Length
Mannings n
                                                                     (mm)=
(%)=
(m)=
                                                                                                                                                   2.00
                                                                                                                                                0.250
                          NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
                                                                                                                                  Page 38
```

 $\label{eq:loss_loss} \begin{array}{lll} & LangstaffRd_EA_Proposed_HumberWatershed \\ RUNOFF \ COEFFICIENT & = \ 0.97 & 0.53 & 0.8 \end{array}$

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

(1) CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0405)| | 1 + 2 = 3 | QPEAK (cms) 0.190 0.178 R.V. (mm) 63.62 65.25 ΔRFΔ TPFΔK (ha) 2.27 2.08 (hrs) 5.25 5.25 ID1= 1 (0125): + ID2= 2 (0130): ID = 3 (0405): 4.35 0.368 5.25 64.40

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0505)| IN= 2---> OUT= 1 | DT= 5.0 min | OUTFLOW STORAGE OUTFLOW (ha.m.) 0.0000 0.0030 0.0120 (ha.m.) 0.0383 0.0515 0.0792 (cms) 0.0000 (cms) 0.2110 0.0185 0.2743 0.3250 AREA QPEAK TPEAK (hrs) 5.25 5.42 (ha) 4.350 (cms) (mm) 64.40 INFLOW : ID= 2 (0405) OUTFLOW: ID= 1 (0505) 0.368 0.288 4.350 64.39

CALIB | CALIB | STANDHYD (0120)| |ID= 1 DT= 5.0 min | Area (ha)= 1.24 Total Imp(%)= 73.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.91 2.00 1.00 475.00 0.33 5.00 2.00 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= 17 00 0.013 0.250

LangstaffRd_EA_Proposed_HumberWatershed

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

L WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

**TRANSFORMED HYETOGRAPH ---RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr hrs 9.33 9.42 mm/hr 0.73 0.73 hrs 0.083 0.167 0.250 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.73 0.73 0.73 0.73 0.73 0.73 0.833 0.73 0.73 0.917 1.000 1.083 1.167 1.250 1.333 1.417 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 0.73 2.833 2.917 Max.Eff.Inten.(mm/hr)= 10.00 15.00 10.06 (ii) 14.45 (ii) 10.00 15.00 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 0.11 0.08 *TOTALS* 0.104 (iii) 5.25 PEAK FLOW (cms)= TIME TO PEAK (hrs)= Page 41

	Lange	taffRd F	A Propo	sed Humberw	latarch	od	
2.000		5.083	33.63	8.167	2.92		0.73
2.083		5.167	33.63		2.92		0.73
2.167		5.250	33.63		1.46		0.73
2.256		5.333	9.50	8.417	1.46	11.50	0.73
2.333			9.50		1.46		0.73
2.417	7 4.39	5.500	9.50	8.583	1.46	11.67	0.73
2.506		5.583	9.50	8.667	1.46	11.75	0.73
2.583	3 4.39	5.667	9.50	8.750	1.46	11.83	0.73
2.667	7 4.39	5.750	9.50	8.833	1.46	11.92	0.73
2.756	4.39	5.833	9.50	8.917	1.46	12.00	0.73
2.833	3 4.39	5.917	9.50	9.000	1.46	12.08	0.73
2.917	7 4.39	6.000	9.50	9.083	1.46	12.17	0.73
3.000	4.39	6.083	9.50	9.167	1.46	12.25	0.73
3.083	3 4.39	6.167	9.50	9.250	1.46	ĺ	
Max.Eff.Inten.(r	mm/hm)_	33.63		23.77			
	(min)	10.00		20.00			
Storage Coeff.		10.06	(44)	17.57 (ii)			
Unit Hyd. Tpeak		10.00	(11)	20.00			
Unit Hyd. peak		0.11		0.06			
onit nyu. peak	(CIIIS)-	0.11		0.00	****	TALS*	
PEAK FLOW	(cms)=	0.06		0.02		.079 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOLUME	(mm)=	71.10		38.61		9.07	
TOTAL RAINFALL	(mm)=	73.10		73.10		3.10	
RUNOFF COEFFICIE		0.97		0.53		0.81	
MONOTT COLTTELL		0.57		0.55		0.01	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0410) 1 + 2 = 3 ID1= 1 (0115):	AREA (ha) 1.00	QPEAK (cms) 0.079	TPEAK (hrs) 5.25	R.V. (mm) 59.07
+ ID2= 2 (0120):	1.24	0.104	5.25	62.32
ID = 3 (0410):	2.24	0.183	5.25	60.87

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0510)	OVERFLOW	IS OFF		
IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.0699	0.0309

Page 43

LangstaffRd_EA_Proposed_HumberWatershed

RUNOFF VOLUME	(mm)=	71.10	38.61	62.32
TOTAL RAINFALL	(mm)=	73.10	73.10	73.10
RUNOFF COEFFICI	ENT =	0.97	0.53	0.85

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0115)	Area	(ha)=	1.00			
ID= 1 DT= 5.0 min	Total	Imp(%)=	63.00	Dir.	Conn.(%)=	63.00
		IMPERVI	OUS	PERVIOL	JS (i)	
Surface Area	(ha)=	0.6	3	0.37	7	
Dep. Storage	(mm)=	2.0	0	5.00)	
Average Slope	(%)=	1.0	0	2.00)	
Length	(m)=	475.0	0	17.00)	
Mannings n	` ′=	0.01	3	0.256)	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.833	0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.917	0.73	4.000	12.43	7.083	5.12	10.17	0.73
1.000	0.73	4.083	12.43	7.167	5.12	10.25	0.73
1.083	0.73	4.167	12.43	7.250	5.12	10.33	0.73
1.167	0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.250	0.73	4.333	33.63	7.417	2.92	10.50	0.73
1.333	0.73	4.417	33.63	7.500	2.92	10.58	0.73
1.417	0.73	4.500	33.63	7.583	2.92	10.67	0.73
1.500	0.73	4.583	33.63	7.667	2.92	10.75	0.73
1.583	0.73	4.667	33.63	7.750	2.92	10.83	0.73
1.667	0.73	4.750	33.63	7.833	2.92	10.92	0.73
1.750	0.73	4.833	33.63	7.917	2.92	11.00	0.73
1.833	0.73	4.917	33.63	8.000	2.92	11.08	0.73
1.917	0.73	5.000	33.63	8.083	2.92	11.17	0.73

Page 42

1	angetaff	d EA Bros	posed Hum	honklaton	-hod	
			0.0			
e	.0457	0.0024	0.0	9876	0.0666	
			0.0			
			AK TI			
	(ha) (cm	ıs) (I	nrs)	(mm)	
INFLOW : ID= 2 (0410) OUTFLOW: ID= 1 (0510)						
OUTFLOW: ID= 1 (0510)	2.2	+6 6	.001	5.0/	00.00	
PEAK F	LOW REI	OUCTION [Qout/Qin	1(%)= 44.	09	
			(1			
MAXIMUM	STORAGE	USED	(ha	.m.)= 0.	0465	
ADD HYD (0420)						
i 1 ± 2 = 3 i	AREA	QPEAK	TPEAK	R.V.		
ID1= 1 (0505): + ID2= 2 (0510):	(ha)	(cms)	(hrs)	(mm)		
ID1= 1 (0505):	4.35	0.288	5.42	64.39		
=======================================						
ID = 3 (0420):	6.59	0.369	5.50	63.19		
NOTE: PEAK FLOWS DO N	OT THELLI	DE DACEEL	OUC TE M	IV		
NOTE: TEAK TEOMS DO N				···.		
CALIB						
STANDHYD (0110) Area						
STANDHYD (0110) Area ID= 1 DT= 5.0 min				onn.(%)=	70.00	

- I DI- 310 IIIII	1000	Imp (70) - 70100	D111 COMM1(70)-	
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	1.11	0.47	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	650.00	25.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.333	0.73	3.417	12.43	6.500	5.12	9.58	0.73
0.417	0.73	3.500	12.43	6.583	5.12	9.67	0.73
0.500	0.73	3.583	12.43	6.667	5.12	9.75	0.73
0.583	0.73	3.667	12.43	6.750	5.12	9.83	0.73
0.667	0.73	3.750	12.43	6.833	5.12	9.92	0.73
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73

1.000 0.73 4.083 12.43 7.167 5.12 1 1.083 0.73 4.167 12.43 7.167 5.12 1 1.167 0.73 4.250 12.43 7.333 2.92 1 1.150 0.73 4.250 12.43 7.333 2.92 1 1.250 0.73 4.4250 33.63 7.417 2.92 1 1.333 0.73 4.417 33.63 7.500 2.92 1 1.417 0.73 4.500 33.63 7.500 2.92 1 1.500 0.73 4.500 33.63 7.500 2.92 1 1.500 0.73 4.500 33.63 7.500 2.92 1 1.500 0.73 4.500 33.63 7.750 2.92 1 1.500 0.73 4.500 33.63 7.750 2.92 1 1.500 0.73 4.833 33.63 7.750 2.92 1 1.750 0.73 4.750 33.63 7.750 2.92 1 1.917 0.73 5.000 33.63 8.000 2.92 1 1.917 0.73 5.000 33.63 8.000 2.92 1 2.000 0.73 5.167 33.63 8.167 2.92 1 2.083 0.73 5.167 33.63 8.167 2.92 1 2.083 0.73 5.167 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.167 0.73 5.533 9.50 8.417 1.46 1 2.133 4.39 5.5417 9.50 8.500 1.46 1 2.133 4.39 5.563 9.50 8.667 1.46 1 2.500 4.39 5.583 9.50 8.675 1.46 1 2.500 4.39 5.750 9.50 8.833 1.46 1 2.500 4.39 5.750 9.50 8.8750 1.46 1 2.1750 4.39 5.750 9.50 8.8750 1.46 1 2.1750 4.39 5.600 9.50 8.833 1.46 1 2.1750 4.39 5.750 9.50 8.8750 1.46 1 2.1750 4.39 6.000 9.50 9.003 1.46 1 2.1750 4.39 6.000 9.50 9.003 1.46 1 2.500 4.39 6.000 9.50 9.003 1.46 1 2.1750 4.39 6.000 9.50 9.003 1.46 1 2.1750 4.39 6.000 9.50 9.500 1.46 1 2.1750 4.39 6.000 9.50 9.003 1.46 1 2.1750 4.39 6.000 9.50 9.003 1.46 1 2.1750 4.39 6.000 9.50 9.000 1.46 1 2.1750 4.39 6.000 9.50 9.000 1.46 1 2.1750 4.39 6.000 9.50 9.000 1.46 1 2.1750 4.39 6.000 9.50 9.000 1.46 1 2.1750 4.39 6.000 9.50 9.000 1.46 1						4 . 10			
0.917 0.73 4.000 12.43 7.083 5.12 1 1 1.000 0.73 4.000 12.43 7.167 5.12 1 1.003 0.73 4.003 12.43 7.250 5.12 1 1.003 0.73 4.167 12.43 7.250 5.12 1 1.167 0.73 4.250 12.43 7.333 2.92 1 1.250 0.73 4.250 12.43 7.333 2.92 1 1.333 0.73 4.417 33.63 7.500 2.92 1 1.417 0.73 4.500 33.63 7.417 2.92 1 1.500 0.73 4.503 33.63 7.657 2.92 1 1.500 0.73 4.503 33.63 7.657 2.92 1 1.503 0.73 4.676 33.63 7.750 2.92 1 1.503 0.73 4.676 33.63 7.750 2.92 1 1.667 0.73 4.750 33.63 7.750 2.92 1 1.667 0.73 4.750 33.63 7.750 2.92 1 1.833 0.73 4.917 33.63 8.000 2.92 1 1.917 0.73 5.000 33.63 8.000 2.92 1 1.917 0.73 5.000 33.63 8.000 2.92 1 2.000 0.73 5.083 33.63 8.167 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.250 0.73 5.500 9.50 8.583 1.46 1 2.333 4.39 5.417 9.50 8.583 1.46 1 2.500 4.39 5.583 9.50 8.667 1.46 1 2.500 4.39 5.583 9.50 8.667 1.46 1 2.500 4.39 5.833 9.50 8.675 1.46 1 2.500 4.39 5.833 9.50 8.8750 1.46 1 2.177 4.39 5.607 9.50 8.833 1.46 1 2.177 4.39 5.607 9.50 8.833 1.46 1 2.177 4.39 5.600 9.50 8.833 1.46 1 2.177 4.39 5.600 9.50 8.833 1.46 1 2.177 4.39 5.600 9.50 8.833 1.46 1 2.177 4.39 5.600 9.50 8.833 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4.39 6.000 9.50 9.000 1.46 1 2.177 4		0.022							0.70
1.000 0.73 4.083 12.43 7.167 5.12 1 1 1.083 0.73 4.167 12.43 7.167 5.12 1 1 1.167 0.73 4.250 12.43 7.333 2.92 1 1.157 0.73 4.250 12.43 7.333 2.92 1 1.250 0.73 4.433 33.63 7.4417 2.92 1 1.1417 0.73 4.450 33.63 7.580 2.92 1 1.417 0.73 4.500 33.63 7.580 2.92 1 1.500 0.73 4.500 33.63 7.580 2.92 1 1.500 0.73 4.500 33.63 7.750 2.92 1 1.500 0.73 4.500 33.63 7.750 2.92 1 1.533 0.73 4.467 33.63 7.750 2.92 1 1.833 0.73 4.467 33.63 7.750 2.92 1 1.833 0.73 4.917 33.63 8.000 2.92 1 1.917 0.73 5.000 33.63 8.000 2.92 1 1.917 0.73 5.000 33.63 8.000 2.92 1 2.000 0.73 5.167 33.63 8.167 2.92 1 2.083 0.73 5.167 33.63 8.167 2.92 1 2.083 0.73 5.167 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.333 1.46 1 2.150 0.73 5.250 33.63 8.333 1.46 1 2.150 0.73 5.500 5.90 8.500 1.46 1 2.147 4.39 5.500 9.50 8.583 1.46 1 2.500 4.39 5.583 9.50 8.667 1.46 1 2.500 4.39 5.750 9.50 8.8750 1.46 1 2.503 4.39 5.750 9.50 8.750 1.46 1 2.153 4.39 5.750 9.50 8.750 1.46 1 2.153 4.39 5.750 9.50 8.833 1.46 1 2.175 4.39 5.600 9.50 9.000 1.46 1 2.175 4.39 5.600 9.50 9.000 1.46 1 2.500 0.70									0.73
1.083 0.73 4.167 12.43 7.250 5.12 1 1 1.167 0.73 4.250 12.43 7.250 5.12 1 1.250 0.73 4.250 12.43 7.250 2.92 1 1.250 0.73 4.333 3.63 7.417 2.92 1 1.250 0.73 4.417 33.63 7.500 2.92 1 1.417 0.73 4.500 33.63 7.500 2.92 1 1.500 0.73 4.650 33.63 7.583 2.92 1 1.583 0.73 4.650 33.63 7.583 2.92 1 1.667 0.73 4.583 33.63 7.667 2.92 1 1.667 0.73 4.750 33.63 7.750 2.92 1 1.667 0.73 4.833 33.63 7.750 2.92 1 1.833 0.73 4.917 33.63 8.000 2.92 1 1.833 0.73 4.917 33.63 8.000 2.92 1 1.917 0.73 5.000 33.63 8.083 2.92 1 2.000 0.73 5.083 33.63 8.167 2.92 1 2.083 0.73 5.167 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.167 0.73 5.250 33.63 8.250 2.92 1 2.167 0.73 5.500 3.63 8.333 1.46 1 2.333 4.39 5.417 9.50 8.500 1.46 1 2.500 4.39 5.583 9.50 8.503 1.46 1 2.500 4.39 5.583 9.50 8.667 1.46 1 2.500 4.39 5.833 9.50 8.667 1.46 1 2.833 4.39 5.667 9.50 8.833 1.46 1 2.500 4.39 5.833 9.50 8.677 1.46 1 2.833 4.39 5.667 9.50 8.833 1.46 1 2.17 4.39 5.600 9.50 8.833 1.46 1 2.17 4.39 5.600 9.50 8.833 1.46 1 2.17 4.39 5.600 9.50 8.833 1.46 1 2.17 4.39 6.000 9.50 9.000 1.46 1 2.17 4.39 6.000 9.50 9.000 1.46 1 2.17 4.39 6.000 9.50 9.000 1.46 1 2.17 4.50 4.5									0.73
1.167									0.73
1.250									0.73
1.333									0.73
1.417									0.73
1.590									0.73
1.583									0.73
1.667									0.73
1.750									0.73
1.833									0.73
1.917 0.73 5.000 33.63 8.083 2.92 1									0.73
2.000									0.73
2.083 0.73 5.167 33.63 8.250 2.92 1 2.167 0.73 5.259 33.63 8.333 1.45 1 2.250 0.73 5.333 9.50 8.417 1.46 1 2.233 4.39 5.417 9.50 8.590 1.46 1 2.417 4.39 5.500 9.50 8.583 1.46 1 2.500 4.39 5.583 9.50 8.667 1.46 1 2.667 4.39 5.570 9.50 8.750 1.46 1 2.667 4.39 5.750 9.50 8.8750 1.46 1 2.667 4.39 5.750 9.50 8.833 1.46 1 2.233 4.39 5.670 9.50 8.833 1.46 1 2.231 4.39 6.000 9.50 9.80 1.46 1 2.917 4.39 6.000 9.50 9.80 1.46 1 3.000 4.39 6.833 9.50 9.167 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.39 6.000 9.50 9.50 9.250 1.46 1 3.000 4.30 6.000 9									0.73
2.167 0.73 5.250 33.63 8.333 1.46 1 1 2.250 0.73 5.333 9.50 8.417 1.46 1 2.333 4.39 5.417 9.50 8.500 1.46 1 2.417 4.39 5.500 9.50 8.583 1.46 1 2.500 4.39 5.533 9.50 8.667 1.46 1 2.500 4.39 5.533 9.50 8.667 1.46 1 2.567 4.39 5.567 9.50 8.750 1.46 1 2.567 4.39 5.533 9.50 8.917 1.46 1 2.750 4.39 5.833 9.50 8.917 1.46 1 2.833 4.39 5.750 9.50 8.833 1.46 1 2.917 4.39 6.000 9.50 9.000 1.46 1 2.917 4.39 6.000 9.50 9.000 1.46 1 3.000 4.39 6.003 9.50 9.167 1.46 1 3.003 4.39 6.167 9.50 9.250 1.46 1 3.003 4.39 6.167 9.50 9.250 1.46 1 4.67 4.									0.73
2.550 0.73 S.333 9.50 8.417 1.46 1 2.333 4.39 S.417 9.59 8.590 1.46 1 2.417 4.39 S.500 9.50 8.583 1.46 1 2.590 4.39 S.583 9.50 8.667 1.46 1 2.583 4.39 S.67 9.50 8.756 1.46 1 2.667 4.39 S.750 9.50 8.756 1.46 1 2.667 4.39 S.750 9.50 8.833 1.46 1 2.833 4.39 S.67 9.50 8.833 1.46 1 2.833 4.39 S.917 9.50 9.80 1.46 1 2.917 4.39 6.000 9.50 9.801 1.46 1 3.000 4.39 6.083 9.50 9.167 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 Max.Eff.Inten.(mm/hr) = 33.63 25.08 Storage Coeff. (min) = 10.00 25.00 Unit Hyd. Tpeak (min) = 10.00 25.00 Unit Hyd. Tpeak (min) = 10.00 25.00 Unit Hyd. Tpeak (min) = 10.00 0.55 00 TIME TO PEAK (frs) = 0.10 0.05 TIME TO PEAK (frs) = 5.25 5.33 5.2 RUNOFF VOLUME (mm) = 71.10 41.07 62.0									0.73
2.333 4.39 5.417 9.50 8.500 1.46 1 2.417 4.39 5.500 9.50 8.583 1.46 1 2.500 4.39 5.583 9.50 8.667 1.46 1 2.583 4.39 5.583 9.50 8.750 1.46 1 2.575 4.39 5.750 9.50 8.750 1.46 1 2.750 4.39 5.750 9.50 8.833 1.46 1 2.833 4.39 5.917 9.50 9.000 1.46 1 2.917 4.39 6.000 9.50 9.003 1.46 1 3.000 4.39 6.003 9.50 9.167 1.46 1 3.003 4.39 6.167 9.50 9.250 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 Max.Eff.Inten.(mm/hr)= 33.63 25.08 over (min) 10.00 25.00 Storage Coeff. (min)= 12.14 (ii) 21.48 (ii) Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. peak (min)= 10.00 0.55 PEAK FLOW (cms)= 0.10 0.05 4.17 PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.60									0.73
2.417 4.39 5.500 9.50 8.583 1.46 1 2.500 4.39 5.5667 9.50 8.750 1.46 1 2.583 4.39 5.667 9.50 8.750 1.46 1 2.567 4.39 5.750 9.50 8.833 1.46 1 2.750 4.39 5.833 9.50 8.833 1.46 1 2.833 4.39 5.917 9.50 9.000 1.46 1 2.917 4.39 6.000 9.50 9.000 1.46 1 3.000 4.39 6.083 9.50 9.167 1.46 1 3.000 4.39 6.083 9.50 9.167 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 Max.Eff.Inten.(mm/hr) =									0.73
2.500 4.39 5.583 9.50 8.667 1.46 1							1.46		0.73
2.583 4.39 5.667 9.50 8.750 1.46 1		2.417	4.39	5.500	9.50	8.583	1.46	11.67	0.73
2.667 4.39 5.750 9.50 8.833 1.46 1		2.500	4.39	5.583	9.50	8.667	1.46	11.75	0.73
2.750 4.39 5.833 9.56 8.917 1.46 1		2.583	4.39	5.667	9.50	8.750	1.46	11.83	0.73
2.833 4.39 5.917 9.58 9.000 1.46 1 2.917 4.39 6.000 9.59 9.083 1.46 1 3.000 4.39 6.083 9.50 9.167 1.46 1 3.003 4.39 6.167 9.50 9.250 1.46 1 Max.Eff.Inten.(mm/hr)= 33.63 25.08 cver (min) 10.00 25.00 Storage Coeff. (min)= 12.14 (ii) 21.40 (ii) Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. Tpeak (min)= 0.10 0.05 PEAK FLOW (cms)= 0.10 0.05 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0		2.667	4.39	5.750	9.50	8.833	1.46	11.92	0.73
2.917 4.39 6.000 9.50 9.083 1.46 1 3.000 4.39 6.083 9.50 9.167 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 Max.Eff.Inten.(mm/hr)		2.750	4.39	5.833	9.50	8.917	1.46	12.00	0.73
3.000 4.39 6.083 9.50 9.167 1.46 1 3.083 4.39 6.167 9.50 9.250 1.46 1 Max.Eff.Inten.(mm/hr)= 33.63 25.08 Storage Coeff. (min)= 10.00 25.00 Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. Tpeak (cms)= 0.10 0.05 PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0		2.833	4.39	5.917	9.50	9.000	1.46	12.08	0.73
Max.Eff.Inten.(mm/hr)		2.917	4.39	6.000	9.50	9.083	1.46	12.17	0.73
Max.Eff.Inten.(mm/hr)= 33.63 25.08 over (min) 10.00 25.00 Storage Coeff. (min)= 12.14 (i1) 21.40 (i1) Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. peak (cms)= 0.10 0.05 **TOTAL PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0		3.000	4.39	6.083	9.50	9.167	1.46	12.25	0.73
over (min) 10.00 25.00 Storage Coeff: (min)= 12.14 (ii) 21.40 (ii) Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. peak (cms)= 0.10 0.05 *TOTAL PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNDFF VOLUME (mm)= 71.10 41.07 62.0		3.083	4.39	6.167	9.50	9.250	1.46	İ	
Storage Coeff. (min)= 12.14 (ii) 21.40 (ii) Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. peak (cms)= 0.10 0.05 **TOTAL PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 6.20	Max.Ef	Eff.Inten.(m	m/hr)=	33.63		25.08			
Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. peak (cms)= 0.10 0.05 *TOTAL PEAK FLOM (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0		over	(min)	10.00		25.00			
Unit Hyd. Tpeak (min)= 10.00 25.00 Unit Hyd. peak (cms)= 0.10 0.05 *TOTAL PEAK FLOM (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0	Storag	age Coeff.	(min)=	12.14	(ii)	21.40 (ii)			
PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0				10.00		25.00			
PEAK FLOW (cms)= 0.10 0.03 0.12 TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0	Unit H	Hyd. peak	(cms)=	0.10		0.05			
TIME TO PEAK (hrs)= 5.25 5.33 5.2 RUNOFF VOLUME (mm)= 71.10 41.07 62.0									
RUNOFF VOLUME (mm)= 71.10 41.07 62.0								.129 (iii)	,
								5.25	
TOTAL RATNEAU (mm)= 73 10 73 10 73 1									
			(mm)=	73.10		73.10		3.10	
RUNOFF COEFFICIENT = 0.97 0.56 0.8	RUNOFF	FF COEFFICIE	NT =	0.97		0.56		0.85	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0525)| | IN= 2---> OUT= 1 | DT= 5.0 min OVERFLOW IS OFF

Max.Eff.Inten.(mm/hr)=

over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=

OUTFLOW STORAGE | OUTFLOW STORAGE

Page 45

LangstaffRd_EA_Proposed_HumberWatershed (m) = 650.00 25.00 = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYFTOGRAPH -VSFORMED HY RAIN | ' 4.85 | 6. 4.85 | 6. 4.85 | 6. 13.74 | 6 13.74 | 6 13.74 | 6 13.74 | 6 13.74 | 6 13.74 | 6 13.74 | 7 13.74 | 7 RAIN | TIME mm/hr | hrs 0.00 | 3.167 0.00 | 3.250 0.00 | 3.333 TIME hrs 0.083 TIME
hrs
6.250
6.333
6.417
6.500
6.583
6.676
6.750
6.833
6.917
7.000
7.083
7.167
7.250
7.333
7.417
7.550
7.583 RAIN | TIME mm/hr | hrs 10.50 | 9.33 RAIN mm/hr 0.81 hrs 9.33 9.42 0.167 5.66 0.81 0.250 9.50 0.81 0.81 0.81 0.81 0.81 0.81 9.50 9.58 9.67 9.75 9.83 9.92 10.00 0.333 3.417 5.66 5.66 5.66 5.66 5.66 5.66 5.66 0.81 0.333 0.417 0.500 0.583 0.667 0.750 3.583 3.667 3.750 3.833 0.833 0.81 0.81 3.917 10.08 0.81 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 13.74 | 13.74 | 13.74 | 13.74 | 13.74 | 37.17 | 37.17 | 0.917 10.17 0.81 0.81 0.81 0.81 0.81 0.81 0.81 5.66 5.66 3.23 3.23 3.23 3.23 1.000 10.25 0.81 1 083 1.167 1.250 1.333 10.33 10.42 10.50 10.58 0.81 0.81 0.81 0.81 1.417 10.67 0.81 1.500 0.81 0.81 37.17 7.667 3.23 10.75 0.81 7.750 7.833 7.917 8.000 8.083 8.167 8.250 1.583 4,667 37.17 10.83 0.81 0.81 0.81 0.81 0.81 37.17 37.17 37.17 37.17 37.17 3.23 3.23 3.23 3.23 3.23 1.667 1.750 4.750 10.92 0.81 4.833 4.917 5.000 5.083 1.833 1.917 2.000 0.81 3.23 11.25 2.083 0.81 5.167 37.17 | 8.250 37.17 | 8.333 10.50 | 8.417 10.50 | 8.583 10.50 | 8.583 10.50 | 8.667 10.50 | 8.750 10.50 | 8.917 10.50 | 9.083 10.50 | 9.083 10.50 | 9.167 10.50 | 9.250 37.17 3.23 11.33 0.81 2.167 0.81 5.250 1.62 11.42 0.81 2.250 0.81 5.333 1.62 11.50 0.81 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 5.333 5.417 5.500 5.583 5.667 5.750 5.833 1.62 1.62 1.62 1.62 1.62 2.333 11.58 0.81 11.92 2.667 0.81 2.750 1.62 12.00 0.81 2.833 5.917 1.62 12.08 0.81 2.917 4.85 6.000 1.62 12.17 0.81 4.85 6.083 1.62 12.25

10.00 25.00 11.67 (ii) 20.35 (ii)

25.00

0 05

10.00

0 10

Page 47

TOTALS

```
LangstaffRd_EA_Proposed_HumberWatershed
                                          (cms)
                                                          (ha.m.)
0.0000
                                                                                (cms)
0.0181
                                                                                                (ha.m.)
                                          0.0000
                                                                                                    0.0161
0.0204
                                          0.0081
                                                           0.0031
                                                                                0.0584
                                                   AREA
                                                                 QPEAK
                                                                                  TPEAK
                                                                                 (hrs)
5.25
5.42
                                                   (ha)
1.580
                                                                 (cms)
    INFLOW : ID= 2 ( 0110)
OUTFLOW: ID= 1 ( 0525)
                                                                 0.129
0.106
                                                                                                       `62.08
                                                  1.580
                                                                                                      62.03
                             PEAK FLOW REDUCTION [Qout/Qin](%)= 82.30
TIME SHIFT OF PEAK FLOW (min)= 10.00
MAXIMUM STORAGE USED (ha.m.)= 0.0283
READ STORM
                                     Filename: C:\Users\ray.zhao\AppD
                                        ata\Local\Temp\
efddf5d6-df0e-43ba-b139-2f589a28109d\5040be70
  Ptotal= 80.82 mm
                                     Comments: 50Y12
                                                                                            RAIN |
mm/hr |
5.66 | 1
5.66 | 1
                           TTMF
                                      RATN I
                                                    TTMF
                                                                  RATN
                                                                               TTME
                                                                                                                       PATN
                          hrs
0.25
0.50
                                      mm/hr
0.00
0.81
                                                               mm/hr
13.74
13.74
13.74
                                                                              hrs
6.75
7.00
7.25
                                                                                                      hrs
10.00
10.25
10.50
                                                    hrs
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
                                                                                                                     mm/hi
0.81
                                                                                                                      0.81
                           0.75
                                       0.81
                                                                                            5.66
                                                                                                                      0.81
                           1.00
                                       0.81
                                                                13.74
                                                                              7.50
                                                                                            3.23
                                                                                                      10.75
                                                                                                                      0.81
                                                                                                      10.75
11.00
11.25
11.50
11.75
12.00
12.25
                                       0.81
0.81
0.81
0.81
0.81
4.85
4.85
                                                               37.17
37.17
37.17
37.17
10.50
10.50
                                                                                           3.23
3.23
3.23
1.62
1.62
1.62
                           1.25
1.50
1.75
2.00
2.25
2.50
2.75
                                                                              7.75
8.00
8.25
8.50
8.75
9.00
9.25
9.50
9.75
                                                                                                                      0.81
                                                                                                                     0.81
0.81
0.81
0.81
0.81
                                                                                            1.62
                           3.00
                                       4.85
                                                    6.25
                                                               10.50
                                                                                            0.81
                           3.25
                                       4.85 İ
                                                                  5.66 İ
  CALIB |
STANDHYD ( 0105)|
                                    Area (ha)= 1.63
Total Imp(%)= 69.00 Dir. Conn.(%)= 69.00
ID= 1 DT= 5.0 min |
                                                IMPERVIOUS PERVIOUS (i)
                                   (ha)=
(mm)=
(%)=
                                                     1.12
2.00
1.00
                                                                      0.51
5.00
2.00
       Surface Area
       Dep. Storage
Average Slope
                                                                   Page 46
```

0.149 (iii) 5.25 69.59 80.82

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 86.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0520)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE | 'ha.m.) OUTFLOW STORAGE (ha.m.) 0.0000 0.0031 0.0074 (cms) 0.0000 (cms) 0.0181 (ha.m.) 0.0161 0.0081 0.0204 0 0123 0 0259

0.0584 0.0920 0.0000 0.0155 0 **** WARNING : STORAGE-DISCHARGE QPEAK (ha) (cms) (hrs) (mm) 69.59

(ha) (cms)
INFLOW: ID= 2 (0105) 1.630 0.149
OUTFLOW: ID= 1 (0520) 1.630 0.124 5.42 69.53

CAL TB Area (ha)= 2.08 Total Imp(%)= 82.00 Dir. Conn.(%)= 82.00 IMPERVIOUS PERVIOUS (i) Surface Area 1.71 0.37 Dep. Storage Average Slope Length Mannings n (mm) = (%) = (m) = 5.00 1.00 2.00 800.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYFTOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs

	Langs	taffRd F	A Prono	sed Humber	Watersh	ed	
0.083		3.167		6.250	10.50		0.81
0.167		3.250		6.333	5.66		0.81
0.250		3.333		6.417	5.66		0.81
0.333		3.417		6.500	5.66		0.81
0.417		3.500		6.583	5.66		0.81
0.500		3.583		6.667	5.66		0.81
0.583		3.667		6.750	5.66		0.81
0.667		3.750		6.833	5.66		0.81
0.750		3.833		6.917	5.66		0.81
0.833		3.917		7.000	5.66		0.81
0.917		4.000		7.083	5.66		0.81
1.000		4.083		7.167	5.66		0.81
1.083		4.167		7.250	5.66		0.81
1.167		4.250		7.333	3.23		0.81
1.250		4.333		7.417	3.23		0.81
1.333		4.417	37.17		3.23		0.81
1.417		4.500		7.583	3.23		0.81
1.500		4.583		7.667	3.23		0.81
1.583		4.667		7.750	3.23		0.81
1.667		4.750		7.833	3.23		0.81
1.750		4.833		7.917	3.23		0.81
1.833		4.917		8.000	3.23		0.81
1.917		5.000		8.083	3.23		0.81
2.000		5.083		8.167	3.23		0.81
2.083		5.167		8.250	3.23		0.81
2.167		5.250		8.333	1.62		0.81
2.250		5.333		8.417	1.62		0.81
2.333		5.417		8.500	1.62		0.81
2.417		5.500		8.583	1.62		0.81
2.500		5.583		8.667	1.62		0.81
2.583		5.667		8.750	1.62		0.81
2.667		5.750		8.833	1.62		0.81
2.750		5.833		8.917	1.62		0.81
2.833		5.917		9.000	1.62		0.81
2.917				9.083	1.62		0.81
3.000				9.167	1.62		0.81
3.083				9.250	1.62		0.01
5.005	4.05	0.107	10.50	1 3.230	1.02	'	
Max.Eff.Inten.(m	m/hr)-	37.17		27.36			
	(min)	15.00		20.00			
	(min)=	13.22	(11)	16.99 (ii	١		
Unit Hyd. Tpeak		15.00	(11)	20.00	,		
	(cms)=	0.08		0.06			
onize nyu. peak	(СШЗ)-	0.00		0.00	****	TALS*	
PEAK FLOW	(cms)=	0.17		0.02		.199 (iii)
	(hrs)=	5.25		5.33		5.25	.,
RUNOFF VOLUME	(mm)=	78.82		44.97		2.72	
TOTAL RAINFALL	(mm)=	80.82		80.82		2.72	
RUNOFF COEFFICIE		0.98		0.56		0.82 0.90	
COLITICIE		0.30		3.30	,		

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 83.0$ Ia = Dep. Storage (Above)

Page 49

	Langs	taffRd_E	A_Propos	sed_HumberW	latershed	
2.583	4.85	5.667	10.50	8.750	1.62 11	.83 0.81
2.667	7 4.85	5.750	10.50	8.833	1.62 11	.92 0.81
2.756	4.85	5.833	10.50	8.917	1.62 12	.00 0.81
2.833	4.85	5.917	10.50	9.000	1.62 12	.08 0.81
2.917	7 4.85	6.000	10.50	9.083	1.62 12	.17 0.81
3.000	4.85	6.083	10.50	9.167	1.62 12	.25 0.81
3.083	4.85	6.167	10.50	9.250	1.62	
Max.Eff.Inten.(r	nm/hr)=	37.17		27.36		
over	(min)	15.00		20.00		
Storage Coeff.	(min)=	13.22	(ii)	17.48 (ii)		
Unit Hyd. Tpeak	(min)=	15.00		20.00		
Unit Hyd. peak	(cms)=	0.08		0.06		
					*TOTALS	*
PEAK FLOW	(cms)=	0.18		0.03	0.212	(iii)
TIME TO PEAK	(hrs)=	5.25		5.33	5.25	
RUNOFF VOLUME	(mm)=	78.82		44.97	71.03	
TOTAL RAINFALL	(mm)=	80.82		80.82	80.82	
RUNOFF COEFFICIE	NT =	0.98		0.56	0.88	

INFLOW : ID= 2 (0405)

(iii) PEAK FLOW DOE	ES NOT INCL	UDE BASEFL	OW IF AN	Υ.	
ADD HYD (0405)					
1 + 2 = 3		QPEAK			
)
ID1= 1 (0125):					
+ ID2= 2 (0130):	: 2.08	0.199	5.25	72.72	
ID = 3 (0405):		0.411			=
NOTE: PEAK FLOWS [OO NOT INCL	UDE BASEFL	OWS IF A	NY.	
RESERVOIR(0505)	OVERFLOW	IS OFF			
IN= 2> OUT= 1 DT= 5.0 min	OUTEL OU	CTODACE	LOUT		CTORACE
DI= 5.0 min				FLOW	STORAGE
	(cms)	0.0000			
		0.0030			
		0.0120			
	0.0302				0.0000
	0.1102	0.0231	, 0.	0000	0.0000

(cms) 0.411 Page 51

QPEAK

AREA (ha) 4.350 TPEAK

(hrs) 5.25

R.V. (mm) 71.84

LangstaffRd_EA_Proposed_HumberWatershed
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COFFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0125)	Area	(ha)=	2.27				
ID= 1 DT= 5.0 min	Total	Imp(%)=	77.00	Dir.	Conn.(%)=	77.00	
		IMPERVIO	OUS	PERVIOL	IS (i)		
Surface Area	(ha)=	1.75	5	0.52			
Dep. Storage	(mm)=	2.00)	5.00)		
Average Slope	(%)=	1.00)	2.00)		
Length	(m)=	800.00)	20.00)		
Mannings n	` ′=	0.013	3	0.250)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81
0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81
0.250	0.00	3.333	13.74	6.417	5.66	9.50	0.81
0.333	0.81	3.417	13.74	6.500	5.66	9.58	0.81
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81
0.500	0.81	3.583	13.74	6.667	5.66	9.75	0.81
0.583	0.81	3.667	13.74	6.750	5.66	9.83	0.81
0.667	0.81	3.750	13.74	6.833	5.66	9.92	0.81
0.750	0.81	3.833	13.74	6.917	5.66	10.00	0.81
0.833	0.81	3.917	13.74	7.000	5.66	10.08	0.81
0.917	0.81	4.000	13.74	7.083	5.66	10.17	0.81
1.000	0.81	4.083	13.74	7.167	5.66	10.25	0.81
1.083	0.81	4.167	13.74	7.250	5.66	10.33	0.81
1.167	0.81	4.250	13.74	7.333	3.23	10.42	0.81
1.250	0.81	4.333	37.17	7.417	3.23	10.50	0.81
1.333	0.81	4.417	37.17	7.500	3.23	10.58	0.81
1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81
1.500	0.81	4.583	37.17	7.667	3.23	10.75	0.81
1.583	0.81	4.667	37.17	7.750	3.23	10.83	0.81
1.667	0.81	4.750	37.17	7.833	3.23	10.92	0.81
1.750	0.81	4.833	37.17	7.917	3.23	11.00	0.81
1.833	0.81	4.917	37.17	8.000	3.23	11.08	0.81
1.917	0.81	5.000	37.17	8.083	3.23	11.17	0.81
2.000	0.81	5.083	37.17	8.167	3.23	11.25	0.81
2.083	0.81	5.167	37.17	8.250	3.23	11.33	0.81
2.167	0.81	5.250	37.17	8.333	1.62	11.42	0.81
2.250	0.81	5.333	10.50	8.417	1.62	11.50	0.81
2.333	4.85	5.417	10.50	8.500	1.62	11.58	0.81
2.417	4.85	5.500	10.50	8.583	1.62	11.67	0.81
2.500	4.85	5.583	10.50	8.667	1.62	11.75	0.81

Page 50

```
 \begin{array}{c} LangstaffRd\_EA\_Proposed\_HumberWatershed \\ \text{OUTFLOW: ID= 1 ( 0505) } 4.350 & 0.306 & 5.50 & 71.83 \end{array}
```

PEAK FLOW REDUCTION [Qout/Qin](%)= 74.38 TIME SHIFT OF PEAK FLOW (min)= 15.00 MAXIMUM STORAGE USED (ha.m.)= 0.0689

CALIB	Area Total	(ha)= 1.24 Imp(%)= 73.00		73.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.91	0.33	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n	=	0.013	0.250	

•	KAINFAL	L WAS I	KANSFURM	.0 10 .	J. O PILIN.	TIPL STE	.г.	
					HYETOGR			
	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
	0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81
	0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81
	0.250	0.00				5.66		0.81
	0.333	0.81		13.74		5.66		0.81
	0.417		3.500	13.74		5.66		0.81
	0.500	0.81	3.583	13.74		5.66		0.81
	0.583	0.81	3.667	13.74	6.750	5.66	9.83	0.81
	0.667	0.81	3.750	13.74	6.833	5.66	9.92	0.81
	0.750	0.81	3.833	13.74		5.66	10.00	0.81
	0.833	0.81	3.917	13.74	7.000	5.66		0.81
	0.917	0.81	4.000	13.74	7.083	5.66	10.17	0.81
	1.000	0.81	4.083	13.74	7.167	5.66	10.25	0.81
	1.083	0.81		13.74	7.250	5.66		0.81
	1.167	0.81		13.74		3.23		0.81
	1.250	0.81		37.17		3.23		0.81
	1.333	0.81	4.417	37.17	7.500	3.23		0.81
	1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81
	1.500	0.81	4.583	37.17	7.667	3.23	10.75	0.81
	1.583	0.81	4.667	37.17	7.750	3.23	10.83	0.81
	1.667	0.81	4.750	37.17	7.833	3.23		0.81
	1.750	0.81	4.833	37.17	7.917	3.23	11.00	0.81
	1.833	0.81	4.917	37.17	8.000	3.23	11.08	0.81
	1.917	0.81	5.000	37.17	8.083	3.23	11.17	0.81
	2.000	0.81	5.083	37.17	8.167	3.23	11.25	0.81
	2.083	0.81	5.167	37.17	8.250	3.23		0.81
	2.167	0.81	5.250	37.17	8.333	1.62		0.81
	2.250	0.81	5.333	10.50	8.417	1.62	11.50	0.81
	2.333	4.85	5.417	10.50	8.500	1.62	11.58	0.81

Page 52

	Lange	+affDd E	A Dnono	sed Humberw	latonch	od	
2.41							0.81
2.50		5.583		8.667	1.62		0.81
	3 4.85			8.750		11.73	0.81
	7 4.85			8.833			0.81
				8.917		12.00	0.81
	3 4.85			9.000		12.00	0.81
	7 4.85			9.083		12.17	0.81
	0 4.85			9.167		12.25	0.81
3.08	3 4.85	6.167	10.50	9.250	1.62		
M FCC T-+ /-	(1)	27.47		27.26			
Max.Eff.Inten.(37.17		27.36			
	(min)	10.00		15.00			
Storage Coeff.		9.67		13.88 (ii)			
Unit Hyd. Tpeak		10.00		15.00			
Unit Hyd. peak	(cms)=	0.11		0.08			
						TALS*	
PEAK FLOW	(cms)=	0.09		0.02		.116 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.25		5.25	
RUNOFF VOLUME	(mm)=	78.82		44.97	69	9.67	
TOTAL RAINFALL	(mm)=	80.82		80.82	86	3.82	
RUNOFF COEFFICI	ENT =	0.98		0.56	(9.86	
(i) CN PROCED	URE SELECT	ED FOR PE	RVIOUS	LOSSES:			
CN* =	83.0 Ia	= Dep. S	torage	(Above)			
(ii) TIME STEP	(DT) SHOU	LD BE SMA	LLER OR	ÈOUAL			
THAN THE	STORÁGE CO	EFFICIENT		-			
(iii) PEAK FLOW	DOES NOT	INCLUDE B	ASEFLOW	IF ANY.			
, ,							

CALIB STANDHYD (0115) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.00 63.00	Dir. Conn.(%)=	63.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)=	IMPERVIOU 0.63 2.00 1.00 475.00 0.013	JS	PERVIOUS (i) 0.37 5.00 2.00 17.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				D HYETOGR			
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81
0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81
0.250	0.00	3.333	13.74	6.417	5.66	9.50	0.81
0.333	0.81	3.417	13.74	6.500	5.66	9.58	0.81
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81

Page 53

${\tt LangstaffRd_EA_Proposed_HumberWatershed}$

ADD HYD (0410) 1 + 2 = 3 ID1= 1 (01: + ID2= 2 (01:	AREA (ha) 15): 1.00 20): 1.24	QPEAK (cms) 0.089 0.116	(hrs) 5.25 5.25	(mm) 66.29 69.67	
	10): 2.24				
NOTE: PEAK FLO	WS DO NOT INCL	UDE BASEFL	OWS IF AM	IY.	
RESERVOIR(0510) IN= 2> OUT= 1					
DT= 5.0 min	(cms)		(cn	ıs) ((ha.m.)
	0.0457	0.0099 0.0204	0.6	876	0.0666
INFLOW : ID= 2 (OUTFLOW: ID= 1 ((h 0410) 2.	EA QPE a) (cm 240 0 240 0	s) (h	nrs) 5.25	(mm) 68.16
T.	EAK FLOW R IME SHIFT OF P AXIMUM STORAG	EAK FLOW	(n	nin)= 25.	.00
ADD HYD (0420) 1 + 2 = 3	ADEA	QPEAK	TDEAU	P V	
1 + 2 - 3	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (05 + ID2= 2 (05					
=========					

Page 55

0.47 5.00 2.00

Area (ha)= 1.58 Total Imp(%)= 70.00 Dir. Conn.(%)= 70.00

IMPERVIOUS PERVIOUS (i)

1.11 2.00 1.00

Surface Area Dep. Storage Average Slope

(ha)= (mm)= (%)=

0.667 6 0.750 0 0.833 6 0.917 6 1.080 1 1.080 1 1.250 6 1.333 1 1.417 6 1.500 1 1.583 6 1.583 6 1.583 6 1.583 6 2.667 6 2.250 6 2.333 4 2.417 4 2.590 4 2.583 6 2.250 4 2.583 4 2.591 4	.81 3.667 3.667 3.667 3.667 3.683 3.750 3.683	13.74 13.74 13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.566 7.759 7.833 7.667 7.759 8.000 8.003 8.167 8.250 8.250 8.250 8.250 8.503	5.66 5.66 5.66 5.66 5.66 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3	9,92 10.00 10.08 10.17 10.25 10.33 10.42 10.58 10.67 10.58 10.67 10.75 10.83 10.92 11.08 11.10 11.08 11.13 11.25 11.33 11.42 11.58 11.58 11.58	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
0.750 0.00 0.833 0.917 1.000 0	.81 3.833 .833 .81 3.817 .81 4.000 .81 4.050 .81 4.150 .	13.74 13.74 13.74 13.74 13.74 13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50	6.917 7.003 7.083 7.167 7.259 7.333 7.417 7.560 7.583 7.667 7.750 7.883 7.917 8.000 8.083 8.167 8.233 8.417 8.583 8.583	5.66 5.66 5.66 5.66 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3	10.00 10.08 10.08 10.17 10.25 10.33 10.50 10.58 10.68 10.67 10.75 10.83 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.50 11.58	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.833 0 0.917 6 1.080 1 1.083 6 1.105 6 1.250 6 1.333 1 1.417 6 1.590 6 1.583 6 1.583 6 1.667 6 1.750 6 2.083 2 2.167 6 2.250 6 2.333 4 2.417 4 2.583 4 2.583 4 2.583 4 2.583 4 2.583 4 2.583 4 2.583 4 3.667 6 3.750 4 3.083 6 3.083 6 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min/hr)	.81 3.917 .81 4.483 .81 4.483 .81 4.457 .81 4.457 .81 4.459 .81 4.590 .81 4.590 .81 4.593 .81 4.667 .81 4.667 .81 4.667 .81 5.090 .81 5.090 .81 5.090 .81 5.090 .81 5.593 .85 5.5167 .85 5.556 .85 5.567 .85 5.576 .85 5.576	13.74 13.74 13.74 13.74 13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50	7.000 7.083 7.167 7.250 7.333 7.417 7.560 7.583 7.667 7.753 7.917 8.003 8.167 8.250 8.333 8.417 8.583 8.497 8.583	5.66 5.66 5.66 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3	10.08 10.17 10.25 10.33 10.42 10.58 10.58 10.67 10.75 10.83 10.92 11.08 11.08 11.17 11.25 11.33 11.42 11.58 11.58	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.917 6 1.000 6 1.083 6 1.087 6 1.250 6 1.333 6 1.417 6 1.500 6 1.833 6 1.667 6 1.750 6 1.833 6 2.417 4 2.500 6 2.250 6 2.333 6 2.417 4 2.583 4 2.417 4 2.590 6 2.583 4 2.417 4 2.590 6 3.383 6 3.917 4 3.000 4 3.883 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 3.083 6 6.000	.81 4.000 .81 4.000 .81 4.000 .81 4.167 .81 4.250 .81 4.167 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 4.50 .81 5.000 .81 5.000 .81 5.000 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .81 5.50 .85 5.50 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85 5.50 .85	13.74 13.74 13.74 13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.083 7.167 7.259 7.333 7.417 7.500 7.583 7.667 7.760 7.850 7.818 8.083 8.167 8.253 8.167 8.258 8.333 8.410 8.583 8.583 8.583	5.66 5.66 5.66 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3	10.17 10.25 10.33 10.42 10.50 10.50 10.67 10.75 10.83 10.92 11.08 11.125 11.33 11.59 11.59 11.59 11.58 11.58 11.58 11.67 11.75	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1.000 6 1.083 6 1.167 6 1.250 6 1.333 6 1.417 6 1.500 6 1.583 6 1.667 6 1.750 6 1.833 6 1.917 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.500 6 2.583 4 2.417 4 3.000 6 3.083 6 3.061 6 3.083 6 3.061 6 3.061 6 3.061 6 3.062 6 3.063	.81 4.083 .81 4.163 .81 4.250 .81 4.250 .81 4.333 .81 4.417 .81 4.583 .81 4.667 .81 4.667 .81 4.675 .81 4.750 .81 5.083 .81 5.083 .81 5.165 .81 5.583 .85 5.583 .85 5.583 .85 5.586 .85 5.586 .85 5.586 .85 5.586 .85 5.586 .85 5.583	13.74 13.74 13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.167 7.259 7.333 7.417 7.593 7.583 7.667 7.759 7.833 7.917 8.000 8.083 8.167 8.259 8.333 8.4167 8.583 8.583 8.583	5.66 5.66 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3	10.25 10.33 10.42 10.50 10.58 10.67 10.75 10.83 10.92 11.08 11.17 11.25 11.35 11.35 11.56 11.57 11.58	0. 0. 0. 0. 0. 0. 0. 0. 0.
1.083 6 1.167 6 1.250 6 1.333 6 1.417 6 1.583 1.667 6 1.750 6 1.833 6 1.667 6 1.750 6 1.833 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.500 2 2.583 4 2.417 4 2.500 6 2.583 4 2.417 4 2.580 6 2.583 4 3.417 4 3.000 4 3.383 6 4.417 4 5.500 6 6.333 6 6.437 6 6.438 6	.81 4.167 .81 4.258 .81 4.333 .81 4.417 .81 4.580 .81 4.580 .81 4.580 .81 4.667 .81 4.750 .81 4.750 .81 4.917 .81 5.083 .81 5.167 .81 5.333 .81 5.167 .81 5.333 .85 5.550 .85 5.583 .85 5.580 .85 5.583	13.74 13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.259 7.337 7.447 7.500 7.583 7.667 7.750 7.837 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.560 8.583 8.667 8.750	5.66 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3	10.33 10.42 10.58 10.67 10.58 10.67 10.75 10.83 10.92 11.00 11.25 11.35 11.25 11.35 11.58 11.58 11.58 11.75	0. 0. 0. 0. 0. 0. 0. 0.
1.167 6 1.250 6 1.333 6 1.417 6 1.500 1 1.583 6 1.667 1 1.750 6 1.833 6 1.917 2 2.000 6 2.083 6 2.167 6 2.250 2 2.333 4 2.417 4 2.500 4 2.583 4 2.417 4 2.500 4 3.003 3 4 3.017 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min/hr)	.81 4.250 .81 4.333 .81 4.437 .81 4.583 .81 4.583 .81 4.583 .81 4.667 .81 4.750 .81 4.833 .81 4.917 .81 5.083 .81 5.083 .81 5.167 .81 5.333 .83 5.567 .85 5.583 .85 5.583	13.74 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.333 7.417 7.500 7.583 7.667 7.758 7.833 7.917 8.003 8.083 8.167 8.250 8.333 8.417 8.500 8.563 8.667 8.750	3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23	10.42 10.50 10.58 10.67 10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.50 11.50 11.58 11.75	0. 0. 0. 0. 0. 0. 0.
1.250 6 1.333 6 1.417 6 1.500 6 1.583 1.667 6 1.750 1.833 6 1.667 6 2.260 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.500 4 2.583 4 2.417 4 2.500 4 3.083 6 3.083 6 3.083 6 3.083 6 6.084 6 6.084 6 6.084 6 6.085 6 6.	.81 4.333 .81 4.417 .81 4.500 .81 4.508 .81 4.667 .81 4.667 .81 4.667 .81 5.000 .81 5.000 .81 5.000 .81 5.250 .81 5.250 .81 5.503 .85 5.547 .85 5.583 .85 5.583 .85 5.583	37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.417 7.500 7.583 7.667 7.750 8.083 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23	10.50 10.58 10.67 10.75 10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.50 11.50 11.75	0. 0. 0. 0. 0. 0. 0.
1.333 6 1.417 6 1.500 6 1.583 6 1.667 1 1.750 6 1.750 6 1.833 6 1.917 6 2.000 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.583 4 2.583 4 2.583 4 2.583 4 2.583 4 3.080 4 3.080 4 3.080 4 3.080 4 3.083 6 Max.Eff.Inten.(mm/hr) over (min)	.81 4.417 .81 4.583 .81 4.658 .81 4.658 .81 4.750 .81 4.833 .81 4.917 .81 5.083 .81 5.083 .81 5.167 .81 5.250 .81 5.333 .85 5.567 .85 5.583 .85 5.583 .85 5.583	37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23	10.58 10.67 10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.58 11.67	0. 0. 0. 0. 0. 0.
1.417 6 1.590 6 1.583 6 1.667 6 1.750 6 1.833 6 1.917 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 2 4.17 4 2.590 4 2.583 4 2.1917 4 3.000 4 3.083 6 4 3.000 4 3.083 6 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min/hr)	.81 4.500 .81 4.583 .81 4.667 .81 4.750 .81 4.833 .81 5.000 .81 5.000 .81 5.083 .81 5.167 .81 5.250 .81 5.333 .85 5.417 .85 5.503 .85 5.583 .85 5.583 .85 5.583	37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23	10.67 10.75 10.83 10.92 11.00 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0. 0. 0.
1.500 6 1.583 1.667 6 1.750 6 1.833 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.583 4 2.583 4 2.583 4 2.583 4 3.080 4 3.080 4 3.080 4 3.080 4 3.083 6 Max.Eff.Inten.(mm/hr) over (min)	.81 4.583 .81 4.667 .81 4.750 .81 4.833 .81 4.917 .81 5.083 .81 5.060 .81 5.250 .81 5.250 .81 5.550 .85 5.560 .85 5.583 .85 5.667 .85 5.583 .85 5.835 .85 5.835	37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50	7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 3.23 3.23 3.23 1.62 1.62 1.62	10.75 10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0. 0. 0.
1.583 6 1.667 6 1.750 6 1.833 6 1.917 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.583 4 2.583 4 2.583 4 2.583 4 3.917 4 3.000 4 3.083 6 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min/hr)	.81 4.667 .81 4.750 .81 4.833 .81 4.917 .81 5.000 .81 5.083 .81 5.167 .81 5.500 .81 5.533 .85 5.5417 .85 5.560 .85 5.583 .85 5.583 .85 5.583	37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 3.23 3.23 1.62 1.62 1.62	10.83 10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0. 0. 0.
1.667 6 1.750 1 1.833 6 1.917 6 2.080 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.580 4 2.583 4 2.417 4 2.590 6 2.583 4 2.917 4 3.000 4 3.000 4 3.000 4 3.083 6 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 4.750 .81 4.833 .81 4.837 .81 5.000 .81 5.083 .81 5.167 .81 5.333 .85 5.457 .85 5.500 .85 5.583 .85 5.667 .88 5.750 .85 5.835	37.17 37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 3.23 1.62 1.62 1.62 1.62	10.92 11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0. 0.
1.750 6 1.833 6 1.917 2.000 6 2.083 2.167 6 2.250 2.333 4 2.417 4 2.590 4 2.583 4 2.417 4 2.590 4 2.583 4 2.917 4 3.000 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min/hr)	.81 4.833 .81 4.917 .81 5.000 .81 5.083 .81 5.167 .81 5.250 .81 5.333 .85 5.417 .85 5.583 .85 5.567 .85 5.583 .85 5.667 .85 5.583	37.17 37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 1.62 1.62 1.62 1.62	11.00 11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0. 0.
1.833 6 1.917 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.590 4 2.583 4 2.750 4 2.583 4 2.917 4 3.000 4 3.083 6 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 4.917 .81 5.000 .81 5.083 .81 5.167 .81 5.250 .81 5.333 .85 5.417 .85 5.500 .85 5.583 .85 5.667 .85 5.750 .85 5.750	37.17 37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 3.23 1.62 1.62 1.62 1.62	11.08 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0.
1.917 6 2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.500 4 2.583 4 2.750 4 2.750 4 2.750 4 3.000 3 3.000 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 5.000 .81 5.083 .81 5.167 .81 5.250 .81 5.333 .85 5.417 .85 5.500 .85 5.583 .85 5.667 .85 5.750 .85 5.833	37.17 37.17 37.17 37.17 10.50 10.50 10.50 10.50	8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 3.23 1.62 1.62 1.62 1.62	11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0.
2.000 6 2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.500 2 2.583 4 2.667 4 2.750 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 5.083 .81 5.167 .81 5.250 .81 5.333 .85 5.417 .85 5.590 .85 5.583 .85 5.667 .85 5.750 .85 5.750	37.17 37.17 37.17 10.50 10.50 10.50 10.50	8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 3.23 1.62 1.62 1.62 1.62 1.62	11.25 11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0. 0.
2.083 6 2.167 6 2.250 6 2.333 4 2.417 4 2.500 4 2.583 4 2.667 4 2.750 4 2.750 4 3.083 4 4 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 5.167 .81 5.250 .81 5.333 .85 5.417 .85 5.500 .85 5.583 .85 5.750 .85 5.750 .85 5.750	37.17 37.17 10.50 10.50 10.50 10.50	8.250 8.333 8.417 8.500 8.583 8.667 8.750	3.23 1.62 1.62 1.62 1.62 1.62	11.33 11.42 11.50 11.58 11.67 11.75	0. 0. 0.
2.167 6 2.250 6 2.333 4 2.417 4 2.580 4 2.583 4 2.587 6 2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 5.250 .81 5.333 .85 5.417 .85 5.500 .85 5.583 .85 5.667 .85 5.750 .85 5.833	37.17 10.50 10.50 10.50 10.50 10.50	8.333 8.417 8.500 8.583 8.667 8.750	1.62 1.62 1.62 1.62 1.62	11.42 11.50 11.58 11.67 11.75	0. 0. 0.
2.250 6 2.333 4 2.417 4 2.500 4 2.583 4 2.667 4 2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.81 5.333 .85 5.417 .85 5.500 .85 5.583 .85 5.667 .85 5.750 .85 5.833	10.50 10.50 10.50 10.50 10.50	8.417 8.500 8.583 8.667 8.750	1.62 1.62 1.62 1.62	11.50 11.58 11.67 11.75	0. 0. 0.
2.333 4 2.417 4 2.590 4 2.583 4 2.750 4 2.750 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 5.417 .85 5.500 .85 5.583 .85 5.667 .85 5.750 .85 5.833	10.50 10.50 10.50 10.50	8.500 8.583 8.667 8.750	1.62 1.62 1.62	11.58 11.67 11.75	0. 0.
2.417 4 2.500 4 2.583 4 2.667 4 2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 5.500 .85 5.583 .85 5.667 .85 5.750 .85 5.833	10.50 10.50 10.50	8.583 8.667 8.750	1.62 1.62	11.67 11.75	0.
2.500 4 2.583 4 2.667 4 2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 5.583 .85 5.667 .85 5.750 .85 5.833	10.50 10.50	8.667 8.750	1.62	11.75	
2.583 4 2.667 4 2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 5.667 .85 5.750 .85 5.833	10.50	8.750			0.
2.667 4 2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) Storage Coeff. (min)	.85 5.750 .85 5.833			1 (2		
2.750 4 2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) Storage Coeff. (min)	.85 5.833	10.50		1.02	11.83	0.
2.833 4 2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)			8.833	1.62	11.92	0.
2.917 4 3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)		10.50	8.917	1.62	12.00	0.
3.000 4 3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 5.917	10.50	9.000	1.62	12.08	0.
3.083 4 Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 6.000		9.083	1.62	12.17	0.
Max.Eff.Inten.(mm/hr) over (min) Storage Coeff. (min)	.85 6.083	10.50	9.167	1.62	12.25	0.
over (min) Storage Coeff. (min)	.85 6.167	10.50	9.250	1.62	İ	
Storage Coeff. (min)	= 37.17		27.36			
	10.00)	20.00			
Unit Hvd Tneak (min)		(ii)	16.76 (ii	.)		
			20.00			
Unit Hyd. peak (cms)	= 0.11		0.06			
DEAK 51.011 ()	0.05		0.00		TALS*	
PEAK FLOW (cms)			0.02		.089 (iii	L)
TIME TO PEAK (hrs)			5.33		5.25	
RUNOFF VOLUME (mm)			44.97		6.29	
TOTAL RAINFALL (mm)			80.82		0.82	
RUNOFF COEFFICIENT	= 0.98		0.56	(0.82	

CN* = 83.0 I a = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 54

 $LangstaffRd_EA_Proposed_HumberWatershed \\ Length & (m) = & 650.00 & 25.00 \\ Mannings n & = & 0.013 & 0.250 \\ \\ \end{cases}$

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.85	6.250	10.50	9.33	0.81
0.167	0.00	3.250	4.85	6.333	5.66	9.42	0.81
0.250	0.00	3.333	13.74	6.417	5.66	9.50	0.81
0.333	0.81	3.417	13.74	6.500	5.66	9.58	0.81
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81
0.500	0.81	3.583	13.74		5.66		0.81
0.583	0.81	3.667		6.750	5.66		0.81
0.667		3.750	13.74		5.66		0.81
0.750	0.81	3.833	13.74		5.66		0.81
0.833	0.81	3.917	13.74		5.66		0.81
0.917		4.000	13.74	7.083	5.66		0.81
1.000		4.083	13.74	7.167	5.66		0.81
1.083	0.81	4.167	13.74	7.250	5.66		0.81
1.167		4.250	13.74	7.333	3.23		0.81
1.250		4.333	37.17	7.417	3.23		0.81
1.333		4.417	37.17	7.500	3.23		0.81
1.417		4.500	37.17	7.583	3.23		0.81
1.500		4.583	37.17	7.667	3.23		0.81
1.583		4.667	37.17	7.750	3.23		0.81
1.667		4.750	37.17	7.833	3.23		0.81
1.750	0.81	4.833	37.17	7.917	3.23		0.81
1.833		4.917	37.17	8.000	3.23		0.81
1.917	0.81	5.000	37.17	8.083	3.23		0.81
2.000	0.81	5.083	37.17	8.167	3.23		0.81
2.083	0.81	5.167	37.17	8.250	3.23		0.81
2.167	0.81	5.250	37.17	8.333	1.62		0.81
2.250	0.81	5.333	10.50	8.417	1.62		0.81
2.333	4.85	5.417	10.50		1.62		0.81
2.417	4.85	5.500	10.50	8.583	1.62		0.81
2.500	4.85	5.583	10.50	8.667	1.62		0.81
2.583	4.85	5.667	10.50	8.750	1.62		0.81
2.667	4.85	5.750	10.50		1.62	11.92	0.81
2.750	4.85	5.833	10.50	8.917	1.62		0.81
2.833	4.85	5.917	10.50	9.000	1.62		0.81
2.917	4.85	6.000	10.50	9.083	1.62		0.81
3.000	4.85	6.083	10.50		1.62		0.81
3.083	4.85	0.16/	10.50	9.250	1.62		

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 37.17 28.73 10.00 25.00 11.67 (ii) 20.44 (ii) 10.00 25.00 0.10 0.05

Page 56

TOTALS

	Lang	staffRd_EA_Pr	roposed_HumberN	Natershed
PEAK FLOW	(cms)=	0.11	0.03	0.144 (iii)
TIME TO PEAK	(hrs)=	5.25	5.33	5.25
RUNOFF VOLUME	(mm)=	78.82	47.65	69.46
TOTAL RAINFALL	(mm)=	80.82	80.82	80.82
RUNOFF COEFFICI	ENT =	0.98	0.59	0.86

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 85.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE S (iii) PEAK FLOW				F ANY.			
RESERVOIR(0525) IN= 2> OUT= 1	OVERFL	.OW IS O	FF				
DT= 5.0 min	OUTELO	NJ CT	DRACE I	OUTFLOW	сто	DACE	
51- 5.0 111	OUTFLO (cms) 0.000	/m /h:	o m)	(cms) 0.0181	(ha	m)	
	9 999	na a	9999	0 0181	(9 9161	
	0.008	81 0	.0031	0.0584	è	0.0204	
		3 0		0.0920			
			.0118				
		AREA	QPEAK	TPEAK		R.V.	
			(cms)				
INFLOW : ID= 2 (
OUTFLOW: ID= 1 (0525)	1.580	0.120	5.4	2	69.40	
TI	EAK FLOW EME SHIFT O EXIMUM STO	OF PEAK I	FLOW JSED	(min)= (ha.m.)=	0.03)	

** SIMULATION:Run 12	*	*					
READ STORM	Filenan	ata\I	sers\ray.z Local\Temp f5d6-df0e-	^	25500)=281004\	.07221
Ptotal= 88.54 mm	Comment			430a-0139	-21365	7428109U\(09Cd/23
TIME	RAIN	TIME	RAIN '	TIME	RAIN	TIME	RAIN
hrs	RAIN mm/hr	hrs	mm/hr '	hrs	mm/hr	hrs	mm/hr
0.25	0.00	3.50	15.05	6.75	6.20	10.00	0.89
0.56	0.89	3.75	15.05	7.00	6.20	10.25	0.89
0.75	0.89 0.89 0.89	4.00	15.05	7.25	6.20	10.50	0.89
1.00	0.89	4.25	15.05	7.50	3.54	10.75	0.89
1.25	0.89	4.50	40.71	7.75	3.54	11.00	0.89

Page 57

	Langs	taffRd E	A Propos	sed HumberW	atersh	ed	
2.256	0.89	5.333	11.51	8.417	1.77	11.50	0.89
2.333	5.31	5.417	11.51	8.500	1.77	11.58	0.89
2.417	5.31	5.500	11.51	8.583	1.77	11.67	0.89
2.500	5.31	5.583	11.51	8.667	1.77	11.75	0.89
2.583	5.31	5.667	11.51	8.750	1.77	11.83	0.89
2.667	5.31	5.750	11.51	8.833	1.77	11.92	0.89
2.756	5.31	5.833	11.51	8.917	1.77	12.00	0.89
2.833	5.31	5.917	11.51	9.000	1.77	12.08	0.89
2.917	5.31	6.000	11.51	9.083	1.77	12.17	0.89
3.006	5.31	6.083	11.51	9.167	1.77	12.25	0.89
3.083	5.31	6.167	11.51	9.250	1.77		
Max.Eff.Inten.(m		40.71		33.12			
	(min)	10.00		20.00			
Storage Coeff.	(min)=			19.53 (ii)			
Unit Hyd. Tpeak		10.00		20.00			
Unit Hyd. peak	(cms)=	0.10		0.06			
					T01	ΓALS	
PEAK FLOW	(cms)=	0.13		0.04	0.	.166 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33		5.25	
RUNOFF VOLUME	(mm)=	86.54		55.88	77	7.03	
TOTAL RAINFALL	(mm)=	88.54		88.54	88	3.54	
RUNOFF COEFFICIE	NT =	0.98		0.63	6	9.87	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

DECERMAND (DESCRIPTION)	OVEREL OU				
RESERVOIR(0520) IN= 2> OUT= 1	OVERFLOW	12 011			
DT= 5.0 min	OUTFLOW	STORAGE	I OUTFLO	N STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0.018	0.0161	
	0.0081	0.0031	0.058	0.0204	
	0.0123	0.0074	0.092	0.0259	
	0.0155	0 0110	1 0 000		
		0.0110	0.000	0.0000	
**** WARNING : ST					
**** WARNING : ST	ORAGE-DISCHA	RGE TABLE).	
**** WARNING : ST	ORAGE-DISCHA AR	RGE TABLE EA QPE	WAS EXCEEDED AK TPEA).	
**** WARNING : ST	ORAGE-DISCHA AR (h	RGE TABLE EA QPE a) (cm	WAS EXCEEDED AK TPEAN s) (hrs	R.V. (mm)	3
	ORAGE-DISCHA AR (h 105) 1.	RGE TABLE EA QPE a) (cm 630 0	WAS EXCEEDED AK TPEAN s) (hrs) .166 5	R.V. (R.V. (mm) .25 77.03	
INFLOW: ID= 2 (0.OUTFLOW: ID= 1 (0.	ORAGE-DISCHA AR (h 105) 1. 520) 1.	RGE TABLE EA QPE a) (cm 630 0 630 0	WAS EXCEEDED AK TPEAR s) (hrs: .166 5 .139 5	R.V. (R.V.) (mm) .25 77.03 .33 76.98	
INFLOW : ID= 2 (0) OUTFLOW: ID= 1 (0) PEA	ORAGE-DISCHA AR (h 105) 1.	RGE TABLE EA QPE a) (cm 630 0 630 0 EDUCTION [WAS EXCEEDED AK TPEAN s) (hrs .166 5 .139 5 Qout/Qin](%	C. R.V. (mm) .25 77.03 .33 76.98	

	Lang	staffRd_EA	Propos	ed_Humber	Watersh	ed	
2.00	0.89	5.25	40.71	8.50			0.89
2.25	0.89	5.50	11.51	8.75	1.77	12.00	0.89
2.50	5.31	5.75	11.51	9.00	1.77	12.25	0.89
2.75	5.31	6.00	11.51	9.25	1.77		
3.00	5.31	6.25	11.51	9.50	0.89	l	
3.25	5.31	6.50	6.20	9.75	0.89		
CALIB							
	Area		.63				
ID= 1 DT= 5.0 min	Total I	mp(%) = 69	.00 E	Dir. Conn	.(%)=	59.00	
		THREENITOLIC		NATOUR (4	,		
		IMPERVIOUS		RVIOUS (i	.)		
Surface Area	(ha)=	1.12		0.51			
Dep. Storage	(mm)=	2.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m)=	650.00	2	25.00			
Mannings n	=	0.013	e	250			
NOTE - DATNE	NI HAC T	DANCEODME		O MTN	TTME CT	-0	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH							
TIME	RAIN	l TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89

Page 58

 ${\tt LangstaffRd_EA_Proposed_HumberWatershed}$

CALIB STANDHYD (0130) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	2.08 82.00	Dir. Conn.(%)=	82.00
		IMPERVIO	US	PERVIOUS (i)	
Surface Area	(ha)=	1.71		0.37	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	800.00		20.00	
Mannings n		0 013		a 25a	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				D HYETOGR			
TIME	RAIN	TIME	RAIN	TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	hrs		hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00		5.31		6.20	9.42	0.89
0.250	0.00				6.20	9.50	0.89
0.333	0.89		15.05		6.20	9.58	0.89
0.417	0.89		15.05		6.20	9.67	0.89
0.500		3.583	15.05		6.20		0.89
0.583	0.89				6.20		0.89
0.667	0.89		15.05		6.20	9.92	0.89
0.750	0.89		15.05		6.20		0.89
0.833	0.89		15.05		6.20		0.89
0.917	0.89		15.05	7.083	6.20		0.89
1.000	0.89		15.05		6.20		0.89
1.083	0.89		15.05		6.20		0.89
1.167	0.89		15.05		3.54	10.42	0.89
1.250	0.89		40.71		3.54		0.89
1.333		4.417	40.71		3.54		0.89
1.417	0.89		40.71		3.54		0.89
1.500	0.89				3.54		0.89
1.583	0.89		40.71	7.750	3.54	10.83	0.89
1.667	0.89		40.71	7.833	3.54		0.89
1.750	0.89		40.71	7.917	3.54		0.89
1.833	0.89		40.71		3.54		0.89
1.917	0.89		40.71		3.54		0.89
2.000	0.89		40.71		3.54	11.25	0.89
2.083	0.89		40.71	8.250	3.54	11.33	0.89
2.167	0.89		40.71	8.333	1.77		0.89
2.250	0.89		11.51		1.77	11.50	0.89
2.333	5.31		11.51		1.77	11.58	0.89
2.417	5.31		11.51		1.77	11.67	0.89
2.500	5.31	5.583	11.51		1.77	11.75	0.89
2.583	5.31	5.667	11.51		1.77	11.83	0.89
2.667	5.31		11.51		1.77	11.92	0.89
2.750	5.31	5.833	11.51		1.77	12.00	0.89
2.833	5.31		11.51		1.77	12.08	0.89
2.917	5.31	6.000	11.51	9.083	1.77	12.17	0.89

LangstaffRd_EA_Proposed_HumberWatershed 5.31 | 6.083 | 11.51 | 9.167 | 1.77 | 12.25 | 0.89 5.31 | 6.167 | 11.51 | 9.250 | 1.77 | 40.71 15.00 12.74 (ii) 15.00 0.08 30.98 20.00 16.38 (ii) 20.00 0.06 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* 0.219 (iii) 5.25 80.22 88.54 0.91 0.19 0.03 TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 5.25 86.54 88.54 0.98 5.25 51.48 88.54 0.58

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= 2.27 Imp(%)= 77.06		77.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	1.75	0.52	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	800.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89	
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89	
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89	
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89	
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89	
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89	
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89	
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89	
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89	
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89	
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89	
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89	

Page 61

LangstaffRd_EA_Proposed_HumberWatershed ID = 3 (0405): 4.35 0.454 5.25

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0505) IN= 2> OUT= 1	OVERFLOW IS OF	F		
DT= 5.0 min	OUTFLOW STO	RAGE I O	JTFLOW	STORAGE
ii	(cms) (ha	.m.)	(cms)	(ha.m.)
	0.0000 0.	0000 0	0.2110	0.0383
	0.0185 0.	0030 (2.2743	0.0515
	0.0302 0.	0120 (0.3250	0.0792
	0.1102 0.	0251 (0.0000	0.0000
	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (04	05) 4.350	0.454	5.25	79.31
OUTFLOW: ID= 1 (05	05) 4.350	0.325	5.50	79.30
PEAK	FLOW REDUCT	ION [Qout/Q	in](%)= 71	.51

TIME SHIFT OF PEAK FLOW (min)= 15.00 (ha.m.)= 0.0792

CALIB STANDHYD (0120) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=		Dir.	Conn.(%)=	73.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)=	IMPERVI 0.9 2.0 1.0 475.0 0.01	1 0 0	PERVIOU 0.33 5.00 2.00 17.00 0.250	3))	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89	
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89	
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89	
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89	
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89	
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89	
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89	
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89	
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89	
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89	

Page 63

```
LangstaffRd_EA_Proposed_Humberi
0.89 | 4.167 | 15.05 | 7.250
0.89 | 4.150 | 15.05 | 7.250
0.89 | 4.250 | 15.05 | 7.333
0.89 | 4.333 | 40.71 | 7.417
0.89 | 4.417 | 40.71 | 7.590
0.89 | 4.590 | 40.71 | 7.759
0.89 | 4.583 | 40.71 | 7.657
0.89 | 4.583 | 40.71 | 7.657
0.89 | 4.4667 | 40.71 | 7.759
0.89 | 4.458 | 40.71 | 7.759
0.89 | 4.458 | 40.71 | 7.633
0.89 | 4.333 | 40.71 | 7.917
0.89 | 4.917 | 40.71 | 8.080
0.89 | 5.080 | 40.71 | 8.167
0.89 | 5.167 | 40.71 | 8.259
0.89 | 5.250 | 40.71 | 8.250
0.89 | 5.250 | 40.71 | 8.250
0.89 | 5.250 | 15.15 | 8.583
5.31 | 5.583 | 15.51 | 8.417
5.31 | 5.417 | 11.51 | 8.580
5.31 | 5.580 | 11.51 | 8.583
5.31 | 5.583 | 11.51 | 8.590
5.31 | 5.750 | 11.51 | 8.583
5.31 | 5.833 | 11.51 | 8.917
5.31 | 5.417 | 11.51 | 8.900
5.31 | 6.060 | 11.51 | 9.083
5.31 | 6.080 | 11.51 | 9.083
5.31 | 6.083 | 11.51 | 9.250
hr)= 40.71 | 30.98
                                                                   1.083
                                                                                                                                                                                                                                                       6.20 | 10.33
3.54 | 10.42
                                                                     1.167
                                                                   1.167
1.250
1.333
1.417
1.500
1.583
                                                                                                                                                                                                                                                                                     10.42
10.50
10.58
10.67
10.75
10.83
10.92
                                                                                                                                                                                                                                                                                                                              0.89
0.89
0.89
0.89
0.89
                                                                                                                                                                                                                                                       3.54
3.54
3.54
3.54
3.54
3.54
3.54
3.54
                                                                     1.667
                                                                                                                                                                                                                                                                                                                               0.89
                                                                   1.750
                                                                                                                                                                                                                                                                                     11.00
11.08
                                                                                                                                                                                                                                                                                                                               0.89
                                                                     1.833
                                                                                                                                                                                                                                                                                                                               0.89
                                                                   1.833
1.917
2.000
2.083
2.167
2.250
2.333
                                                                                                                                                                                                                                                       3.54
3.54
3.54
3.54
1.77
1.77
                                                                                                                                                                                                                                                                                     11.08
11.17
11.25
11.33
11.42
11.50
                                                                                                                                                                                                                                                                                                                              0.89
0.89
0.89
0.89
0.89
                                                                                                                                                                                                                                                                                                                               0.89
                                                                                                                                                                                                                                                                                     11.58
11.67
11.75
11.83
11.92
12.00
12.08
                                                                   2.417
                                                                                                                                                                                                                                                      0.89
                                                                   2.417
2.500
2.583
2.667
2.750
2.833
                                                                                                                                                                                                                                                                                                                               0.89
                                                                                                                                                                                                                                                                                                                              0.89
0.89
0.89
0.89
0.89
                                                                     2.917
                                                                                                                                                                                                                                                                                     12.17
12.25
                                                                   3.083
                  Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                             40.71
15.00
12.74 (ii)
15.00
                                                                                                                                                                                                       30.98
20.00
16.86 (ii)
                                                                                                                                                  0.08
                                                                                                                                                                                                           0.06
                                                                                                                                                                                                                                                                  *TOTALS*
                  PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                               0.20
5.25
86.54
88.54
0.98
                                                                                                                                                                                                       0.04
5.25
51.48
88.54
0.58
                                                                                                                                                                                                                                                                      0.235 (iii)
5.25
78.47
88.54
0.89
                            (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                    (1) CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0405)|
| 1 + 2 = 3 |
                                                                                                                                                           QPEAK
(cms)
0.235
0.219
                                                                                                                                                                                                                                         R.V.
(mm)
78.47
80.22
                                                                                                                             ARFA
                                                                                                                                                                                                       TPFAK
                                                                                                                                                                                                     (hrs)
5.25
5.25
```

	Lange	taffRd F	A Propo	sed Humberw	latarch	od	
0.917	0.89		15.05	7.083	6.20		0.89
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89
1.083	0.89	4.167	15.05	7.250	6.20		0.89
1.167		4.250	15.05		3.54		0.89
1.250	0.89		40.71		3.54		0.89
1.333	0.89		40.71	7.500	3.54	10.58	0.89
1.417		4.500	40.71	7.583	3.54		0.89
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89
2.250	0.89	5.333	11.51	8.417	1.77	11.50	0.89
2.333	5.31	5.417	11.51	8.500	1.77	11.58	0.89
2.417	5.31	5.500	11.51	8.583	1.77	11.67	0.89
2.500	5.31	5.583	11.51		1.77		0.89
2.583	5.31	5.667	11.51		1.77	11.83	0.89
2.667	5.31	5.750	11.51	8.833	1.77		0.89
2.750	5.31	5.833	11.51	8.917	1.77	12.00	0.89
2.833	5.31	5.917	11.51		1.77		0.89
2.917	5.31	6.000	11.51		1.77	12.17	0.89
3.000	5.31	6.083	11.51	9.167	1.77	12.25	0.89
3.083	5.31	6.167	11.51	9.250	1.77	l	
Max.Eff.Inten.(mm,		40.71		30.98			
over (r		10.00		15.00			
	nin)=	9.32	(ii)	13.39 (ii)			
Unit Hyd. Tpeak (r		10.00		15.00			
Unit Hyd. peak (cms)=	0.12		0.08			
						TALS*	
	cms)=	0.10		0.03		.129 (iii)	
	nrs)=	5.25		5.25		5.25	
	(mm)=	86.54		51.48		7.07	
	(mm)=	88.54		88.54		3.54	
RUNOFF COEFFICIEN	Γ =	0.98		0.58	6	3.87	

Page 62

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

- (1) CN* PROCEDURE SELECTED FOR FEXTURES USED SELECTED FOR FEXTURE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | CALIB | STANDHYD (0115) |ID= 1 DT= 5.0 min | Area (ha)= 1.00 Total Imp(%)= 63.00 Dir. Conn.(%)= 63.00

LangstaffRd_EA_Proposed_HumberWatershed IMPERVIOUS PERVIOUS (i)

Surface Area	(ha)=	0.63	0.37	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	475.00	17.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME		' TIME	RAIN		RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs		hrs	mm/hr	
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89	
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89	
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89	
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89	
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89	
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89	
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89	
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89	
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89	
0.833	0.89	3.917	15.05	7.000	6.20	10.08	0.89	
0.917	0.89	4.000	15.05	7.083	6.20	10.17	0.89	
1.000	0.89	4.083	15.05	7.167	6.20	10.25	0.89	
1.083	0.89	4.167	15.05	7.250	6.20	10.33	0.89	
1.167	0.89	4.250	15.05	7.333	3.54	10.42	0.89	
1.250	0.89	4.333	40.71	7.417	3.54	10.50	0.89	
1.333	0.89	4.417	40.71	7.500	3.54	10.58	0.89	
1.417	0.89	4.500	40.71	7.583	3.54	10.67	0.89	
1.500	0.89	4.583	40.71	7.667	3.54	10.75	0.89	
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89	
1.667	0.89	4.750	40.71	7.833	3.54	10.92	0.89	
1.750	0.89	4.833	40.71	7.917	3.54	11.00	0.89	
1.833	0.89	4.917	40.71	8.000	3.54	11.08	0.89	
1.917	0.89	5.000	40.71	8.083	3.54	11.17	0.89	
2.000	0.89	5.083	40.71	8.167	3.54	11.25	0.89	
2.083	0.89	5.167	40.71	8.250	3.54	11.33	0.89	
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89	
2.250	0.89	5.333	11.51	8.417	1.77	11.50	0.89	
2.333	5.31	5.417	11.51	8.500	1.77	11.58	0.89	
2.417	5.31	5.500	11.51	8.583	1.77	11.67	0.89	
2.500	5.31	5.583	11.51	8.667	1.77	11.75	0.89	
2.583	5.31	5.667	11.51	8.750	1.77	11.83	0.89	
2.667	5.31	5.750	11.51	8.833	1.77	11.92	0.89	
2.750	5.31	5.833	11.51	8.917	1.77	12.00	0.89	
2.833	5.31	5.917	11.51	9.000	1.77	12.08	0.89	
2.917	5.31	6.000	11.51	9.083	1.77	12.17	0.89	
3.000	5.31	6.083	11.51	9.167	1.77	12.25	0.89	
3.083	5.31	6.167	11.51	9.250	1.77			

Page 65

	Langstaff	Rd_EA_Pro	posed_Hum	berWatershed
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0505):	4.35	0.325	5.50	79.30
+ ID2= 2 (0510):	2.24	0.087	5.67	75.50
===========				
ID = 3 (0420):	6.59	0.411	5.50	78.01

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Max.Eff.Inten.(mm/hr)=

over (min)

CALIB STANDHYD (0110) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	1.58 70.00	Dir. Conn.(%)=	70.00
		IMPERVI	ous	PERVIOUS (i)	
Surface Area	(ha)=	1.1	1	0.47	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	650.0	0	25.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	5.31	6.250	11.51	9.33	0.89
0.167	0.00	3.250	5.31	6.333	6.20	9.42	0.89
0.250	0.00	3.333	15.05	6.417	6.20	9.50	0.89
0.333	0.89	3.417	15.05	6.500	6.20	9.58	0.89
0.417	0.89	3.500	15.05	6.583	6.20	9.67	0.89
0.500	0.89	3.583	15.05	6.667	6.20	9.75	0.89
0.583	0.89	3.667	15.05	6.750	6.20	9.83	0.89
0.667	0.89	3.750	15.05	6.833	6.20	9.92	0.89
0.750	0.89	3.833	15.05	6.917	6.20	10.00	0.89
0.833	0.89		15.05		6.20		0.89
0.917		4.000	15.05		6.20		0.89
1.000	0.89		15.05		6.20		0.89
1.083	0.89		15.05		6.20		0.89
1.167	0.89		15.05		3.54	10.42	0.89
1.250		4.333	40.71		3.54		0.89
1.333	0.89		40.71	7.500	3.54		0.89
1.417		4.500	40.71		3.54		0.89
1.500	0.89		40.71	7.667	3.54	10.75	0.89
1.583	0.89	4.667	40.71	7.750	3.54	10.83	0.89
1.667	0.89		40.71	7.833	3.54		0.89
1.750	0.89		40.71		3.54		0.89
1.833	0.89		40.71	8.000	3.54	11.08	0.89
1.917	0.89		40.71	8.083	3.54		0.89
2.000		5.083	40.71	8.167	3.54		0.89
2.083	0.89		40.71	8.250	3.54	11.33	0.89
2.167	0.89	5.250	40.71	8.333	1.77	11.42	0.89

Page 67

LangstaffRd_EA_Proposed_HumberWatershed)= 9.32 (ii) 14.21 (ii))= 10.00 15.00 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 0.12 0.08 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.07 5.25 86.54 88.54 0.03 5.25 51.48 88.54 0.100 (iii) 5.25 73.56 88.54 0.98 0.58 0.83 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0410) | | 1 + 2 = 3 | | ID1= 1 (0115): + ID2= 2 (0120): QPEAK (cms) 0.100 0.129 (mm) 73.56 77.07 (ha) 1.00 1.24 (hrs) 5.25 5.25 ID = 3 (0410): 2.24 0.229 5.25 75.50 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. RESERVOIR(0510)| OVERFLOW IS OFF IN= 2---> OUT= 1 DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE STORAGE | (ha.m.) | 0.0000 | 0.0024 | 0.0099 | 0.0204 | OUTFLOW (cms) 0.0699 0.0792 0.0876 0.0000 STORAGE (ha.m.) 0.0309 0.0414 0.0666 0.0000 OUTFLOW (cms) 0.0000 0.0264 0.0457 0.0590 AREA OPEAK TPEAK R.V. (ha) 2.240 2.240 (cms) 0.229 0.087 (hrs) 5.25 5.67 INFLOW : ID= 2 (0410) OUTFLOW: ID= 1 (0510) PEAK FLOW REDUCTION [Qout/Qin](%)= 37.90
TIME SHIFT OF PEAK FLOW (min)= 25.00
MAXIMUM STORAGE USED (ha.m.)= 0.0640 | ADD HYD (0420)|

Page 66

	Lange	taffRd E	A Propo	sed HumberW	atorche	ad	
2.256					1.77		0.89
2.33		5.417	11.51	8.500	1.77	11.58	0.89
2.41					1.77	11.67	0.89
2.500		5.583		8.667	1.77		0.89
2.58					1.77	11.83	0.89
2.66					1.77	11.92	0.89
2.75		5.833			1.77		0.89
2.730					1.77		0.89
						12.08	
2.91					1.77	12.17	0.89
3.000					1.77	12.25	0.89
3.083	3 5.31	6.167	11.51	9.250	1.77		
Max.Eff.Inten.(r	nm/hr)=	40.71		32.40			
	(min)	10.00		20.00			
Storage Coeff.	(min)=			19.61 (ii)			
Unit Hyd. Tpeak		10.00		20.00			
		0.10		0.06			
Unit Hyd. peak	(cms)=	0.10		0.00	****	ALS*	
DEAK FLOW	(0.40		0.04			
PEAK FLOW	(cms)=	0.12		0.04		161 (iii)	
TIME TO PEAK	(hrs)=	5.25		5.33		.25	
RUNOFF VOLUME	(mm) =	86.54		54.37		.88	
TOTAL RAINFALL	(mm)=	88.54		88.54		.54	
RUNOFF COEFFICIE	ENT =	0.98		0.61	6	.87	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(111) PEAK FLOW D	JES NOT INCLU	DE BASEFLOW	IF ANY.		
RESERVOIR(0525) IN= 2> OUT= 1	OVERFLOW I	S OFF			
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
ii	(cms)	(ha.m.)	(cms)	(ha.m.)	
	ò.0000	0.0000	0.0181	0.0161	
	0.0081	0.0031	0.0584	0.0204	
	0.0123	0.0074	0.0920	0.0259	
	0.0155	0.0118	0.0000	0.0000	
	ARE	A QPEAK	TPEAK	R.V.	
	(ha) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0:	110) 1.5	80 0.1	61 5.25	76.88	
OUTFLOW: ID= 1 (0	525) 1.5	80 0.1	35 5.33	76.82	
PEA	K FLOW RE	DUCTION [Qo	ut/Qin](%)=	83.80	
TIM	E SHIFT OF PE	AK FLOW	(min)=	5.00	
MAX	IMUM STORAGE	USED	(ha.m.)=	0.0331	

Don River Watershed Visual OTTHYMO Summary- Proposed

PCSWMM Modelling for Culvert LC1 Don River Watershed

LangstaffRd_EA_Proposed_WestDonWatershd

** SIMULATION:Run 02	**
***********	****

_				
-	READ STORM		Filename:	C:\Users\ray.zhao\AppD
- 1				ata\Local\Temp\
- 1		- 1		e8da0adc-3b43-467d-984d-5ab4a7d3492c\e8708d30

1		eouabauc-3043-407u-30
Ptotal= 42.93 mm	Comments:	2yr-12hrSCS

33	mm	Comment	:s: 2yr-1	12hrSCS			
	TIME	RAIN	TIME	RAIN	' TIME	RAIN TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr hrs	mm/hr
	0.25	0.00	3.50	1.02	6.75	8.13 10.00	1.02
	0.50	1.02	3.75	2.03	7.00	3.05 10.25	1.02
	0.75	1.02	4.00	2.03	7.25	3.05 10.50	1.02
	1.00	1.02	4.25	1.02	7.50	3.05 10.75	1.02
	1.25	0.00	4.50	3.05	7.75	2.03 11.00	1.02
	1.50	1.02	4.75	3.05	8.00	3.05 11.25	1.02
	1.75	1.02	5.00	3.05	8.25	2.03 11.50	0.00
	2.00	1.02	5.25	3.05	8.50	2.03 11.75	1.02
	2.25	1.02	5.50	5.08	8.75	2.03 12.00	1.02
	2.50	1.02	5.75	5.08	9.00	1.02 12.25	1.02
	2.75	2.03	6.00	38.61	9.25	2.03	
	3.00	2.03 İ	6.25	38.61 İ	9.50	1.02	
	3.25	2.03	6.50	8.13	9.75	2.03	
						•	

STANDHYD (0165) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)= 7	0.60 72.00	Dir. Conn.(%)=	72.00
		IMPERVIOL	JS	PERVIOUS (i)	
Surface Area	(ha)=	0.43		0.17	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	250.00		20.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02

Page 1

LangstaffRd_EA_Proposed_WestDonWatershd

		TMDEDVT	OLIC	DEDVITOUS (4)	
ID= 1 DT= 5.0 min	Total	Imp(%)=	98.00	Dir. Conn.(%)=	98.00
STANDHYD (01/0)					

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.42	0.01
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	250.00	20.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TP	ANS EORMEI	D HYETOGR	ADH	_	
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03	l	

Page 3

					sed_WestDon			
	0.667		3.750		6.833	3.05		1
	0.750		3.833		6.917	3.05		1
	0.833		3.917	2.03		3.05		1
	9.917		4.000		7.083	3.05		1
	1.000		4.083	1.02		3.05		
	1.083		4.167	1.02		3.05		1
	1.167 1.250		4.250	1.02 3.05		3.05 3.05		1
	1.333		4.333	3.05		3.05		1
	1.417		4.500	3.05		2.03		1
	1.500		4.583	3.05		2.03		1
	1.583		4.667	3.05		2.03		1
	1.667		4.750	3.05		3.05		1
	1.750		4.833	3.05		3.05		1
	1.833		4.917	3.05		3.05		1
	1.917		5.000	3.05		2.03		1
	2.000		5.083	3.05		2.03		1
	2.083		5.167		8.250	2.03		0
	2.167		5.250	3.05		2.03		0
	2.250		5.333		8.417	2.03		0
	2.333		5.417	5.08		2.03		1
	2.417		5.500		8.583	2.03		1
:	2.500	1.02	5.583	5.08	8.667	2.03	11.75	1
	2.583	2.03	5.667	5.08	8.750	2.03	11.83	1
	2.667	2.03	5.750	5.08	8.833	1.02	11.92	1
	2.750	2.03	5.833	38.61	8.917	1.02	12.00	1
	2.833		5.917	38.61	9.000	1.02	12.08	1
:	2.917	2.03	6.000		9.083	2.03		1
	3.000		6.083		9.167	2.03		1
:	3.083	2.03	6.167	38.61	9.250	2.03	I	
Max.Eff.Inte	en.(mm/	'hr)=	38.61		19.37			
	over (m	nin)	5.00		15.00			
Storage Coe	ff. (n	nin)=	6.48	(ii)	11.15 (ii)			
Unit Hyd. T	oeak (n	nin)=	5.00		15.00			
Unit Hyd. pe	eak (c	:ms)=	0.18		0.09			
							TALS*	
PEAK FLOW		:ms)=	0.05		0.01		.052 (iii)
TIME TO PEAK		irs)=	6.25		6.33		6.25	
RUNOFF VOLUM		mm)=	40.93		15.99		3.93	
TOTAL RAINFA		mm)=	42.93 0.95		42.93 0.37		2.93 0.79	
RUNOFF COEFI								

- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB |

 ${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

Max.Eff.Inten.(mm/hr)=	38.61	25.09	
over (min)	5.00	10.00	
Storage Coeff. (min)=	6.48 (ii)	7.91 (ii)	
Unit Hyd. Tpeak (min)=	5.00	10.00	
Unit Hyd. peak (cms)=	0.18	0.13	
			TOTALS
PEAK FLOW (cms)=	0.04	0.00	0.045 (iii)
TIME TO PEAK (hrs)=	6.25	6.25	6.25
RUNOFF VOLUME (mm)=	40.93	20.75	40.52
TOTAL RAINFALL (mm)=	42.93	42.93	42.93
RUNOFF COEFFICIENT =	0.95	0.48	0.94

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0180) ID= 1 DT= 5.0 min	Area (ha)= Total Imp(%)=	0.65 52.00 Dir. Conn.(%)=	52.00

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.34	0.31
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	65.83	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02

```
nWatershd
3.05 | 10.50
3.05 | 10.58
2.03 | 10.67
2.03 | 10.75
2.03 | 10.83
3.05 | 10.92
3.05 | 11.00
3.05 | 11.08
2.03 | 11.17
                                    1.250
                                    1.250
1.333
1.417
1.500
1.583
1.667
1.750
1.833
                                                                                                                                                                       1.02
1.02
1.02
1.02
1.02
1.02
                                    1.917
                                                                                                                                                 11.25
11.33
11.42
11.50
11.58
11.67
11.75
                                    2.083
2.167
2.250
2.333
2.417
                                    2.583
                                                                                                                                                  11.83
                                                                                                                                                                       1.02
                                    2.667
                                                                                                                                                  11.92
                                    2.750
2.833
2.917
3.000
           Max.Eff.Inten.(mm/hr)=
                                                                           38.61
                                                                                                         18.46
           over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                             5.00 20.00
2.91 (ii) 16.78 (ii)
5.00 20.00
0.28 0.06
                                                                                                                                       *TOTALS*
0.045 (iii)
6.25
28.94
42.93
           PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                           0.04
6.25
40.93
42.93
0.95
                                                                                                           0.01
                                                                                                        6.42
15.99
42.93
0.37
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
              (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
           CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

| CALIB | | STANDHYD (0185)| |ID= 1 DT= 5.0 min | Area (ha)= 0.47 Total Imp(%)= 72.00 Dir. Conn.(%)= 72.00 PERVIOUS (i) IMPERVIOUS Surface Area Dep. Storage 0.13 5.00 (ha)= (mm)=

Page 5

LangstaffRd_EA_Proposed_WestDonWatershd

				TOTALS
PEAK FLOW	(cms)=	0.04	0.00	0.039 (iii)
TIME TO PEAK	(hrs)=	6.25	6.42	6.25
RUNOFF VOLUME	(mm)=	40.93	13.64	33.27
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COEFFICI	ENT =	0.95	0.32	0.77

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^*=79.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ID1= 1 (0180): + ID2= 2 (0185):	AREA (ha) 0.65 0.47	QPEAK (cms) 0.045 0.039	6.25	28.94
ID = 3 (0445):	1.12	0.084	6.25	30.76
NOTE: PEAK FLOWS DO	NOT INCL	JDE BASEFL	OWS IF A	NY.

ADD HYD (0450)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0165):	0.60	0.052	6.25	33.93
+ ID2= 2 (0170):	0.43	0.045	6.25	40.52
==============	======			
ID = 3 (0450):	1.03	0.098	6.25	36.68

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR(0520)| OVERFLOW IS OFF

LangstaffRd_EA_Proposed_WestDonWatershd () = 1.00 2.00 () = 240.00 20.00 Average Slope Length Mannings n 0.013 0.350

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13		1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00		1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417		4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03		1.02
1.583	1.02			7.750			1.02
1.667			3.05				1.02
1.750	1.02				3.05		1.02
1.833		4.917		8.000		11.08	1.02
1.917		5.000		8.083		11.17	1.02
2.000		5.083		8.167		11.25	1.02
2.083		5.167		8.250		11.33	0.00
2.167		5.250		8.333			0.00
2.250	1.02	5.333		8.417	2.03		0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03		1.02
2.667	2.03	5.750	5.08	8.833	1.02		1.02
2.750	2.03	5.833		8.917	1.02		1.02
2.833	2.03	5.917	38.61	9.000	1.02		1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000		6.083		9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03		

5.00 20.00 6.32 (ii) 18.29 (ii) 5.00 20.00 0.19 0.06 Page 6

15.64

38.61

Max.Eff.Inten.(mm/hr)=

over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=

	Langsta	fRd EA Prop	osed We	estDonWat	ershd	
IN= 2> OUT= 1						
DT= 5.0 min		STORAGE		JTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0	.0181	0.0552	
	0.0081	0.0048	0	.0203	0.0732	
		0.0192				
	0.0155	0.0372	0	.0000	0.0000	
	А	REA QPE	AK	TPEAK	R.V.	
	(ha) (cm	s)	(hrs)	(mm)	
INFLOW : ID= 2 (0450) 2	.150 0	.182	6.25	33.59	
OUTFLOW: ID= 1 (0520) 2	.150 0	.016	7.50	33.53	
TI	AK FLOW ME SHIFT OF XXIMUM STORA	PEAK FLOW `		(min)= 75	5.00	
1 ***						
CALIB	//-	-) 2.05				
STANDHYD (0145) ID= 1 DT= 5.0 min	Area (n	a)= 3.05	D4	Cann (%)	76.00	
ID= 1 DI= 5.0 Min	lotal imp(%)= /6.00	Dir.	Conn.(%)	= /6.00	
	IMP	ERVIOUS	PERVIOU	S (i)		
Surface Area	(ha)=	2.32	0.73	, ` ′		
Dep. Storage	(mm)=	2.00	5.00)		
Average Slope	(%)=	1.00	2.00)		
Length	(m)= 5	31.00	40.00)		
Surface Area Dep. Storage Average Slope Length Mannings n	=	0.013	0.250)		
	ALL WAS TRAN				STEP.	
		TRANSFOR	MED HYE	TOGRAPH -		

		TRA	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02

1.583 1.02 4.667 3.05 7.750 2.03 10.83 1.02 1.667 1.02 4.670 3.05 7.750 2.03 10.92 1.02 1.750 1.02 4.4833 3.05 7.917 3.05 11.00 1.02 1.917 1.02 5.000 3.05 8.080 3.05 11.08 1.02 2.080 1.02 5.080 3.05 8.167 2.03 111.7 1.02 2.083 1.02 5.167 3.05 8.250 2.03 111.25 1.02 2.083 1.02 5.520 3.05 8.333 2.03 111.25 1.02 2.167 1.02 5.250 3.05 8.333 2.03 11.12 0.00 2.250 1.02 5.250 3.05 8.333 2.03 11.50 0.00 2.33 1.02 5.417 5.08 8.500 2.03 11.53 1.02 2.500 1.02 <th></th> <th colspan="11">LangstaffRd_EA_Proposed_WestDonWatershd</th>		LangstaffRd_EA_Proposed_WestDonWatershd										
1.667 1.02 4.750 3.05 7.833 3.05 10.92 1.02 1.750 1.02 4.833 3.05 7.917 3.05 11.00 1.02 1.833 1.02 4.917 3.05 8.060 3.05 11.08 1.02 1.917 1.02 5.0803 3.05 8.083 2.03 11.17 1.02 2.080 1.02 5.083 3.05 8.167 2.03 11.12 1.02 2.083 1.02 5.167 3.05 8.250 2.03 11.33 0.00 2.167 1.02 5.250 3.05 8.250 2.03 11.33 0.00 2.167 1.02 5.250 3.05 8.250 2.03 11.33 0.00 2.250 1.02 5.520 3.08 8.417 2.03 11.50 0.00 2.331 1.02 5.500 5.08 8.583 2.03 11.57 1.02 2.580 2.03	1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02				
1.750 1.02 4.833 3.05 7.917 3.05 11.00 1.02 1.917 3.05 8.000 3.05 11.00 1.02 1.917 3.05 8.000 3.05 11.17 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.117 1.02 1.02 1.117 1.02 1.02 1.02 1.02 1.02 3.05 8.167 2.03 11.13 0.00 0.02 3.05 8.250 2.03 11.13 0.00 0.00 2.167 1.02 1.533 5.08 8.333 2.03 11.42 0.00 0.00 2.33 11.58 1.02 0.00 0.00 8.417 2.03 11.58 1.02 1.333 5.08 8.8417 2.03 11.58 1.02 1.343 1.02 1.500 0.00 8.858 2.03 11.58 1.02 2.500 1.02 1.500 8.08 8.580 2.03 11.58 1.02 2.500 1.02 8.500 2.03 </td <td>1.583</td> <td>1.02</td> <td>4.667</td> <td>3.05</td> <td>7.750</td> <td>2.03</td> <td>10.83</td> <td>1.02</td>	1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02				
1.833 1.02 4.917 3.05 8.000 3.05 11.08 1.02 1.917 1.02 5.000 3.05 8.083 2.03 11.17 1.02 2.000 1.02 5.083 3.05 8.167 2.03 11.25 1.02 2.083 1.02 5.167 3.05 8.250 2.03 11.32 0.00 2.167 1.02 5.259 3.05 8.333 2.03 11.42 0.00 2.250 1.02 5.333 5.08 8.417 2.03 11.50 0.00 2.333 1.02 5.417 5.08 8.590 2.03 11.58 1.02 2.417 1.02 5.580 5.08 8.563 2.03 11.67 1.02 2.580 2.03 5.560 5.08 8.560 2.03 11.57 1.02 2.563 2.03 5.560 5.08 8.750 2.03 11.57 1.02 2.667 2.03	1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02				
1.917 1.02 5.000 3.05 8.083 2.03 11.17 1.02 2.000 1.02 5.083 3.05 8.167 2.03 11.25 1.02 2.083 1.02 5.167 3.05 8.250 2.03 11.33 0.00 2.167 1.02 5.250 3.05 8.333 2.03 11.42 0.00 2.250 1.02 5.333 5.08 8.417 2.03 11.58 1.02 2.417 1.02 5.500 5.08 8.500 2.03 11.58 1.02 2.500 1.02 5.583 5.08 8.658 2.03 11.75 1.02 2.580 2.03 5.67 5.08 8.658 2.03 11.67 1.02 2.580 2.03 5.750 5.08 8.8750 2.03 11.75 1.02 2.675 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03	1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02				
2.000 1.02 5.083 3.05 8.167 2.03 11.25 1.02 2.083 1.02 5.167 3.05 8.250 2.03 11.33 0.00 2.167 1.02 5.250 3.65 8.333 2.03 11.42 0.00 2.250 1.02 5.333 5.08 8.417 2.03 11.50 0.00 2.333 1.02 5.417 5.08 8.500 2.03 11.58 1.02 2.417 1.02 5.590 5.08 8.583 2.03 11.67 1.02 2.500 1.02 5.583 5.08 8.667 2.03 11.57 1.02 2.583 2.03 5.667 5.08 8.750 2.03 11.83 1.02 2.667 2.03 5.853 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.833 38.61 8.917 1.02 12.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 2.917 2.03 6.080 38.61 9.083 2.03 12.27 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.000 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.000 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.000 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.000 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.000 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.000 38.61 9.0	1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02				
2.083 1.02 5.167 3.05 8.250 2.03 11.33 0.06 2.167 1.02 5.250 3.05 8.333 2.03 11.42 0.00 2.250 1.02 5.233 5.08 8.417 2.03 11.50 0.00 2.333 1.02 5.417 5.08 8.500 2.03 11.58 1.02 2.417 1.02 5.500 5.08 8.658 2.03 11.67 1.02 2.580 2.03 5.667 5.08 8.667 2.03 11.75 1.02 2.667 2.03 5.88 8.750 2.03 11.67 1.02 2.750 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.570 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.570	1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02				
2.167 1.02 5.250 3.05 8.333 2.03 11.42 0.00 2.250 1.02 5.333 5.08 8.417 2.03 11.50 0.00 2.333 1.02 5.417 5.08 8.500 2.03 11.50 0.00 2.417 1.02 5.500 5.08 8.583 2.03 11.67 1.02 2.500 1.02 5.583 5.08 8.667 2.03 11.67 1.02 2.503 2.03 5.667 5.08 8.750 2.03 11.83 1.02 2.667 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.833 38.61 8.917 1.02 12.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 3	2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02				
2.250 1.02 5.333 5.08 8.417 2.03 11.59 0.08 2.333 1.02 5.417 5.08 8.500 2.03 11.58 1.02 2.417 1.02 5.500 5.08 8.583 2.03 11.67 1.02 2.580 1.02 15.583 5.08 8.667 2.03 11.75 1.02 2.667 2.03 15.750 5.08 8.750 2.03 11.92 1.02 2.750 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.533 38.61 8.917 1.02 12.00 1.02 2.833 2.03 5.591 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.083 2.03 12.25 1.02	2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00				
2.333 1.02 5.417 5.08 8.590 2.03 11.58 1.02 2.417 1.02 5.590 5.08 8.583 2.03 11.67 1.02 2.580 1.02 5.583 5.08 8.667 2.03 11.75 1.02 2.583 2.03 5.667 5.08 8.750 2.03 11.92 11.92 2.667 2.03 5.759 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.833 3.61 8.917 1.02 12.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00				
2.417 1.02 5.500 5.08 8.583 2.03 11.67 1.02 2.500 1.02 5.583 5.08 8.667 2.03 11.75 1.02 2.583 2.03 5.667 5.08 8.750 2.03 11.83 1.02 2.667 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.833 38.61 8.917 1.02 11.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00				
2.500 1.02 5.583 5.08 8.667 2.03 11.75 1.02 2.583 2.03 5.667 5.08 8.750 2.03 11.83 1.02 2.667 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.750 2.03 5.833 3.61 8.917 1.02 12.08 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02				
2.583 2.03 5.667 5.08 8.759 2.03 11.83 1.02 2.667 2.03 5.750 5.08 8.833 1.02 11.92 1.02 2.759 2.03 5.833 38.61 8.917 1.02 12.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02				
2.667 2.03 5.750 5.08 8.833 1.02 11.92 1.2.0 2.750 2.03 5.833 38.61 8.917 1.02 12.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02				
2.750 2.03 5.833 38.61 8.917 1.02 12.00 1.02 2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02				
2.833 2.03 5.917 38.61 9.000 1.02 12.08 1.02 2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02				
2.917 2.03 6.000 38.61 9.083 2.03 12.17 1.02 3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02				
3.000 2.03 6.083 38.61 9.167 2.03 12.25 1.02	2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02				
	2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02				
3.083 2.03 6.167 38.61 9.250 2.03	3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02				
	3.083	2.03	6.167	38.61	9.250	2.03						

Max.Eff.Inten.(mm/hr)=	38.61	21.04	
over	(min)	10.00	25.00	
Storage Coeff.	(min)=	10.18 (ii)	23.34 (ii)	
Unit Hyd. Tpeak	(min)=	10.00	25.00	
Unit Hyd. peak	(cms)=	0.11	0.05	
				TOTALS
PEAK FLOW	(cms)=	0.23	0.02	0.251 (iii)
TIME TO PEAK	(hrs)=	6.25	6.50	6.25
RUNOFF VOLUME	(mm)=	40.93	18.14	35.45
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COFFETCT	FNT =	0.95	0.42	0.83

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0135)	Area	(ha)= 1	.43	
ID= 1 DT= 5.0 min	Total	Imp(%) = 99	.00 Dir. Conn.(%)=	99.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	1.42	0.01	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	503.00	30.00	
Mannings n	=	0.013	0.250	

Page 9

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 84.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= Imp(%)=	1.27 91.00	Dir.	Conn.(%)=	91.00	
		IMPERVIO	US	PERVIO	JS (i)		
Surface Area	(ha)=	1.16		0.1	1		
Dep. Storage	(mm)=	2.00		5.00	3		
Average Slope	(%)=	1.00		2.00	9		
Length	(m)=	503.00		25.00			
Mannings n	=	0.013		0.25			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02

Page 11

LangstaffRd_EA_Proposed_WestDonWatershd NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

			.NC FORM	-D IN/FTOCDA	DI I		
TIME	RAIN			D HYETOGRA	RAIN		RAIN
hrs			mm/hr	l' hrs	mm/hr		mm/hr
0.083					38.61		1.02
0.167		3.250	2.03		8.13		1.02
0.256		3.333		6.417	8.13		1.02
0.333		3.417	1.02		8.13		2.03
0.417		3.500		6.583	8.13		2.03
0.500		3.583	2.03		8.13		2.03
0.583		3.667	2.03		8.13		1.02
0.667		3.750		6.833	3.05		1.02
0.756		3.833	2.03		3.05		1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	7 1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.256	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417		4.500	3.05	7.583	2.03		1.02
1.500	1.02	4.583	3.05	7.667	2.03		1.02
1.583		4.667	3.05	7.750	2.03		1.02
1.667		4.750	3.05	7.833	3.05		1.02
1.756		4.833	3.05	7.917	3.05		1.02
1.833		4.917	3.05		3.05		1.02
1.917		5.000	3.05	8.083	2.03		1.02
2.000		5.083	3.05		2.03		1.02
2.083		5.167	3.05		2.03		0.00
2.167		5.250		8.333		11.42	0.00
2.256		5.333	5.08		2.03		0.00
2.333 2.417		5.417	5.08		2.03		1.02
2.417		5.583	5.08		2.03		1.02
2.583		5.667	5.08		2.03		1.02
2.667		5.750	5.08		1.02		1.02
2.756		5.833	38.61		1.02		1.02
2.833		5.917		9.000		12.08	1.02
2.917			38.61	9.083	2.03		1.02
3.006			38.61	9.167		12.25	1.02
3.083		6.167	38.61		2.03		1.02
Max.Eff.Inten.(nm/hr)=	38.61		20.20			
	(min)	10.00		15.00			
Storage Coeff.	(min)=	9.85	(ii)	11.24 (ii)			
Unit Hyd. Tpeak		10.00	` ′	15.00			
Unit Hyd. peak	(cms)=	0.11		0.09			
	. ,				*T0	TALS*	
PEAK FLOW	(cms)=	0.14		0.00	0	.144 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	40.93		16.67	40	0.68	
			Page	10			

	Langs	taffRd E	A Propo	sed WestDon	Waters	hd	
2.08					2.03		0.0
2.16		5.250	3.05	8.333	2.03	11.42	0.0
2.256	1.02	5.333	5.08	8.417	2.03	11.50	0.0
2.33	3 1.02	5.417	5.08	8.500	2.03	11.58	1.0
2.41	7 1.02	5.500	5.08	8.583	2.03	11.67	1.0
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.0
2.583	3 2.03	5.667	5.08	8.750	2.03	11.83	1.0
2.66	7 2.03	5.750	5.08	8.833	1.02	11.92	1.0
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.0
2.83	3 2.03	5.917	38.61	9.000	1.02	12.08	1.0
2.91	7 2.03	6.000	38.61	9.083	2.03	12.17	1.0
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.0
3.08	3 2.03	6.167	38.61	9.250	2.03	İ	
Max.Eff.Inten.(r	nm/hr)=	38.61		19.37			
	(min)	10.00		15.00			
Storage Coeff.	(min)=		(ii)	12.94 (ii)			
Unit Hyd. Tpeak		10.00		15.00			
Unit Hyd. peak		0.11		0.08			
	()				*T01	TALS*	
PEAK FLOW	(cms)=	0.12		0.00		.121 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33		5.25	
RUNOFF VOLUME	(mm)=	40.93		15.99	38	3.68	
TOTAL RAINFALL	(mm)=	42.93		42.93	42	2.93	
RUNOFF COEFFICIE		0.95		0.37		0.90	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COFFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0420)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0135):	1.43	0.144	6.25	40.68	
+ ID2= 2 (0140):	1.27	0.121	6.25	38.68	
=======================================					
ID = 3 (0420):	2.70	0.265	6.25	39.74	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0530)	OVERELOW	TS OFF				
IN= 2> OUT= 1	OVERTEON	13 011				
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE	
	(cms)	(ha.m.)		(cms)	(ha.m.)	
	0.0000	0.0000		0.0122	0.0823	
	0.0056	0.0072	-	0.0382	0.1093	

LangstaffRd_EA_Proposed_WestDonWatershd 0.0283 | 0.0516 0.0553 | 0.0000 0.0105

AREA (ha) 2.700 2.700 QPEAK (cms) 0.265 0.012 INFLOW : ID= 2 (0420) OUTFLOW: ID= 1 (0530)

PEAK FLOW REDUCTION [Qout/Qin](%)= 4.55 TIME SHIFT OF PEAK FLOW (min)=160.00 MAXIMUM STORAGE USED (ha.m.)= 0.0796

ADD HYD (0425)| 1 + 2 = 3 | QPEAK (cms) 0.251 0.012 R.V. (mm) 35.45 39.62 ARFA ID1= 1 (0145): + ID2= 2 (0530): ======== ID = 3 (0425): 5.75 0.261 6.25

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0512)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW (ha.m.) 0.0000 0.0165 (cms) 0.0471 0.0636 (ha.m.) 0.1003 0.1284 (cms) 0.0000 0.0071 0.0098 0.0331 0.0526 0.0763 0.1594 0 0119 AREA QPEAK
(ha) (cms)
5.750 0.261
5.750 0.028 TPEAK (hrs) 6.25 8.75 R.V. (mm) 37.41 37.31 INFLOW : ID= 2 (0425) OUTFLOW: ID= 1 (0512)

PEAK FLOW REDUCTION [Qout/Qin](%)= 10.92 TIME SHIFT OF PEAK FLOW (min)=150.00 MAXIMUM STORAGE USED (ha.m.)= 0.0861

-----| CALIB Area (ha)= 0.58 Total Imp(%)= 81.00 Dir. Conn.(%)= 81.00

| CALIB | STANDHYD (0215)| |ID= 1 DT= 5.0 min | IMPERVIOUS PERVIOUS (i) = 0.47 0.11

Page 13

LangstaffRd_EA_Proposed_WestDonWatershd
Unit Hyd. peak (cms)= 0.10 - 0.00

Unit Hyd. peak	(cms)=	0.18	0.09	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.00	0.054 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	40.93	15.99	36.18
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COEFFICI	ENT =	0.95	0.37	0.84

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha)= 0.6 Imp(%)= 66.6		66.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.43	0.22	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	260.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH							
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02

Page 15

LangstaffRd_EA_Proposed_WestDonWatershd

Dep. Storage 2.00 1.00 5.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		тр	ANC EODMEI) HYETOGR	ADU		
TIME	RAIN	TIME		l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr		mm/hr
0.083	0.00	3.167	2.03	6.250	38.61		1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02		1.02		8.13		2.03
0.500	1.02		2.03		8.13		2.03
0.583	1.02	3.667	2.03		8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05		1.02
1.417	1.02		3.05		2.03		1.02
1.500	1.02		3.05		2.03		1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03		1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03		0.00
2.333	1.02	5.417	5.08	8.500	2.03		1.02
2.417	1.02	5.500	5.08	8.583 8.667	2.03	11.67 11.75	1.02
	1.02				2.03		
2.583	2.03	5.667	5.08 5.08	8.750 8.833	2.03 1.02	11.83 11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.730	2.03	5.917	38.61	9.000	1.02	12.00	1.02
2.033	2.03	6.000	38.61	9.083	2.03	12.08	1.02
3.000	2.03	6.083	38.61	9.065	2.03	12.17	1.02
3.083	2.03	6.167	38.61	9.250	2.03	12.23	1.02

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= 38.61 19.37 5.00 15.00 6.63 (ii) 11.50 (ii) 5.00 15.00

Page 14

	Langs	taffRd_E	A_Propo	sed_WestDor	Waters	hd	
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03	ĺ	
Max.Eff.Inten.(mm	1/hn)-	38.61		19.37			
over (5.00		20.00			
over ((11)	20.00			

over	(min)	5.00	20.00	
Storage Coeff.	(min)=	6.63 (ii)	15.61 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	20.00	
Unit Hyd. peak	(cms)=	0.18	0.07	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.01	0.052 (iii)
TIME TO PEAK	(hrs)=	6.25	6.42	6.25
RUNOFF VOLUME	(mm)=	40.93	15.99	32.43
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COEFFICI	ENT =	0.95	0.37	0.76

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0470)				
1 + 2 = 3	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)
ID1= 1 (0215):	0.58	0.054	6.25	36.18
+ ID2= 2 (0220):	0.65	0.052	6.25	32.43
ID = 3 (0470):	1.23	0.106	6.25	34.20

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR(0535)| OVERFLOW IS OFF

IN= 2> OUT= 1 DT= 5.0 min	Langstaf OUTFLOW (cms) 0.0000 0.0053 0.0080 0.0100	STORAGE (ha.m.) 0.0000 0.0048 0.0154 0.0261	ed_WestDonWat OUTFLOW (cms) 0.0116 0.0131 0.0202 0.0000	STORAGE (ha.m.) 0.0367 0.0474 0.0639 0.0000
OUTFLOW: ID= 1 (0	(h 470) 1. 535) 1.		(hrs) 06 6.25 10 7.33	R.V. (mm) 34.20 34.02

MAXIMUM STORAGE USED (ha.m.)= 0.0260

CALIB STANDHYD (0225)	Area	(ha)=	0.60		
ID= 1 DT= 5.0 min	Total	Imp(%)=	83.00	Dir. Conn.(%)=	83.00
·		,		. ,	
		IMPERVIO)US	PERVIOUS (i)	
Surface Area	(ha)=	0.50)	0.10	
Dep. Storage	(mm)=	2.00)	5.00	
Average Slope	(%)=	1.00)	2.00	
Length	(m)=	320.00)	10.00	
Mannings n	- =	0.013	;	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN		
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02		
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02		
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02		
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03		
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03		
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03		
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02		
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02		
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02		
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02		
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02		
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02		
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02		
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02		
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02		
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02		
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02		

Page 17

LangstaffRd_EA_Proposed_WestDonWatershd NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORM	D HYETOGRA	PH	_	
TIME	RAIN		RAIN		RAIN		RAIN
hrs	mm/hr	hrs		' hrs	mm/hr	hrs	mm/hr
0.083					38.61		
0.167		3.250		6.333	8.13		1.02
0.250				6.417	8.13		1.02
0.333	1.02	3.333 3.417 3.500	1.02	6.500	8.13		2.03
0.417	1.02	3.500	1.02	6.583	8.13		2.03
0.500		3.583		6.667			2.03
0.583		3.667		6.750	8.13		1.02
0.667		3.750		6.833			1.02
0.750	4 00	2 022	2 02	6.917	3.05		1.02
0.833	1 02	2 017	2 02	7.000		10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05		1.02
1.000	1 02	4.083	1 02	7.167	3 05	10.25	1.02
1.083		4.167		7.250	3.05		
1.167	0.00	4.250	1 02	7.333		10.42	1.02
1.250		4.333	3 05	7.417	3 05	10.50	
1.333		4.417		7.500		10.58	1.02
1.417				7.583		10.67	1.02
1.500	1 02	4.500 4.583 4.667	3.05		2.03		1.02
1.583	1 02	4.667	3 05	7.750	2 03	10.83	1.02
1.667		4.750		7.833		10.92	
1.750		4.833		7.917		11.00	1.02
1.833	1 02	4.917	3 05	8.000	3 05	11.08	
1.917	1 02	5.000		1 0 000	2 22		1.02
2.000		5.083	3 05	8.167	2 03	11.25	1.02
2.083			3 05	8.250	2 03	11.33	0.00
2.167	1 02	5.167 5.250	3 05	8.333	2 03	11.42	0.00
2.250		5.333		8.417			
2.333		5.417		8.500		11.58	1.02
2.417	1 02	5 500				11.67	
2.500	1 02	5 583	5 08	8 667	2 03	11.75	1.02
2.583	2 03	5.583	5 08	8.583 8.667 8.750	2 03	11.83	1.02
2.667		5.750	5 08	8.833	1.02		1.02
2.750		5.833		8.917	1 02	12.00	1.02
2.833		5.917		9.000		12.08	1.02
2.917		6.000		9.083		12.17	1.02
3.000		6.083		9.167		12.25	1.02
3.083		6.167		9.250			1.02
5.005	2.03	0.107	30.01	1 3.230	2.05	1	
Max.Eff.Inten.(m	m/hr)=	38.61		16.97			
over	(min)	10.00		20.00			
	(min)=	7.51	(ii)	19.59 (ii)			
Unit Hyd. Tpeak	(min)=	10.00		20.00			
Unit Hyd. peak	(cms)=	0.13		0.06			
					T0	TALS	

```
Page 19
```

0.01

0.05 6.25 40.93

PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)=

0.054 (iii) 6.25 32.01

	Lange	staffRd F	Δ Prono	sed WestDo	nWaters	hd	
1.50	0 1.02	1 4.583	3.05	l 7.667	2.03	10.75	1.02
1.58		4.667	3.05	7.750	2.03	10.83	1.02
1.66	33 1.02 57 1.02 50 1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.75	1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02 60 1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.83	3 1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.91	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.00	0 1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.08	33 1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.16	57 1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.25	0 1.02	5.333	5.08	8.41/	2.03	11.50	0.00
2.33	3 1.02	5.41/	5.08	8.500	2.03	11.58	1.02
2.41	1.02	0.500	5.00	0.505	2.03	11.0/	1.02
2.36	1.02	5 667	5 08	8 750	2.03	11.73	1.02
2.50	7 2.03	5 750	5 08	8 833	1 02	11 92	1.02
2.75	33 2.03 57 2.03 50 2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.83	3 2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.91	7 2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.00	33 2.03 17 2.03 00 2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.08	33 2.03	6.167	38.61	9.250	2.03		
Max.Eff.Inten.(over	(mm/hr)=	38.61		19.37			
over	(min)	10.00		10.00			
Storage Coeff.	(min)=	7.51	(ii)	9.90 (ii)		
over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min)=	10.00		10.00			
Unit Hyd. peak	(cms)=	0.13		0.11		TALS*	
DEAK FLOW	()	0.05		0.00		.057 (iii	`
PEAK FLOW TIME TO PEAK	(hns)-	0.05 6.25		6.25		5.25	,
RUNOFF VOLUME	(mm)=	40.93		15.99		5.68	
TOTAL RAINFALL		42.93		42.93		2.93	
RUNOFF COEFFICE		0.95		0.37		9.85	
(i) CN PROCED	DURE SELECT	ED FOR PE	RVIOUS	LOSSES:			
	83.0 Ia						
(ii) TIME STER				R EQUAL			
	STORAGE CO						
(iii) PEAK FLOW	DOES NOT	INCLUDE E	BASEFLOW	IF ANY.			
LOUTE							
STANDHYD (0230)	Area	(ha)=	0 70				
STANDHYD (0230) ID= 1 DT= 5.0 min	Total I	mn(%)= 6	6.00	Dir. Conn	.(%)= 6	56.00	
					. (,		
		IMPERVIOL	JS PE	RVIOUS (i)		
Surface Area	(ha)=	0.46		0.24			
Dep. Storage	(mm)=	2.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m)=	320.00		25.00			
Mannings n	=	0.013		0.300			

Page 18

```
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0475)|
| 1 + 2 = 3 |
| ID1= 1 ( 0225):
+ ID2= 2 ( 0230):
                                                  AREA
(ha)
0.60
0.70
                                                                                 TPEAK
(hrs)
6.25
6.25
                                                                                              R.V.
(mm)
36.68
32.01
          ID = 3 ( 0475):
                                              1.30 0.111
                                                                             6.25 34.16
        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR( 0540)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min |
                                            OVERFLOW IS OFF
                                            OUTFLOW STORAGE | OUTFLOW
                                                                                                          STORAGE
                                             (cms)
0.0000
0.0118
0.0184
0.0232
                                                               (ha.m.) |
0.0000 |
0.0048 |
0.0154 |
0.0261 |
                                                                                        (cms)
0.0271
0.0306
0.0415
0.0000
                                                                                                          (ha.m.)
0.0367
0.0474
0.0639
0.0000
                                                        AREA QPEAK
(ha) (cms)
1.300 0.111
1.300 0.021
                                                                                          TPEAK
                                                                                                               R.V.
                                                                                          (hrs)
6.25
6.92
     INFLOW : ID= 2 ( 0475)
OUTFLOW: ID= 1 ( 0540)
                                                   1.300
                                PEAK FLOW REDUCTION [Qout/Qin](%)= 19.22 TIME SHIFT OF PEAK FLOW (min)= 40.00 MAXIMUM STORAGE USED (ha.m.)= 0.0218
  ADD HYD ( 0480)|

1 + 2 = 3 |

ID1= 1 ( 0535):

+ ID2= 2 ( 0540):
                                                   AREA
(ha)
1.23
                                                                                 TPEAK
(hrs)
7.33
                                                                                               R.V.
(mm)
34.02
                                                              (cms)
0.010
0.021
                                                                                  6.92
                                                   1.30
                                                                                                34.09
                                                                             6.92
             ID = 3 ( 0480):
                                                  2.53 0.031
                                                                                               34.05
```

LangstaffRd_EA_Proposed_WestDonWatershd
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | CALIB | STANDHYD (0155)| |ID= 1 DT= 5.0 min | Area (ha)= 0.56 Total Imp(%)= 93.00 Dir. Conn.(%)= 93.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length Mannings n 0.52 2.00 1.00 260.00 0.013 (ha)= (mm)= (%)= (m)= = 0.04 5.00 2.00 25.00 0.290

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	NSEORMEI	HYETOGR	ΔPH		
TIME	RAIN	l TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02

Page 21

		+-EED4 F	A Dunna	ad Haath		h.d	
0.047				ed_WestD			4 00
0.917	1.02	4.000			3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02
2.083	1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.167	1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.250	1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.083	2.03	6.167	38.61	9.250	2.03	İ	

Max.Eff.Inten.(r	mm/hr)=	38.61	25.09	
over	(min)	5.00	10.00	
Storage Coeff.	(min)=	6.63 (ii)	8.73 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.18	0.12	
				TOTALS
PEAK FLOW	(cms)=	0.04	0.00	0.045 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	40.93	20.75	39.91
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COFFETCTI	FNT =	a 95	0 48	0 93

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0430)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)

Page 23

	Langs	taffRd_E	A_Propos	sed_WestDon	Watershd	
2.83	3 2.03	5.917	38.61	9.000	1.02 12.	.08 1.02
2.91	7 2.03	6.000	38.61	9.083	2.03 12.	17 1.02
3.00	2.03	6.083	38.61	9.167	2.03 12.	25 1.02
3.08	3 2.03	6.167	38.61	9.250	2.03	
Max.Eff.Inten.(mm/hn)_	38.61		22.96		
over	(min)	5.00		10.00		
Storage Coeff.	(min)=	6.63	(ii)	9.66 (ii)		
Unit Hyd. Tpeak	(min)=	5.00		10.00		
Unit Hyd. peak	(cms)=	0.18		0.11		
					TOTALS	•
PEAK FLOW	(cms)=	0.06		0.00	0.057	(iii)
TIME TO PEAK	(hrs)=	6.25		6.25	6.25	
RUNOFF VOLUME	(mm)=	40.93		18.96	39.38	
TOTAL RAINFALL	(mm)=	42.93		42.93	42.93	
RUNOFF COEFFICI	ENT =	0.95		0.44	0.92	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 87.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0160)	Area	(ha)=	0.43				
ID= 1 DT= 5.0 min	Total	Imp(%)=	95.00	Dir.	Conn.(%)=	95.00	
		IMPERVI	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	0.4	1	0.02	2		
Dep. Storage	(mm)=	2.0	0	5.00)		
Average Slope	(%)=	1.0	0	2.00)		
Length	(m)=	260.0	0	20.00)		
Mannings n	` =	0.01	3	0.250)		
=							

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02

Page 22

					LangstaffR	Rd_EA_P	roposed_West	DonWater	sho
	ID1=	1	(0155):	0.56	0.057	6.25	39.38	
ŀ	ID2=	2	(0160):	0.43	0.045	6.25	39.91	
	====					======			
	ID =	3	(0430):	0.99	0.102	6.25	39.61	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0150) ID= 1 DT= 5.0 min	Area Total	(ha)= 3.81 Imp(%)= 95.00		95.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	3.62	0.19	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	150.00	40.00	
Mannings n	` ′=	0.013	0.250	

				HYETOGR		•	
TIME	RAIN		RAIN	' TIME	RAIN		RAIN
hrs	mm/hr	hrs		' hrs		hrs	
0.083	0.00		2.03	6.250	38.61		1.02
0.167	0.00		2.03		8.13		1.02
0.250	0.00						1.02
0.333	1.02		1.02				2.03
0.417		3.500	1.02		8.13		2.03
0.500		3.583		6.667	8.13		2.03
0.583		3.667	2.03		8.13		1.02
0.667	1.02						1.02
0.750		3.833					
0.833		3.917	2.03		3.05		1.02
0.917		4.000	2.03		3.05		1.02
1.000		4.083	1.02		3.05		1.02
1.083	0.00		1.02		3.05		1.02
1.167	0.00		1.02				1.02
1.250	0.00		3.05		3.05		1.02
1.333		4.417	3.05		3.05		1.02
1.417		4.500	3.05		2.03		1.02
1.500	1.02		3.05		2.03		1.02
1.583	1.02		3.05				
1.667	1.02						1.02
1.750		4.833	3.05		3.05		1.02
1.833		4.917	3.05		3.05		1.02
1.917	1.02		3.05		2.03		1.02
2.000	1.02		3.05		2.03		1.02
2.083	1.02		3.05		2.03	11.33	0.00
2.167	1.02		3.05		2.03		0.00
2.250		5.333	5.08		2.03		0.00
2.333	1.02	5.417	5.08	8.500	2.03	11.58	1.02
			D	24			

LangstaffRd_EA_Proposed_WestDonWatershd									
2.417	1.02	5.500	5.08	8.583	2.03	11.67	1.02		
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02		
2.583	2.03	5.667	5.08	8.750	2.03	11.83	1.02		
2.667	2.03	5.750	5.08	8.833	1.02	11.92	1.02		
2.750	2.03	5.833	38.61	8.917	1.02	12.00	1.02		
2.833	2.03	5.917	38.61	9.000	1.02	12.08	1.02		
2.917	2.03	6.000	38.61	9.083	2.03	12.17	1.02		
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02		
3.083	2.03	6.167	38.61	9.250	2.03				

max.err.inten.(i	mm/ mr.) =	30.01	23.99	
over	(min)	5.00	10.00	
Storage Coeff.	(min)=	4.77 (ii)	7.95 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.22	0.13	
				TOTALS
PEAK FLOW	(cms)=	0.39	0.01	0.399 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	40.93	19.82	39.87
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COEFFICIE	ENT =	0.95	0.46	0.93

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 88.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0515) IN= 2> OUT= 1	OVERFLOW	IS OFF			
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
		(ha.m.) 0.0000	(cms) 0.0091		
		0.0157	0.0095		
	0.0033	0.0320	0.0100	0.2216	
	0.0044	0.0487	0.0104	0.2433	
	0.0053	0.0659	0.0109	0.2655	
	0.0061	0.0837	0.0113	0.2882	
	0.0068	0.1019	0.0116	0.3114	
	0.0074	0.1206	0.1520	0.3592	
	0.0080	0.1398	0.5654	0.4336	
	0.0086	0.1595	1.1316	0.5100	
	AR	EA QPEAK	TPEAK	R.V.	
	(h	ia) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0	150) 3.	810 0.39	99 6.25	39.87	
OUTFLOW: ID= 1 (0	3.	810 0.00	08 12.25	39.06	

PEAK FLOW REDUCTION [Qout/Qin](%)= 1.95

Page 25

LangstaffRd EA_Proposed_MestDonWatershd 1.02 | 4.759 | 3.05 | 7.833 | 3.05 | 1 1.02 | 4.833 | 3.05 | 7.917 | 3.05 | 1 1.02 | 4.917 | 3.05 | 8.060 | 3.05 | 1 1.02 | 5.080 | 3.05 | 8.083 | 2.03 | 1 1.02 | 5.080 | 3.05 | 8.167 | 2.03 | 1 1.02 | 5.167 | 3.05 | 8.250 | 2.03 | 1 1.02 | 5.250 | 3.05 | 8.333 | 2.03 | 1 1.02 | 5.250 | 3.05 | 8.333 | 2.03 | 1 1.02 | 5.337 | 5.08 | 8.417 | 2.03 | 1 1.02 | 5.337 | 5.08 | 8.417 | 2.03 | 1 1.02 | 5.538 | 5.08 | 8.500 | 2.03 | 1 1.02 | 5.538 | 5.08 | 8.500 | 2.03 | 1 1.02 | 5.585 | 5.08 | 8.500 | 2.03 | 1 1.02 | 5.583 | 5.08 | 8.667 | 2.03 | 1 1.02 | 5.583 | 5.08 | 8.867 | 2.03 | 1 1.02 | 5.533 | 5.08 | 8.867 | 2.03 | 1 1.02 | 5.590 | 5.08 | 8.750 | 2.03 | 1 1.02 | 5.591 | 38.61 | 9.000 | 1.02 | 1 1.03 | 5.060 | 38.61 | 9.083 | 2.03 | 1 1.03 | 6.060 | 38.61 | 9.083 | 2.03 | 1 1.03 | 6.083 | 38.61 | 9.167 | 2.03 | 1 1.04 | 5.61 | 5.067 | 5.08 | 1.06 | 5.08 | 1 1.06 | 5.067 | 5.08 | 8.750 | 2.03 | 1 1.07 | 5.07 | 5.08 | 8.833 | 1 1.07 | 5.07 | 5.08 | 8.833 | 1 1.07 | 5.08 | 5.08 | 8.750 | 2.03 | 1 1.08 | 5.08 | 5.08 | 8.750 | 2.03 | 1 1.09 | 6.167 | 38.61 | 9.083 | 2.03 | 1 1.00 | 6.167 | 38.61 | 9.167 | 2.03 | 1 1.00 | 6.167 | 38.61 | 9.250 | 2.03 | 1 1.667 1.750 1.833 10.92 11.00 11.08 1.917 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 11.17 11.25 11.33 11.42 11.50 11.58 11.67 11.75 1.02 0.00 0.00 1.02 1.02 1.02 2.583 2.667 2.750 2.833 2.917 3.000 3.083 11.83 11.92 12.00 12.08 12.17 12.25 1.02 1.02 1.02 1.02 1.02

Max.Eff.Inten.(r	nm/hr)=	38.61	19.37	
over	(min)	10.00	15.00	
Storage Coeff.	(min)=	9.46 (ii)	13.57 (ii)	
Unit Hyd. Tpeak	(min)=	10.00	15.00	
Unit Hyd. peak	(cms)=	0.12	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.08	0.01	0.084 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	40.93	15.99	35.43
TOTAL RAINFALL	(mm)=	42.93	42.93	42.93
RUNOFF COEFFICIE	ENT =	0.95	0.37	0.83

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB			
STANDHYD (0205)	Area (ha)= 1.11		
ID= 1 DT= 5.0 min	Total Imp(%)= 77.00	Dir. Conn.(%)=	77.00

		IMPERVIOUS	PERVIOUS	(i)
Surface Area	(ha)=	0.85	0.26	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	470.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO $\,$ 5.0 MIN. TIME STEP.

LangstaffRd_EA_Proposed_WestDonWatershd TIME SHIFT OF PEAK FLOW (min)=360.00 MAXIMUM STORAGE USED (ha.m.)= 0.1333 (min)=360.00 (ha.m.)= 0.1333

ADD HYD (0440)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0430):	0.99	0.102	6.25	39.61
+ ID2= 2 (0515):	3.81	0.008	12.25	39.06
=======================================				
ID = 3 (0440):	4.80	0.108	6.25	39.18

	10 = .) د	6446	, .	4.00	ט	. 100	0.25	39.10		
NC	OTE: P	EAK	FLOWS	DO N	OT INC	LUDE	BASEFI	LOWS IF	ANY.		
	OHYD (Area Tota			0.96 78.00	Dir.	Conn.(%)=	78.00	
					IMP	ERVI	OUS	PERVIO	US (i)		
Su	irface i	Area		(ha)=		0.7	5	0.2	1 ` ′		
De	p. Sto	rage		(mm)=		2.0	0	5.0	0		
Av	erage :	Slop	e	(%)=		1.0	0	2.0	0		
Le	ength			(m)=	4	70.0	0	20.0	0		
Ma	annings	n		=		0.01	3	0.25	0		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02

Page 26

${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$								
		TD	NCTODMI	D HYETOGRA	ADII			
TIME	RAIN		RAIN		RAIN		RAIN	
hrs		hrs		l' hrs				
0.083		3.167		6.250	38.61			
0.167		3.250		6.333	8.13		1.02	
0.250		3.333		6.417	8.13		1.02	
0.333	1 02	3.333	1.02	6.500	8.13		2.03	
0.417					8.13		2.03	
0.500	1.02	3.300	2.02	6.583	8.13		2.03	
0.583					8.13		1.02	
0.667		3.750		6.750		9.83	1.02	
				6.917		10.00		
							1.02	
0.833	1.02	3.91/	2.03	7.000	3.05		1.02	
0.917		4.000		7.083		10.17	1.02	
1.000		4.083		7.167			1.02	
1.083 1.167	0.00	4.167	1.02	7.250		10.33	1.02	
		4.250	1.02	7.333		10.42	1.02	
1.250	0.00	4.333	3.05	7.417	3.05		1.02	
1.333		4.417		7.500		10.58	1.02	
1.417				7.583	2.03			
1.500	1.02	4.583	3.05	7.667	2.03		1.02	
						10.83	1.02	
		4.750	3.05	7.833	3.05		1.02	
1.750		4.833		7.917		11.00	1.02	
1.833				8.000		11.08	1.02	
1.917	1.02	5.000	3.05	8.083 8.167	2.03		1.02	
2.000	1.02	5.083	3.05	8.16/		11.25	1.02	
				8.250			0.00	
2.167		5.250		8.333		11.42	0.00	
2.250				8.417		11.50	0.00	
2.333		5.417		8.500	2.03		1.02	
2.417		5.500		8.583		11.67	1.02	
2.500				8.667			1.02	
2.583	2.03	5.667	5.08	8.750		11.83	1.02	
	2.03	5./50	5.08			11.92	1.02	
2.750	2.03	5.833	38.61	8.917	1.02		1.02	
2.833		5.917		9.000		12.08	1.02	
2.917		6.000		9.083		12.17	1.02	
3.000	2.03	6.083	38.61	9.167		12.25	1.02	
3.083	2.03	6.167	38.61	9.250	2.03			
Max.Eff.Inten.(mm/	hr)=	38.61		19.37				
over (m		10.00		15.00				
Storage Coeff. (m	in)=	9.46	(ii)	13.66 (ii)			

Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 9.46 (ii) 10.00 0.12 *TOTALS* 0.096 (iii) 6.25 35.18 42.93 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.01 6.25 40.93 42.93 0.95 6.33 15.99 42.93 0.37

LangstaffRd_EA_Proposed_WestDonWatershd

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

AREA (ha) 1.11 QPEAK (cms) 0.096 0.084 TPEAK (hrs) 6.25 R.V. (mm) 35.18 0.96 6.25 35.43 ID = 3 (0460): 2.07 0.180 6.25 35.30

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR(0525)| | IN= 2---> OUT= 1 | DT= 5.0 min OVERFLOW IS OFF OUTFLOW STORAGE OUTFI OW STORAGE STORAGE (ha.m.) 0.0000 0.0026 0.0084 0.0149 (cms) 0.0000 0.0274 0.0478 0.0619 (cms) 0.0733 0.0831 0.1449 0.0000 (ha.m.) 0.0214 0.0278 0.0374 TPEAK OPEAK R.V. AREA (ha) 2.070 INFLOW : ID= 2 (0460) OUTFLOW: ID= 1 (0525)

PEAK FLOW REDUCTION [Qout/Qin](%)= 41.39 TIME SHIFT OF PEAK FLOW (min)= 20.00 MAXIMUM STORAGE USED (ha.m.)= 0.0222

| CALIB | | STANDHYD (0190)| |ID= 1 DT= 5.0 min | Area (ha)= 0.86 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.37 5.00 2.00 50.00 Surface Area 0.49 Dep. Storage Average Slope Length Mannings n 1.00

Page 29

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0195) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.79 75.00	Dir. Conn.(%)=	75.6
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)=	IMPERVIO 0.59 2.00 1.00 340.00 0.013		PERVIOUS (i) 0.20 5.00 2.00 20.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	38.61	9.33	1.02
0.167	0.00	3.250	2.03	6.333	8.13	9.42	1.02
0.250	0.00	3.333	1.02	6.417	8.13	9.50	1.02
0.333	1.02	3.417	1.02	6.500	8.13	9.58	2.03
0.417	1.02	3.500	1.02	6.583	8.13	9.67	2.03
0.500	1.02	3.583	2.03	6.667	8.13	9.75	2.03
0.583	1.02	3.667	2.03	6.750	8.13	9.83	1.02
0.667	1.02	3.750	2.03	6.833	3.05	9.92	1.02
0.750	1.02	3.833	2.03	6.917	3.05	10.00	1.02
0.833	1.02	3.917	2.03	7.000	3.05	10.08	1.02
0.917	1.02	4.000	2.03	7.083	3.05	10.17	1.02
1.000	1.02	4.083	1.02	7.167	3.05	10.25	1.02
1.083	0.00	4.167	1.02	7.250	3.05	10.33	1.02
1.167	0.00	4.250	1.02	7.333	3.05	10.42	1.02
1.250	0.00	4.333	3.05	7.417	3.05	10.50	1.02
1.333	1.02	4.417	3.05	7.500	3.05	10.58	1.02
1.417	1.02	4.500	3.05	7.583	2.03	10.67	1.02
1.500	1.02	4.583	3.05	7.667	2.03	10.75	1.02
1.583	1.02	4.667	3.05	7.750	2.03	10.83	1.02
1.667	1.02	4.750	3.05	7.833	3.05	10.92	1.02
1.750	1.02	4.833	3.05	7.917	3.05	11.00	1.02
1.833	1.02	4.917	3.05	8.000	3.05	11.08	1.02
1.917	1.02	5.000	3.05	8.083	2.03	11.17	1.02
2.000	1.02	5.083	3.05	8.167	2.03	11.25	1.02

Page 31

LangstaffRd_EA_Proposed_WestDonWatershd NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORM	ED HYETOGRA	ΔPH	_	
TIM	E RAIN		RAIN		RAIN		RAIN
hr					mm/hr		mm/hr
0.08		3.167		6.250	38.61		1.02
0.16		3.250		6.333	8.13		1.02
0.25		3.333		6.417	8.13		1.02
0.33		3.417		6.500	8.13		2.03
0.41		3.500		6.583	8.13		2.03
0.50		3.583		6.667	8.13		2.03
		3.667		6.750	8.13		1.02
0.58 0.66		3.750		6.833	3.05		1.02
0.75		3.833		6.917		10.00	1.02
0.83		3.917		7.000	3.05		1.02
0.91		4.000		7.083		10.17	1.02
1.00		4.083		7.167		10.25	1.02
1.08		4.167		7.250		10.33	1.02
1.16		4.250		7.333		10.42	1.02
1.25		4.333		7.417		10.50	1.02
1.33		4.417		7.500		10.58	1.02
1.41		4.500		7.583		10.67	1.02
1.50		4.583		7.667		10.75	1.02
1.58		4.667		7.750		10.83	1.02
1.66		4.750		7.833		10.92	1.02
1.75		4.833		7.917		11.00	1.02
1.83		4.917		8.000		11.08	1.02
1.91		5.000		8.083		11.17	1.02
2.00	0 1.02	5.083	3.05	8.167		11.25	1.02
2.08	3 1.02	5.167	3.05	8.250	2.03	11.33	0.00
2.16	7 1.02	5.250	3.05	8.333	2.03	11.42	0.00
2.25	0 1.02	5.333	5.08	8.417	2.03	11.50	0.00
2.33	3 1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.41	7 1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.50		5.583		8.667	2.03	11.75	1.02
2.58		5.667		8.750		11.83	1.02
2.66	7 2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.75	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.83	3 2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.91	7 2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.00	0 2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.08	3 2.03	6.167	38.61	9.250	2.03		
Max.Eff.Inten.(nm/hr)-	38.61		17.44			
	(min)	10.00		25.00			
Storage Coeff.	(min)=	7.79	(33)	24.01 (ii)			
Unit Hvd. Tpeak		10.00	(11)	25.00	,		
Unit Hyd. peak		0.13		0.05			
опте пуш. реак	(cms)=	0.13		0.03	****	TALS*	
PEAK FLOW	(cms)=	0.05		0.01		.059 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.50		.039 (111) 6.25	
RUNOFF VOLUME	(nrs)= (mm)=	40.93		15.99		0.19	
NUMBER VOLUME	(11111)=	40.93		10.99	31	0.19	
			Page	30			

	Lange	taffRd F	Δ Prono	sed WestDon	Waters	hd	
2.08						11.33	0.00
2.16					2.03		0.00
2.256			5.08	8.417	2.03		0.00
2.33	3 1.02	5.417	5.08	8.500	2.03	11.58	1.02
2.41	7 1.02	5.500	5.08	8.583	2.03	11.67	1.02
2.500	1.02	5.583	5.08	8.667	2.03	11.75	1.02
2.583	3 2.03	5.667	5.08	8.750	2.03	11.83	1.02
2.66	7 2.03	5.750	5.08	8.833	1.02	11.92	1.02
2.756	2.03	5.833	38.61	8.917	1.02	12.00	1.02
2.83	3 2.03	5.917	38.61	9.000	1.02	12.08	1.02
2.91	7 2.03	6.000	38.61	9.083	2.03	12.17	1.02
3.000	2.03	6.083	38.61	9.167	2.03	12.25	1.02
3.08	3 2.03	6.167	38.61	9.250	2.03	l	
Max.Eff.Inten.(r	nm/hr)=	38.61		19.37			
	(min)	10.00		15.00			
Storage Coeff.		7.79	(ii)	12.18 (ii)			
Unit Hyd. Tpeak		10.00		15.00			
Unit Hyd. peak		0.13		0.09			
, ,	` '				*T0	TALS*	
PEAK FLOW	(cms)=	0.06		0.01	0	.069 (iii)
TIME TO PEAK	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	40.93		15.99	3-	4.69	
TOTAL RAINFALL	(mm)=	42.93		42.93	4	2.93	
RUNOFF COEFFICIE	ENT =	0.95		0.37		0.81	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0455)	AREA	QPEAK	TPEAK	R.V.
1 + 2 = 3	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0190):	0.86	0.059	6.25	30.19
+ ID2= 2 (0195):	0.79	0.069	6.25	34.69
ID = 3 (0455):	1.65	0.128	6.25	32.34

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0555)	OVERFLOW	IS OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0.0238	0.0199	
	0.0104	0.0024	0.0268	0.0259	

LangstaffRd_EA_Proposed_WestDonWatershd 0.0079 | 0.0825 0.0139 | 0.0000 0.0346 0.0203

AREA (ha) 1.650 QPEAK TPEAK (cms) (hrs) 0.128 6.25 0.026 6.92 (mm) 32.34 32.31 INFLOW: ID= 2 (0455) OUTFLOW: ID= 1 (0555) 1.650

PEAK FLOW REDUCTION [Qout/Qin](%)= 20.36
TIME SHIFT OF PEAK FLOW (min)= 40.00
MAXIMUM STORAGE USED (ha.m.)= 0.0244

ADD HYD (0465)| 1 + 2 = 3 | AREA QPEAK (ha) (cms) 2.07 0.074 1.65 0.026 TPFAK (hrs) 6.58 6.92 (mm) 35.29 32.31 ID1= 1 (0525): 2.07 0.074 6.58 + ID2= 2 (0555): 1.65 0.026 6.92 ID = 3 (0465): 3.72 0.100 6.58 33.97

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION:Run 03 **

READ STORM | Filename: C:\Users\ray.zhao\AppD ata\Local\Temp\ e8da0adc-3b43-467d-984d-5ab4a7d3492c\526be1c0 Ptotal= 55.37 mm Comments: 5yr-12hrSCS

TIME RAIN | TIME hrs mm/hr | hrs 6.75 10.16 | 10.00 7.00 5.08 | 10.25 7.25 4.06 | 10.50 RAIN | TIME mm/hr | hrs 0.00 | 3.50 1.02 | 3.75 RAIN mm/hr 3.05 2.03 0.50 0.75 1.02 4.00 2.03 1.02 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 1.00 1.02 4.25 2.03 3.05 10.75 1.02 1.25 1.50 1.75 2.00 2.25 2.50 1.02 1.02 2.03 1.02 1.02 2.03 4.25 4.50 4.75 5.00 5.25 5.50 5.75 4.06 4.06 4.06 3.05 7.11 7.11 3.05 4.06 3.05 2.03 2.03 11.00 11.25 11.50 11.75 2.03 3.05 2.75 2.03 6.00 49.78 9.25 2.03 6.25 49.78 3.25 2.03 6.50 9.14 2.03

Page 33

Max.Eff.Inten.(mm/hr)= 49.78 29.56 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 15.00 5.85 (ii) 10.07 (ii) 5.00 15.00 0.20 0.10 *TOTALS* 0.070 (iii) PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.06 6.25 53.37 55.37 6.33 24.78 6.25 45.36 55.37 RUNOFF COEFFICIENT

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.42 2.00 1.00 250.00 Length Mannings n

0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

> ---- TRANSFORMED HYETOGRAPH
> RAIN | TIME RAIN | TIME R
> mm/hr | hrs mm/hr | hrs mm RAIN | TIME mm/hr | hrs mm/hr | 0.00 | 0.00 | 0.00 | mm/hr | 2.03 | mm/hr | hrs 2.03 | 6.250 2.03 | 6.333 3.05 | 6.417 3.05 | 6.583 2.03 | 6.667 2.03 | 6.667 2.03 | 6.833 2.03 | 6.917 2.03 | 7.000 2.03 | 7.083 2.03 | 7.167 hrs hrs 3.167 mm/hr 1.02 0.083 9.33 49.78 0.167 3.250 9.14 | 9.42 1.02 0.250 3.333 9.50 1.02 9.14 9.14 10.16 10.16 10.16 5.08 5.08 0.333 0.417 0.500 0.583 1.02 1.02 1.02 1.02 3.417 3.500 3.583 3.667 9.58 9.67 9.75 9.83 2.03 2.03 2.03 2.03 0.667 1.02 3.750 9.92 2.03 0.750 1.02 3.833 2.03 0.833 1.02 | 3.917 1.02 | 4.000 5.08 10.08 1.02 0 917 4.06 | 1 02 1.02 | 4.083

0.250

Page 35

LangstaffRd_EA_Proposed_WestDonWatershd

		-	-	. –	
CALIB					
STANDHYD (0165)	Area	(ha)=	0.60		
ID= 1 DT= 5.0 min	Total	Imp(%)=	72.00	Dir. Conn.(%)=	72.00
		IMPERVIO	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.4	3	0.17	
Dep. Storage	(mm)=	2.0	а	5.00	
Average Slope	(%)=	1.0	9	2.00	
Length	(m)=	250.0	а	20.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02

Page 34

	Langs	taffRd E	A Propos	ed WestDo	onWaters	hd	
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03	l	
Inten (mm/	hr)=	49 78		36 58			

Max.Eff.Inten.(mm/hr)= 5.00 5.85 (ii) 5.00 0.20 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 10.00 7.15 (ii) PEAK FLOW (cms)= 0.059 (iii) PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 6.25 53.37 6.25 6.25 31.03 52.91 55.37

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 89.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0180) | Area (ha)= 0.65 |ID=1 DT= 5.0 min | Total Imp(%)= 52.00 Dir. Conn.(%)= 52.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.31

LangstaffRd_EA_Proposed_WestDonWatershd

(mm)=	2.00	5.00
(%)=	1.00	2.00
(m)=	65.83	40.00
=	0.013	0.250
	(%)= (m)=	(%)= 1.00 (m)= 65.83

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03		

Max.Eff.Inten.(mm/hr) = 49.78 28.42 over (min) 5.00 15.00 Storage Coeff. (min) = 2.63 (ii) 14.30 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00

Page 37

	ngstaffRd_E					
1.583 2.0	3 4.667	4.06	7.750	3.05	10.83	2.03
1.667 2.0	3 4.750	4.06	7.833	4.06	10.92	2.03
1.750 2.0	3 4.833	4.06	7.917	4.06	11.00	2.03
1.833 1.0	2 4.917	4.06	8.000	4.06	11.08	1.02
1.917 1.0	2 5.000	4.06	8.083	3.05	11.17	1.02
2.000 1.0	2 5.083	3.05	8.167	3.05	11.25	1.02
2.083 1.0	2 5.167	3.05	8.250	3.05	11.33	1.02
2.167 1.0	2 5.250	3.05	8.333	2.03	11.42	1.02
2.250 1.0	2 5.333	7.11	8.417	2.03	11.50	1.02
2.333 2.0	3 5.417	7.11	8.500	2.03	11.58	1.02
2.417 2.0	3 5.500	7.11	8.583	2.03	11.67	1.02
2.500 2.0	3 5.583	7.11	8.667	2.03	11.75	1.02
2.583 2.0	3 5.667	7.11	8.750	2.03	11.83	1.02
2.667 2.0	3 5.750	7.11	8.833	3.05	11.92	1.02
2.750 2.0	3 5.833	49.78	8.917	3.05	12.00	1.02
2.833 2.0	3 5.917	49.78	9.000	3.05	12.08	1.02
2.917 2.0	3 6.000	49.78	9.083	2.03	12.17	1.02
3.000 2.0	3 6.083	49.78	9.167	2.03	12.25	1.02
3.083 2.0	3 6.167	49.78	9.250	2.03	İ	
Max.Eff.Inten.(mm/hr)=	49.78		25.73			
over (min)	5.00		20.00			
Storage Coeff. (min)=	5.71	(ii)	15.52 (ii)			
Unit Hyd. Tpeak (min)=	5.00		20.00			
Unit Hyd. peak (cms)=	0.20		0.07			
				T0	TALS	
PEAK FLOW (cms)=	0.05		0.01	0	.052 (iii)	
TIME TO PEAK (hrs)=	6.25		6.42		5.25	
RUNOFF VOLUME (mm)=	53.37		21.52	4	4.44	
TOTAL RAINFALL (mm)=	55.37		55.37	5	5.37	
RUNOFF COEFFICIENT =	0.96		0.39		0.80	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0445)				
1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0180):	0.65	0.064	6.25	39.63
+ ID2= 2 (0185):	0.47	0.052	6.25	44.44
============				
ID = 3 (0445):	1.12	0.116	6.25	41.65
NOTE: PEAK FLOWS DO N	OT INCL	JDE BASEFL	.OWS IF AM	NY.

Page 39

LangstaffRd_EA_Proposed_WestDonWatershd

Unit Hyd. peak	(cms)=	0.29	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.02	0.064 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	53.37	24.78	39.63
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37
RUNOFF COEFFICI	ENT =	0.96	0.45	0.72

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0185)	Area	(ha)=	0.47				
ID= 1 DT= 5.0 min	Total	Imp(%)=	72.00	Dir.	Conn.(%)=	72.00	
		IMPERVIO	US	PERVIOL	IS (i)		
Surface Area	(ha)=	0.34	1	0.13	:		
Dep. Storage	(mm)=	2.00)	5.00)		
Average Slope	(%)=	1.00)	2.00)		
Length	(m)=	240.00)	20.00)		
Mannings n	=	0.013	;	0.350)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02

Page 38

 ${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

ADD HYD (0450)					
1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.	
1 2 1 2 - 3 1	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0165):	0.60	0.070	6.25	45.36	
+ ID2= 2 (0170):	0.43	0.059	6.25	52.91	
=======================================					
TD = 3 (0450):	1.03	0.129	6.25	48.51	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0450)
3 + 2 = 1 AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
ID1= 3 (0450): 1.03 0.129 6.25 48.51
+ ID2= 2 (0445): 1.12 0.116 6.25 41.65
ID = 1 (0450): 2.15 0.245 6.25 44.94

NOTE: PEAK FLOWS	DO NOT IN	CLUDE B	ASEFLOWS	IF ANY.		
RESERVOIR(0520) IN= 2> OUT= 1	OVERFLO	W IS OF	F			
DT= 5.0 min	OUTFLOW	ST0	RAGE	OUTFLOW	STORAGE	
	(cms)	(ha	.m.)	(cms)	(ha.m.)	
				0.0181		
	0.0081	0.0	9048 j	0.0203	0.0732	
	0.0123	0.0	0192	0.0224	0.1152	
	0.0155	0.0	0372	0.0000	0.0000	
		AREA	QPEAK	TPEAK	R.V.	
		(ha)	(cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0-						
OUTFLOW: ID= 1 (0	520)	2.150	0.019	8.08	44.87	
PEA	(FLOW	REDUCT	ION [Qout	/Qin](%)=	7.66	
				(min)=1		
				(hà.m.)=		

STANDHYD (0145) ID= 1 DT= 5.0 min	Area Total	(ha)= 3. Imp(%)= 76.	05 00 Dir. Conn.(%)=	76.00	
		IMPERVIOUS	PERVIOUS (i)		
Surface Area	(ha)=	2.32	0.73		
Dep. Storage	(mm)=	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m)=	531.00	40.00		

LangstaffRd_EA_Proposed_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORM	D HYETOGR	APH		
TIME	RAIN		RAIN				RAI
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/h
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	7 0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.256	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	7 1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	3 1.02	3.667		6.750	10.16	9.83	2.03
0.667	7 1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.756	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	7 1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000		4.083		7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	7 1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.256	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333		4.417		7.500	3.05		1.02
1.417	7 1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583		4.667		7.750	3.05		2.03
1.667	7 2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.756		4.833		7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	7 1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000		5.083		8.167	3.05		1.02
2.083	3 1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.167		5.250		8.333	2.03		1.02
2.256		5.333		8.417	2.03		1.02
2.333		5.417			2.03		1.02
2.417		5.500	7.11		2.03		1.02
2.500		5.583	7.11		2.03		1.02
2.583		5.667		8.750	2.03		1.02
2.667		5.750			3.05		1.02
2.756				8.917	3.05		1.02
2.833		5.917			3.05		1.02
2.917				9.083	2.03		1.02
3.000		6.083			2.03		1.02
3.083	2.03	6.167	49.78	9.250	2.03		
Max.Eff.Inten.(r	nm/hr)=	49.78		31.75			
	(min)	10.00		25.00			
Storage Coeff.	(min)=	9.20	(ii)	20.36 (ii)		
Unit Hyd. Tpeak		10.00		25.00			
Unit Hyd. peak	(cms)=	0.12		0.05			
						ΓALS*	
PEAK FLOW	(cms)=	0.31		0.04	0.	.337 (iii)	

Page 41

	Langs	taffRd_E	A_Propo	sed_WestDon	Waters	hd	
1.91	7 1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.08	3 1.02	5.167	3.05	8.250	3.05	11.33	1.02
2.16	7 1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
2.33	3 2.03	5.417	7.11	8.500	2.03	11.58	1.02
2.41	7 2.03	5.500	7.11	8.583	2.03	11.67	1.02
2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
2.58	3 2.03	5.667	7.11	8.750	2.03	11.83	1.02
2.66	7 2.03	5.750	7.11	8.833	3.05	11.92	1.02
2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.02
2.83	3 2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.91	7 2.03	6.000	49.78	9.083	2.03	12.17	1.02
3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
3.08	3 2.03	6.167	49.78	9.250	2.03	l	
Max.Eff.Inten.(r	mm/hr)=	49.78		30.62			
	(min)	10.00		15.00			
Storage Coeff.	(min)=	8.90	(ii)	10.15 (ii)			
Unit Hyd. Tpeak	(min)=	10.00		15.00			
Unit Hyd. peak	(cms)=	0.12		0.10			
						TALS*	
PEAK FLOW	(cms)=	0.19		0.00		.188 (iii))
TIME TO PEAK	(hrs)=	6.25		6.33		5.25	
RUNOFF VOLUME	(mm)=	53.37		25.69		3.09	
TOTAL RAINFALL	(mm)=	55.37		55.37		5.37	
RUNOFF COEFFICI	ENT =	0.96		0.46	(9.96	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 84.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ID= 1 DT= 5.0 min	Total	Imp(%)=	91.00	Dir.	Conn.(
		IMPERVIO	OUS	PERVIOL	JS (i)
Surface Area	(ha)=	1.16	5	0.11	L `´
Dep. Storage	(mm)=	2.00	9	5.00	9
Average Slope	(%)=	1.00	9	2.00	9
Length	(m)=	503.00	9	25.00	9
Mannings n	=	0.013	3	0.256	9

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

Page 43

LangstaffRd_EA_Proposed_WestDonWatershd

TIME TO PEAK	(hrs)=	6.25	6.50	6.25
RUNOFF VOLUME	(mm)=	53.37	27.66	47.20
TOTAL RAINFALL	(mm)=	55.37	55.37	55.37
RUNOFF COEFFICI	ENT =	0.96	0.50	0.85

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0135)	Area	(ha)=	1.43			
ID= 1 DT= 5.0 min	Total	Imp(%)=	99.00	Dir.	Conn.(%)=	99.00
		IMPERVI	OUS	PERVIOL	IS (i)	
Surface Area	(ha)=	1.4	2	0.01		
Dep. Storage	(mm)=	2.0	0	5.00)	
Average Slope	(%)=	1.0	0	2.00)	
Length	(m)=	503.0	0	30.00)	
Mannings n	` =	0.01	3	0.256)	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH											
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN					
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr					
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02					
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02					
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02					
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03					
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03					
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03					
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03					
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03					
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03					
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02					
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02					
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02					
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02					
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02					
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02					
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02					
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02					
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02					
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03					
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03					
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03					
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02					

hr			mm/hr	sed_WestDo	mm/hr		mm/hr
0.08			2.03		49.78		1.02
0.16		3.250	2.03		9.14		1.02
0.25			3.05		9.14		1.02
0.33		3.417	3.05		9.14		2.03
0.41			3.05		10.16		2.03
0.50				6.667	10.16		2.03
0.58				6.750	10.16		2.03
0.66		3.750	2.03		5.08		2.03
0.75		3.833		6.917	5.08		2.03
0.83		3.917	2.03		5.08		1.02
0.91		4.000	2.03		4.06		1.02
1.00		4.083	2.03		4.06		1.02
1.08		4.167	2.03		4.06		1.02
1.16		4.250		7.230	3.05		1.02
1.25		4.333	4.06		3.05		1.02
1.33		4.417	4.06		3.05		1.02
1.41		4.417		7.583	3.05		1.02
		4.583	4.06		3.05		1.02
1.50 1.58		4.565	4.06		3.05		2.03
1.66		4.750	4.06		4.06		2.03
1.00		4.730	4.06		4.06		2.03
		4.833	4.06		4.06		
1.83 1.91			4.06				1.02
			3.05		3.05 3.05		1.02
2.00					3.05		1.02
2.08 2.16		5.167 5.250	3.05	8.250	2.03		1.02
2.16					2.03		1.02
2.25			7.11	8.417	2.03		1.02
2.41			7.11		2.03		1.02
2.50				8.667	2.03		1.02
2.58 2.66			7.11	8.750	2.03		1.02
					3.05		
2.75		5.833		8.917	3.05		1.02
2.83			49.78		3.05		1.02
2.91 3.00		6.000	49.78	9.083	2.03	12.17 12.25	1.02
3.08		6.083 6.167		9.167	2.03		1.02
Max.Eff.Inten.(mm/hr)=	49.78		29.56			
	(min)	10.00		15.00			
Storage Coeff.	(min)=		(ii)	11.69 (ii)		
Unit Hyd. Tpeak		10.00	. ,	15.00			
Unit Hyd. peak	(cms)=	0.12		0.09			
	. /				*T0	TALS*	
PEAK FLOW	(cms)=	0.15		0.01	0	.160 (iii)
TIME TO PEAK	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	53.37		24.78		0.79	
TOTAL RAINFALL	(mm)=	55.37		55.37		5.37	
RUNOFF COEFFICI		0.96		0.45		0.92	

LangstaffRd_EA_Proposed_WestDonWatershd
CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0420)| | 1 + 2 = 3 | QPEAK (cms) 0.188 0.160 R.V. (mm) 53.09 50.79 AREA TPEAK (ha) 1.43 1.27 (hrs) 6.25 6.25 ID = 3 (0420): 2.70 0.348 6.25 52.01

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR(0530)| | IN= 2---> OUT= 1 | DT= 5.0 min OVERFLOW IS OFF OUTFLOW (ha.m.) 0.0000 0.0072 0.0283 0.0553 (ha.m.) 0.0823 0.1093 (cms) 0.0000 (cms) 0.0122 0.0056 0.0084 0.0105 0.0382 0.0516 0.0000 TPEAK (hrs) 6.25 7.42 (ha) 2.700 2.700 (cms) 0.348 0.028 (mm) 52.01 51.89 INFLOW : ID= 2 (0420) OUTFLOW: ID= 1 (0530)

PEAK FLOW REDUCTION [Qout/Qin](%)= 7.91
TIME SHIFT OF PEAK FLOW (min)= 70.00
MAXIMUM STORAGE USED (ha.m.)= 0.0983

ADD HYD (0425)| 1 + 2 = 3 | QPEAK (cms) 0.337 0.028 R.V. (mm) 47.20 51.89 ARFA TPFAK (hrs) 6.25 7.42 ID = 3 (0425): 5.75 6.25 49.40 0.348

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR(0512)| | IN= 2---> OUT= 1 | OVERFLOW IS OFF

Page 45

	Langs	staffRd_E	A_Propos	sed_WestDon	Waters	hd	
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	3 2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	7 2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.756	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	7 1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000				8.167	3.05		1.02
2.083			3.05		3.05		1.02
2.167			3.05		2.03		1.02
2.256				8.417	2.03		1.02
2.333				8.500	2.03		1.02
2.417		5.500	7.11		2.03		1.02
2.500			7.11		2.03		1.02
2.583		5.667			2.03		1.02
2.667		5.750		8.833	3.05		1.02
2.756		5.833		8.917	3.05		1.02
2.833		5.917		9.000	3.05		1.02
2.917				9.083	2.03		1.02
3.000			49.78		2.03		1.02
3.083	2.03	6.167	49.78	9.250	2.03	l	
Max.Eff.Inten.(r	nm/hr)=	49.78		29.56			
over	(min)	5.00		15.00			
Storage Coeff.	(min)=	5.99	(ii)	10.39 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		15.00			
Unit Hyd. peak	(cms)=	0.19		0.09			
					T0	TALS	
PEAK FLOW	(cms)=	0.06		0.01	0	.072 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	53.37		24.78	4	7.93	
TOTAL RAINFALL	(mm)=	55.37		55.37	5	5.37	
RUNOFF COEFFICIE	NT =	0.96		0.45		0.87	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0220) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.65 66.00	Dir.	Conn.(%)=	66.00	
		IMPERVIO	US	PERVIO	JS (i)		
Surface Area	(ha)=	0.43		0.22	<u>)</u>		
Dep. Storage	(mm)=	2.00		5.00	•		
Average Slope	(%)=	1.00		2.00	9		
Length	(m)=	260.00		20.00	9		
Mannings n	=	0.013		0.256	9		

Page 47

	Langet	offed E	N Bronor	ed WestDo	nHatone	hd	
DT= 5.0 min				OUTFLO			
7 51- 510 11211	(cms)			(cms)			
	à aga	a a	0000	0 047	1 (0.1003	
	0.000	1 0.	0165	0.047 0.063	6 6	0.1284	
	0.009		0331	0.076	3 6	0.1594	
	0.011			0.087	a 6		
	0.013		0750	0.096	4 6	0.1934 0.2308	

		AREA	OPEAK	TPEA	K	R.V.	
		(ha)	(cms)	TPEA (hrs)	(mm)	
INFLOW : ID= 2 (04	25)	5.750	0.34	48 [`] 6	.25	49.40	
INFLOW : ID= 2 (04 OUTFLOW: ID= 1 (05	12)	5.750	0.0	52 8	.33	49.30	
PEAK	FLOW	REDUCT	ION [Qou	ut/Qin](%)= 14.98	3	
TIME	SHIFT 0	F PEAK F	LOW	(min)=125.00	•	
MAXI	MUM STO	RAGE U	SED	(ha.m.)= 0.16	988	
CALIB							
STANDHYD (0215)	Area	(ha)=	0.58				
ID= 1 DT= 5.0 min	Total Im	p(%)= 8	1.00 [Dir. Conn	.(%)= 8	31.00	
		MPERVIOU	S PER	RVIOUS (i)		
Surface Area (ha)=	0.47		0.11			
Dep. Storage (mm)=	2.00		5.00			
Average Slope	(%)= (m)=	1.00		2.00			
				30.00			
Mannings n	=	0.013	(0.250			
NOTE: RAINFAL	L HAC TO	ANCEODME	D TO 1	C MTN	TTME CT	- n	
NOTE: RAINFAL	L WAS IR	ANSFURME	U 10 :	o.e min.	ITME 210	· .	
		TDA	NC EODMEI	HYETOGR	ADLI		
TIME				TIME			RAIN
h	(1	In comme	man Harr	ii baa	/ In	i boo	and the
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	9.92 10.00 10.08 10.17 10.25 10.33 10.42 10.50	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02

Page 46

 ${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$ NOTE

NOTE:	RAINFAL	L WAS TE	RANSFORM	D TO	5.0 MIN.	TIME ST	EP.	
					ED HYETOGR			
	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
	0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
	0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
	0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
	0.333	1.02	3.417	3.05	6.417 6.500 6.583 6.667	9.14	9.58	2.03
	0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
	0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
	0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
	0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
	0.750	1.02	3.833	2.03	6.917 7.000	5.08	10.00	2.03
	0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
	0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
	1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
	1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
	1.167	1.02	4.250	2.03	7.250	3.05	10.42	1.02
	1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
	1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
	1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
	1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
	1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
	1.667	2.03	4.750	4.06	7.750	4.06	10.92	2.03
	1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
	1.833	1.02	4.917	4.06	7.917	4.06	11.08	1.02
	1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
	2.000	1.02	5.083	3.05	8.083 8.167	3.05	11.25	1.02
	2.083	1.02	5.167	3.05	8.250	3.05	11.33	1.02
	2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
	2.250	1.02	5.333	7.11	8.417	2.03	11.50	1.02
	2.333	2.03	5.417	7.11	8.500	2.03	11.58	1.02
	2.417	2.03	5.500	7.11	8.583	2.03	11.67	1.02
	2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
	2.583	2.03	5.667	7.11	8.750	2.03	11.83	1.02
	2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.02
	2.750	2.03	5.833	49.78	8.917 9.000	3.05	12.00	1.02
	2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
	2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.02
	3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
	3.083	2.03	6.167	49.78	9.250	2.03	İ	
Max.Eff.Ir	nten.(mm/	hr)=	49.78		29.56			
Max.Eff.Ir Storage Co Unit Hyd. Unit Hyd.	over (m	in)	5.00		15.00			
Storage Co	eff. (m	in)=	5.99	(ii)	10.71 (ii)		
Unit Hyd.	Tpeak (m	in)=	5.00		15.00			
Unit Hyd. Unit Hyd.	peak (c	ms)=	0.19		0.09			
		,				****	TALC*	

Page 48

0.06 6.25 53.37 0.01

PEAK FLOW TIME TO PEAK RUNOFF VOLUME

(cms)= (hrs)= (mm)=

TOTALS 0.073 (iii) 6.25 43.64

LangstaffRd_EA_Proposed_WestDonWatershd 1)= 55.37 55.37 55.3 = 0.96 0.45 0.7 TOTAL RAINFALL (mm)= NT = RUNOFF COEFFICIENT

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 83.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0470)| 1 + 2 = 3 AREA QPEAK (ha) 0.58 (cms) 0.072 (hrs) 6.25 (mm) 47.93 ID1= 1 (0215): + ID2= 2 (0220): 0.65 43.64 ID = 3 (0470): 1.23 6.25 45.67

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0535) IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE OUTFI OW STORAGE (cms) 0.0000 0.0053 (ha.m.) 0.0000 0.0048 (cms) 0.0116 0.0131 0.0080 0.0154 0.0202 0.0639 0.0100 0.0261 0.0000 QPEAK (cms) 0.144 0.011 ΔRFΔ TPFΔK R V PEAK FLOW REDUCTION [Qout/Qin](%)=
TIME SHIFT OF PEAK FLOW (min)= (
MAXIMUM STORAGE USED (ha.m.)= (min)= 65.00 (ha.m.)= 0.0358

| CALIB | STANDHYD (0225) |ID= 1 DT= 5.0 min | Area (ha)= 0.60 Total Imp(%)= 83.00 Dir. Conn.(%)= 83.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.50 2.00 1.00 320.00 0.10 5.00 2.00 10.00 Surface Area Dep. Storage Average Slope Length

Page 49

LangstaffRd_EA_Proposed_WestDonWatershd 5)= 6.25 6.25 6.2 1)= 53.37 24.78 48.5 TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 55.37

0.88

TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL

CALIB STANDHYD (0230) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.70 66.00	Dir. Conn.(%)	= 66.00
		IMPERVIO	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.46	5	0.24	
Dep. Storage	(mm)=	2.00	9	5.00	
Average Slope	(%)=	1.00	9	2.00	
Length	(m)=	320.00	9	25.00	
Mannings n	` =	0.01	3	0.300	
· ·					

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02

Page 51

LangstaffRd_EA_Proposed_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH ---MF RAIN | TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs 9.33 9.42 mm/hr 0.00 mm/hr mm/hr | 0.083 3.167 2.03 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 49.78 1.02 0.167 0.00 3.250 2.03 1.02 3.250 3.333 3.417 3.500 3.583 3.667 3.750 9.42 9.50 9.58 9.67 9.75 9.83 9.92 0.250 0.333 0.417 0.500 0.583 0.00 1.02 1.02 1.02 1.02 2.03 2.03 2.03 1.02 2.03 10.16 2.03 0.667 1.02 2.03 2.03 0.750 1.02 3.833 2.03 5.08 10.00 2.03 0.833 1.02 3.917 0.917 1.000 1.083 1.167 1.02 1.02 1.02 1.02 10.17 10.25 10.33 10.42 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 1.02 4.06 1.250 3.05 10.50 1.02 7.500 7.583 7.667 7.750 7.833 7.917 8.008 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.750 9.000 9.003 9.163 9.163 1.333 1.02 4.06 3.05 10.58 1.02 3.05 3.05 3.05 4.06 4.06 4.06 1.417 1.02 4.06 10.67 1.02 1.41/ 1.500 1.583 1.667 1.750 1.833 1.917 1.02 2.03 2.03 2.03 1.02 4.06 4.06 4.06 4.06 4.06 10.67 10.75 10.83 10.92 11.00 11.08 1.02 5.000 4.06 3.05 3.05 11.17 1.02 2.000 1.02 3.05 11.25 1.02 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 11.25 11.33 11.42 11.50 11.58 11.67 11.75 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 2.03 2.03 2.03 2.03 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000 6.083 6.167 3.05 3.05 7.11 7.11 7.11 7.11 7.11 3.05 2.03 2.03 2.03 2.03 2.03 2.03 11.83 2.667 2.03 7.11 3.05 11.92 1.02 2.750 2.03 49.78 3.05 12.00 1.02 2.833 2.917 3.000 3.083 2.03 2.03 2.03 2.03 2.03 49.78 49.78 49.78 49.78 49.78 3.05 2.03 2.03 2.03 12.08 12.17 12.25 1.02 Max.Eff.Inten.(mm/hr)= 49.78 29.56 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 6.79 (ii) 10.00 8.94 (ii) 5.00 10.00 *TOTALS* 0.075 (iii) Page 50

		Langs	taffRd F	Δ Prono	sed_WestDon	Waters	hd	
	1.917		5.000	4.06		3.05	11.17	1.02
	2.006		5.083	3.05		3.05	11.25	1.02
	2.083		5.167	3.05		3.05		1.02
	2.167		5.250	3.05		2.03		1.02
	2.256	1.02	5.333	7.11	8.417	2.03	11.50	1.02
	2.333	3 2.03	5.417	7.11	8.500	2.03	11.58	1.02
	2.417	7 2.03	5.500	7.11	8.583	2.03	11.67	1.02
	2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.02
	2.583	3 2.03	5.667	7.11	8.750	2.03	11.83	1.02
	2.667	7 2.03	5.750	7.11	8.833	3.05	11.92	1.02
	2.756	2.03	5.833	49.78	8.917	3.05	12.00	1.02
	2.833	3 2.03	5.917	49.78	9.000	3.05	12.08	1.02
	2.917	7 2.03	6.000	49.78	9.083	2.03	12.17	1.02
	3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.02
	3.083	3 2.03	6.167	49.78	9.250	2.03		
	May FEE Taken /s	/ la \	49.78		27.57			
	Max.Eff.Inten.(n		5.00		20.00			
	Storage Coeff.	(min) (min)=		(ii)	16.73 (ii)			
	Unit Hyd. Tpeak		5.00	(11)	20.00			
	Unit Hyd. peak		0.18		0.06			
	onit nyu. peak	(CIIIS)-	0.10		0.00	*****	TALS*	
	PEAK FLOW	(cms)=	0.06		0.01		.073 (iii)	
	TIME TO PEAK	(hrs)=	6.25		6.42		5.25	
	RUNOFF VOLUME	(mm)=	53.37		23.08		3.06	
			55.37		55.37		5.37	
	RUNOFF COEFFICIE		0.96		0.42		7.78	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 81.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0475) 1 + 2 = 3 ID1= 1 (0225): + ID2= 2 (0230):	AREA (ha) 0.60 0.70	QPEAK (cms) 0.075 0.073	TPEAK (hrs) 6.25 6.25	R.V. (mm) 48.51 43.06
ID = 3 (0475):	1.30	0.149	6.25	45.57

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0540) IN= 2> OUT= 1	OVERFLOW	IS OFF			
DT= 5.0 min	OUTFLOW (cms)	STORAGE (ha.m.)		OUTFLOW (cms)	STORAGE (ha.m.)

LangstaffRd_EA_Proposed_WestDonWatershd 0.0000 0.0000 | 0.0271 0.0 0.0118 0.0048 | 0.0306 0.0 0.0000 0.0271 0.0306 0.0367 0.0474 0.0184 0.0154 0.0415 0.0639

(ha) (cms) 0.149 (hrs) INFLOW: ID= 2 (0475) 1.300 OUTFLOW: ID= 1 (0540) 1.300 0.149 6.25 0.025 6.92 45.50

PEAK FLOW REDUCTION [Qout/Qin](%)= 16.53 TIME SHIFT OF PEAK FLOW (min)= 40.00 MAXIMUM STORAGE USED (ha.m.)= 0.0299

ADD HYD (0480)| 1 + 2 = 3 | ID1= 1 (0535): + ID2= 2 (0540): AREA QPEAK (ha) (cms) 1.23 0.011 1.30 0.025 R.V. (mm) 45.49 45.50 TPFAK (hrs) 7.33 6.92 ID = 3 (0480): 2.53 0.036 7.00 45.49

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

TMPERVTOUS PERVIOUS (i) IMPERVIOU 0.52 2.00 1.00 260.00 0.013 9.04 5.00 2.00 25.00 0.290 (ha)= (mm)= (%)= (m)= Surface Area Dep. Storage Average Slope Length Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH

NSFORMED HYETOGR RAIN | TIME mm/hr | hrs 2.03 | 6.250 2.03 | 6.333 3.05 | 6.417 3.05 | 6.500 3.05 | 6.580 2.03 | 6.667 2.03 | 6.750 2.03 | 6.833 APH ---RAIN | TIME
mm/hr | hrs
49.78 | 9.33
9.14 | 9.42
9.14 | 9.50
9.14 | 9.58 TIME hrs 0.083 RAIN | TIME mm/hr | hrs 0.00 | 3.167 0.00 | 3.250 RAIN mm/hr 1.02 0.167 1.02 0.250 0.00 3.333 1.02 0.333 1.02 3,417 2.03 1.02 | 1.02 | 1.02 | 1.02 | 3.500 3.583 3.667 3.750 10.16 | 10.16 | 10.16 | 5.08 | 9.67 9.75 9.83 9.92 2.03 2.03 2.03 2.03 2.03 0.417 0.500

Page 53

 $LangstaffRd_EA_Proposed_WestDonWatershd\\ |\,ID=\ 1\ DT=\ 5.0\ min\ | \quad Total\ Imp(\%)=\ 95.00 \quad Dir.\ Conn.(\%)=\ 95.00$

IMPERVIOUS PERVIOUS (i) Surface Area 0.41 2.00 0.02 5.00 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= 1 00 2 00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

- TRANSFORMED HYETOGRAPH -NSFORMED HYETOGR.
RAIN | 'ITIME
mm/hr | hrs
2.03 | 6.250
2.03 | 6.333
3.05 | 6.417
3.05 | 6.500
3.05 | 6.583
2.03 | 6.667
2.03 | 6.6750
2.03 | 6.683
2.03 | 6.917
2.03 | 7.000
2.03 | 7.000
2.03 | 7.000
2.03 | 7.000 RAIN | TIME mm/hr | hrs 0.00 | 3.167 0.00 | 3.250 0.00 | 3.333 TTME RAIN | TIME mm/hr | hrs RAIN mm/hr 49.78 | 9.14 | 9.14 | 9.14 | hrs 0.083 0.167 0.250 9.58 0.333 1.02 3.417 2.03 0.417 1.02 3,500 10.16 2.03 10.16 10.16 10.16 5.08 5.08 5.08 4.06 4.06 1.02 1.02 1.02 1.02 1.02 0.500 0.583 3.583 2.03 3.583 3.667 3.750 3.833 3.917 4.000 0.583 0.667 0.750 0.833 1.02 0.917 1.02 1.02 1.000 1.02 4.083 2.03 7.167 10.25 1.02 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 1.083 1.02 2.03 7.250 4.06 1.02 2.03 2.03 4.06 4.06 4.06 4.06 3.05 3.05 3.05 3.05 3.05 3.05 3.05 1.02 1.02 1.02 1.02 7.236 7.333 7.417 7.500 7.583 1.02 1.02 1.02 1.02 1.167 1.500 1.583 1.02 7.667 4.06 1.667 2.03 4.06 7.833 7.917 4.06 10.92 2.03 4.06 4.06 3.05 3.05 3.05 2.03 1.750 2.03 4.833 4.06 11.00 2.03 1.02 1.02 1.02 1.02 4.917 5.000 5.083 5.167 4.06 4.06 3.05 3.05 8.000 8.083 8.167 8.250 1.833 11.08 1.02 3.05 | 8.250 3.05 | 8.333 7.11 | 8.417 7.11 | 8.580 7.11 | 8.583 7.11 | 8.667 7.11 | 8.750 7.11 | 8.833 49.78 | 9.080 49.78 | 9.080 49.78 | 9.083 49.78 | 9.167 49.78 | 9.250 2.167 1.02 5.250 11.42 1.02 2.250 1.02 5.333 2.03 11.50 1.02 2.333 2.03 5.417 2.03 11.58 1.02 2.417 2.03 2.03 1.02 2.03 2.03 2.03 3.05 3.05 3.05 2.03 2.03 2.03 2.03 2.03 2.03 1.02 1.02 1.02 1.02 5.583 11.75 5.667 5.750 5.833 12.08 2.833 2.03 5.917 1.02 2.917 2.03 6.000 1.02 3.000 2.03 | 6.083 2.03 | 12.25

```
LangstaffRd_EA_Proposed_WestDonWatershd
1.02 | 3.833 | 2.03 | 6.917 | 5.08 | 1
1.02 | 3.917 | 2.03 | 7.000 | 5.08 | 1
1.02 | 4.000 | 2.03 | 7.003 | 4.06 | 1
1.02 | 4.083 | 2.03 | 7.167 | 4.06 | 1
1.02 | 4.167 | 2.03 | 7.250 | 4.06 | 1
1.02 | 4.250 | 2.03 | 7.333 | 3.05 | 1
1.02 | 4.250 | 2.03 | 7.333 | 3.05 | 1
                                                    1.02 | 3.833
1.02 | 3.917
1.02 | 4.000
1.02 | 4.083
1.02 | 4.167
1.02 | 4.250
1.02 | 4.333
                             0.750
                                                                                                                                        5.08 | 10.00
5.08 | 10.08
                              0.833
                             0.917
1.000
1.083
1.167
                                                                                                                                                          10.17
10.25
10.33
10.42
                                                                                                                                                                                  1.02
1.02
1.02
1.02
                              1.250
                                                                                                                 7.417
                                                                                                                                         3.05
                                                                                                                                                          10.50
                                                                                                                                                                                   1.02
                                                                      4.417
4.500
4.583
4.667
4.750
4.833
4.917
                              1.333
                                                    1.02
                                                                                                                                                          10.58
                                                                                                                                                                                   1.02
                              1.417
                                                    1.02
                                                                                               4.06
                                                                                                                 7.583
                                                                                                                                         3.05
                                                                                                                                                          10.67
                                                                                                                                                                                   1.02
                                                                                                                7.667
7.750
7.833
7.917
8.000
8.083
8.167
                              1.500
                                                    1.02
                                                                                               4.06
                                                                                                                                         3.05
                                                                                                                                                                                   1.02
                             1.583
1.667
1.750
1.833
1.917
                                                    2.03
2.03
2.03
1.02
                                                                                               4.06
4.06
4.06
4.06
4.06
                                                                                                                                                                                  2.03
2.03
2.03
1.02
                                                                                                                                                          10.83
                                                    1.02
                                                                       5.000
                                                                                               4.06
                                                                                                                                         3.05
                                                                                                                                                          11.17
                                                                                                                                                                                   1.02
                              2.000
                                                    1.02
                                                                       5.083
                                                                                               3.05
                                                                                                                                                          11.25
                                                                                                                                                                                   1.02
                                                                                                                8.167
8.250
8.333
8.417
8.500
8.583
8.667
8.750
                              2.083
                                                    1.02
                                                                       5.167
                                                                                               3.05
                                                                                                                                         3.05
                                                                                                                                                          11.33
                                                                                                                                                                                   1.02
                              2.167
                                                     1.02
                                                                       5.250
                                                                                                                                                          11.42
                             2.167
2.250
2.333
2.417
2.500
2.583
                                                    1.02
2.03
2.03
2.03
                                                                      5.333
5.417
5.500
5.583
                                                                                               7.11
7.11
7.11
7.11
                                                                                                                                                          11.50
11.58
11.67
11.75
                                                                       5.667
                                                    2.03
                                                                                               7.11
                                                                                                                                         2.03
                                                                                                                                                          11.83
                                                                                                                                                                                   1.02
                                                                      5.750
5.833
5.917
6.000
6.083
6.167
                                                                                                                8.833
8.917
9.000
9.083
9.167
9.250
                              2.667
                                                    2.03
                                                                                               7.11
                                                                                                                                         3.05
                                                                                                                                                                                   1.02
                              2.750
                                                    2.03
                                                                                           49.78
                                                                                                                                         3.05
                                                                                                                                                          12.00
                                                                                                                                                                                   1.02
                                                                                           49.78 |
49.78 |
49.78 |
49.78 |
49.78 |
                              2 833
                                                    2 03
                             2.833
2.917
3.000
3.083
                                                    2.03 |
2.03 |
2.03 |
2.03 |
                                                                                                                                                                                   1.02
 Max.Eff.Inten.(mm/hr)=
                                                                          49.78
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                           5.00
5.99 (ii)
5.00
                                                                                                            10.00
                                                                                                              8.72 (ii)
                                                                            0.19
                                                                                                                                               *TOTALS*
0.075 (iii)
6.25
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                            0.07
                                                                                                              0.00
                                                                          6.25
53.37
55.37
                                                                                                                                                      0.93
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 87.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

| CALIB | | | STANDHYD (0160)| Area (ha)= 0.43

Page 54

LangstaffRd_EA_Proposed_WestDonWatershd)= 49.78 36.58) 5.00 10.00)= 5.99 (ii) 7.89 (ii) Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 0.19 0.13 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.058 (iii) 6.25 52.25 55.37 0.06 6.25 53.37 55.37 6.25 31.03 55.37 0.96

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 89.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0430) | 1 + 2 = 3 | R.V. (mm) 51.64 QPEAK (cms) 0.075 0.058 (ha) 0.56 (hrs) 6.25 ID1= 1 (0155): + ID2= 2 (0160): 6.25 0.43 52.25 ID = 3 (0430): 0.99 0.133 6.25 51.90

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| CALIB | STANDHYD (0150) |ID= 1 DT= 5.0 min Area (ha)= 3.81 Total Imp(%)= 95.00 Dir. Conn.(%)= 95.00 TMPERVIOUS PERVIOUS (i)

Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 3.62 2.00 1.00 0.19 5.00 2.00 Length 150.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

RAIN 0.083 1.02

	Langs	taffRd E	A Propos	ed WestD	onWaters	hd	
0.333	1.02			6.500	9.14		2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03		10.16	9.83	2.03
0.667	1.02	3.750	2.03		5.08	9.92	2.03
0.750	1.02		2.03		5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02		4.06	7.500	3.05	10.58	1.02
1.417	1.02		4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06		3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03		4.06		4.06		2.03
1.833	1.02		4.06		4.06		1.02
1.917	1.02		4.06		3.05		1.02
2.000	1.02		3.05		3.05		1.02
2.083	1.02		3.05		3.05		1.02
2.167	1.02		3.05		2.03		1.02
2.250	1.02		7.11	8.417	2.03	11.50	1.02
2.333	2.03		7.11	8.500	2.03	11.58	1.02
2.417	2.03		7.11	8.583	2.03	11.67	1.02
2.500	2.03		7.11	8.667	2.03	11.75	1.02
2.583	2.03		7.11	8.750	2.03	11.83	1.02
2.667	2.03		7.11	8.833	3.05	11.92	1.02
2.750	2.03		49.78	8.917	3.05	12.00	1.02
2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78		2.03	12.17	1.02
3.000	2.03	6.083	49.78		2.03	12.25	1.02
3.083	2.03	6.167	49.78	9.250	2.03	l	
nten.(mm/	hr)=	49.78		35.30			
over (m		5 00		10 00			

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 4.31 (ii) 5.00 0.23 10.00 7.18 (ii) 10.00 0.14 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.50 6.25 53.37 55.37 0.02 0.517 (iii) 6.25 52.20 55.37 6.25 29.85 55.37 0.54 0.96

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 88.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

Page 57

LangstaffRd_EA_Proposed_WestDonWatershd NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

NSFORMED HYETOGRAPH ---RAIN | TIME RAIN | mm/hr | hrs mm/hr | 2.03 | 6.250 | 49.78 | 2.03 | 6.333 | 9.14 | 3.05 | 6.500 | 9.14 | 3.05 | 6.500 | 9.14 | 3.05 | 6.500 | 9.14 | 3.05 | 6.500 | 9.14 | 3.05 | 6.500 | 9.14 | 3.05 | 6.667 | 10.16 | 2.03 | 6.667 | 10.16 | 2.03 | 6.667 | 10.16 | 2.03 | 6.750 | 10.16 | 2.03 | 6.750 | 10.16 | 2.03 | 6.750 | 10.16 | 2.03 | 7.000 | 5.08 | 2.03 | 7.000 | 5.08 | 2.03 | 7.000 | 5.08 | 2.03 | 7.000 | 5.08 | 2.03 | 7.000 | 5.08 | 2.03 | 7.250 | 4.06 | 2.03 | 7.250 | 4.06 | 2.03 | 7.333 | 3.05 | 4.06 | 7.500 | 3.05 | 4.06 | 7.500 | 3.05 | 4.06 | 7.500 | 3.05 | 4.06 | 7.500 | 3.05 | 4.06 | 7.500 | 3.05 | 4.06 | 7.500 | 3.05 | 4.06 | 7.657 | 3.05 | 4.06 | 7.750 | 3.05 | 4.06 | 7.750 | 3.05 | 4.06 | 7.833 | 4.06 | 7.917 | 4.06 | 7.833 | 4.06 | 7.917 | 4.06 | 7.833 | 4.06 | 7.917 | 4.06 | 8.000 | 4.06 | 8.000 | 4.06 | 8.000 | 4.06 | 8.000 | 4.06 | 8.000 | 4.06 | 8.000 | 4.06 | 6.000 | 4.06 | 8.000 | 4.06 | 6.000 | 4.06 | 8.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.06 | 6.000 | 4.0 - TRANSFORMED HYETOGRAPH TTMF RAIN | TIME RATN | TTMF RATN 7IME hrs 9.33 9.42 9.50 9.58 0.083 0.167 0.250 0.333 mm/hr | 0.00 | 0.00 | 0.00 | 1.02 | 3.167 3.250 3.333 3.417 3.500 3.583 mm/hr 1.02 1.02 1.02 2.03 0.417 1.02 9.67 9.75 2.03 2.03 1.02 1.02 1.02 1.02 1.02 1.02 0.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 9.83 2.03 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.02 10.33 1.167 1.02 1.02 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.02 1.02 1.02 1.02 1.02 2.03 2.03 10.42 10.50 10.58 10.67 10.75 10.83 10.92 1.02 1.02 1.02 1.02 1.02 2.03 2.03 4.66 | 7.917 4.06 | 8.080 3.05 | 8.167 3.05 | 8.157 3.05 | 8.337 7.11 | 8.437 7.11 | 8.583 7.11 | 8.667 7.11 | 8.833 49.78 | 8.917 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 49.78 | 9.837 1.750 2.03 1.02 11.00 2.03 1.833 4.917 11.08 5.000 5.083 5.167 5.250 5.333 5.417 3.05 3.05 3.05 2.03 2.03 2.03 11.08 11.17 11.25 11.33 11.42 11.50 11.58 1.917 2.000 2.083 2.167 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 2.250 2.333 2.03 2.417 2.03 5.500 5.583 2.03 11.67 1.02 2.03 2.03 11.75 1.02 5.583 5.667 5.750 5.833 5.917 6.000 6.083 2.03 | 2.03 | 3.05 | 3.05 | 3.05 | 2.03 | 2.03 | 2.03 2.03 2.03 2.03 2.03 2.03 11.83 11.92 12.00 12.08 12.17 1.02 1.02 1.02 1.02 2.583 2.917 1.02 2.03 12.25 1.02 3.083 2.03 | 6.167 2.03

Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 49.78 10.00 8.55 (ii) 10.00 0.12 29.56 15.00 12.26 (ii) 15.00 0.09 *TOTALS* PEAK FLOW TIME TO PEAK RUNOFF VOLUME (cms)= (hrs)= (mm)= 0.112 (iii) 6.25 47.07 0.10 0.01 6.25 53.37 6.33

Page 59

LangstaffRd_EA_Proposed_WestDonWatershd (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0515) OV	ERELOW 1	S OFF				
IN= 2> OUT= 1		LKFLOW 1	.5 0 г г				
DT= 5.0 min		TELOW	STORAGE	1 0	UTFLOW	STORAGE	
DI = 3.0 IIIII	(rme)	(ham)	'			
	9	aaaa	(ha.m.) 0.0000	i i	0 0001	(ha.m.) 0.1797	
		.0013	0.0000	i i	0.0095	0.2004	
	a	0013	0.0137	i i	0.0055	0.2216	
	a	.0044	0.0320	i	0.0104	0.2433	
	a	0053	0.0407	i i	0.0104	0.2455	
	a	.0061	0.0033	i	0.0103 0.0113	0.2655 0.2882	
	a	0001	0.0037	i i	0.0115	0.2002	
	a	0074	0.1015	i i	0.1520	0.3114 0.3592	
			0.1398	i	0.1520	0.4336	
	0.	.0086	0.1595	i	0.5654 1.1316	0.5100	
		ARE	A QP	EAK	TPEAK	R.V.	
INFLOW : ID= 2	(0450)	(na	i) (c	ms)	(nrs)	(mm)	
INFLOW : ID= 2	(0150)	3.8	310	0.51/	6.25	52.20	
OUTFLOW: ID= 1	(6313)	5.0	10	0.005	12.23	31.33	
	TIME SHIF MAXIMUM	FT OF PE STORAGE	AK FLOW USED	((min)=36 ha.m.)=	1.75 0.00 0.1768	
	TIME SHIF	FT OF PE STORAGE	AK FLOW USED	((min)=36 ha.m.)=	0.00 0.1768	
ADD HYD (0440)		EAK FLOW USED		(min)=36 ha.m.)=	0.00 0.1768	
ADD HYD (0440)		EAK FLOW USED		(min)=36 ha.m.)=	0.00 0.1768	
ADD HYD (0440 1 + 2 = 3)		EAK FLOW USED		(min)=36 ha.m.)=	0.00 0.1768	
ADD HYD (0440 1 + 2 = 3)		EAK FLOW USED		(min)=36 ha.m.)=	0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (AREA (ha) 0.99 3.81	QPEAK (cms) 0.133 0.009	TPEA (hrs 6.25 12.25	(min)=36 ha.m.)= K R.V) (mn 51.96 51.39	0.00 0.1768	
1 + 2 = 3 ID1= 1 (AREA (ha) 0.99 3.81	QPEAK (cms) 0.133 0.009	TPEA (hrs 6.25 12.25	(min)=36 ha.m.)= K R.V) (mn 51.96 51.39	0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (0430): 0515): 0440):	AREA (ha) 0.99 3.81	QPEAK (cms) 0.133 0.009 0.140	TPEA (hrs 6.25 12.25	(min)=36 ha.m.)= K R.V) (mn 51.96 51.39 =======5	0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (+ ID2= 2 ID = 3 (+ ID2= 3 ID = 3		AREA (ha) 0.99 3.81	QPEAK (cms) 0.133 0.009 0.140	TPEA (hrs 6.25 12.25	(min)=36 ha.m.)= K R.V) (mn 51.96 51.39 =======5	0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (======== ID = 3 (NOTE: PEAK F		AREA (ha) 0.99 3.81	QPEAK (cms) 0.133 0.009 0.140	TPEA (hrs 6.25 12.25	(min)=36 ha.m.)= K R.V) (mn 51.96 51.39 =======5	0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (AREA (ha) 0.99 3.81 4.80	QPEAK (cms) (0.009 0.140)	TPEA (hrs 6.25 12.25 6.25	(min)=36 ha.m.)= K R.V) (mn 51.96 51.39 =======5	0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (========== ID = 3 (NOTE: PEAK F CALIB STANDHYD (0210	0430): 0430): 0515): 0440): 0400:	AREA (ha) 0.99 3.81 4.80 DT INCLU	QPEAK (cms) 0.133 0.009 0.140 IDE BASEF	TPEA (hrs 6.25 12.25 6.25	(min)=36 ha.m.)= 	.0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (0430): 	AREA (ha) 0.99 3.81 4.80 DT INCLU	QPEAK (cms) 0.133 0.009 0.140 IDE BASEF	TPEA (hrs 6.25 12.25 6.25	(min)=36 ha.m.)= 	.0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (0430): 	AREA (ha) 0.99 3.81 4.80 DT INCLU	QPEAK (cms) 0.133 0.009 0.140 DDE BASEF 0.96 0.78.00	TPEA (hrs 6.25 12.25 6.25 LOWS IF	(min)=36 ha.m.)= 	.0.00 0.1768	
1 + 2 = 3 ID1= 1 (+ ID2= 2 (0440): LOWS DO NO	AREA (ha) 0.99 3.81 4.80 DT INCLL (ha)	QPEAK (cms) 0.133 0.009 0.140 UDE BASEF 78.00	TPEA (hrs 6.25 12.25 6.25 LOWS IF	(min)=36 ha.m.)= K R.W.) (mn 51.96 51.96 51.36 Conn.(%) US (i)	.0.00 0.1768	
1 + 2 = 3 ID1= 1 (AREA (ha) 0.99 3.81 4.80 OT INCLL (ha) 1 Imp(%)	QPEAK (cms) 0.133 0.009 0.140 USED 0.440 USED 0.5 0.009 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75	TPEA (hrs 6.25 12.25 6.25 LOWS IF	(min)=36 ha.m.)= K R.V.) (mm 51.96 51.96 51.36 51.56 ANY Conn.(%)	.0.00 0.1768	
1 + 2 = 3 ID1= 1 (AREA (ha) 0.99 3.81 4.80 OT INCLL (ha) 1 Imp(%)	QPEAK (cms) 0.133 0.009 0.140 USED 0.440 USED 0.5 0.009 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75	TPEA (hrs 6.25 12.25 6.25 LOWS IF Dir. PERVIO 0.2	(min)=36 ha.m.)= K R.V.) (mm 51.96 51.96 51.36	.0.00 0.1768	
+ ID2= 2 () ID = 3 () NOTE: PEAK F CALIB STANDHYD (0210 ID= 1 DT= 5.0 min		AREA (ha) 0.99 3.81 4.80 OT INCLL (ha) 1 Imp(%)	QPEAK (cms) 0.133 0.009 0.140 USED 0.440 USED 0.5 0.009 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75	TPEA (hrs 6.25 12.25	(min)=36 ha.m.)= K R.V.) (mm 51.96 51.96 51.36	.0.00 0.1768	

Page 58

LangstaffRd_EA_Proposed_WestDonWatershd n) = 55.37 55.37 55.3 = 0.96 0.45 0.8 TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CAL TB | STANDHYD (0205)| |ID= 1 DT= 5.0 min | Area (ha)= 1.11 Total Imp(%)= 77.00 Dir. Conn.(%)= 77.00 IMPERVIOUS PERVIOUS (i) Surface Area 0.85 2.00 1.00 0.26 5.00 2.00 Dep. Storage Average Slope Length Mannings n (mm) = (%) = (m) = 470.00 0.013 20.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				HYETOGR			
TIME		TIME		' TIME			RAIN
hrs		hrs		' hrs		hrs	
0.083		3.167				9.33	1.02
0.167		3.250					1.02
0.250	0.00	3.333	3.05		9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
			Page	60			

		Lange	r+affDd E	A Brono	sed_WestDo	nklatono	hd	
	2.083	1 02	5 167	4_Propo	l g 250	3 A5	nu 11 33	1.0
	2.167	1 02	5 250	3 05	8.250	2 03	111.33	1.0
		1 02	5 333	7 11	8.417	2 03	11 50	1.0
					8.500			
					8.583			
	2.500	2.03	5.583	7.11	8.667	2.03	11.75	1.0
	2.583	2.03	5.667	7.11	8.667 8.750 8.833	2.03	11.83	1.0
	2.667	2.03	5.750	7.11	8.833	3.05	11.92	1.0
	2.750	2.03	5.833	49.78	8.917	3.05	12.00	1.0
	2.833	2.03	5.917	49.78	9.000	3.05	12.08	1.0
	2.917	2.03	6.000	49.78	9.083	2.03	12.17	1.0
	3.000	2.03	6.083	49.78	9.167	2.03	12.25	1.0
	3.083	2.03	6.167	49.78	9.083 9.167 9.250	2.03	l	
Max.Eff.I	nten.(mm	/hr)=	49.78		29.56			
	over (min)	10.00		15.00			
Storage C	neff. (min)=	8.55	(ii)	12.34 (ii)		
Unit Hvd.	Tneak (min)=	10.00	(/	15.00	,		
Unit Hvd.	peak (cms)=	0.12		12.34 (ii 15.00 0.08			
	, ,	/				*T0	TALS*	
PEAK FLOW	(cms)=	0.11		0.02	0	.129 (iii	i)
TIME TO P	EAK (hrs)=	6.25		6.33		5.25	
RUNOFF VO	LUME	(mm)=	53.37 55.37		24.78	4	5.79	
TOTAL RAI	NFALL	(mm)=	55.37		55.37	5	5.37	
RUNOFF CO	EFFICIEN	T =	0.96		0.45		0.85	
			ED FOR PE		LOSSES: (Above)			
			LD BE SMA		R EQUAL			
			EFFICIENT					
(iii) PEA	K FLOW D	OES NOT	INCLUDE E	ASEFLO	N IF ANY.			

·	YD (04 2 = 3 ID1= 1 (ID2= 2 (AREA (ha) 1.11 0.96	QPEAK (cms) 0.129 0.112	TPEAK (hrs) 6.25 6.25	R.V. (mm) 46.79 47.07	
	ID = 3 (0460):	2.07	0.241	6.25	46.92	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0525) IN= 2> OUT= 1	OVERFLOW I	S OFF		
DT= 5.0 min	OUTFLOW (cms) 0.0000 0.0274	STORAGE (ha.m.) 0.0000 0.0026	OUTFLOW (cms) 0.0733 0.0831	STORAGE (ha.m.) 0.0214 0.0278

Page 61

		+- CCD4 F					
1.917				sed_WestDon			4 00
				8.083			
2.000	1.02	5.083	3.05	8.167	3.05	11.25	1.02
2.08:	1.02	5.16/	3.05	8.250	3.05	11.33	1.02
2.167	1.02	5.250	3.05	8.333	2.03	11.42	1.02
2.256	1.02	5.333	7.11	8.41/	2.03	11.50	1.02
2.33:	2.03	5.41/	7.11	8.500	2.03	11.58	1.02
2.417	2.03	5.500	7.11	8.583	2.03	11.6/	1.02
2.506	2.03	5.583	7.11	8.66/	2.03	11.75	1.02
2.583	2.03	5.66/	7.11	8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833	2.03	11.83	1.02
2.667	2.03	5./50	/.11	8.833	3.05	11.92	1.02
2./56	2.03	5.833	49.78	8.917 9.000 9.083	3.05	12.00	1.02
2.833	2.03	5.91/	49.78	9.000	3.05	12.08	1.02
2.917	2.03	6.000	49.78	9.083	2.03	12.1/	1.02
3.000	2.03	0.083	49.78	9.167	2.03	12.25	1.02
3.083	2.03	6.16/	49.78	9.250	2.03	l	
Max.Eff.Inten.(n	m/hr)=	49 78		28 42			
over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min)	5 00		25 00			
Storage Coeff	(min)=	7 04	(ii)	20 38 (ii)			
Unit Hyd Tneak	(min)=	5 00	(11)	25 00			
Unit Hyd neak	(cms)=	0 17		0 05			
					T0	TALS	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(cms)=	0.07		0.02		.081 (iii)
TIME TO PEAK	(hrs)=	6.25		6.50		5.25	,
RUNOFF VOLUME	(mm)=	53.37		24.78	4:	1.06	
TOTAL RAINFALL	(mm)=	55.37		55.37	51	5 37	
RUNOFF COEFFICIE	NT =	0.96		0.45		0.74	
(i) CN PROCEDU							
	3.0 Ia						
(ii) TIME STEP				R EQUAL			
THAN THE S							
(iii) PEAK FLOW	DOES NOT	INCLUDE E	BASEFLO	IF ANY.			
ALTB I							
TANDHYD (0195)	Area	(ha)=	0.79				
= 1 DT= 5.0 min	Total Tr	mp(%)= 7	75.00	Dir. Conn.	(%)=	75.00	
					()		
		IMPERVIOL	JS PI	RVIOUS (i)			
Surface Area	(ha)=	0.59		0.20			
Dep. Storage	(mm)=	2.00		5.00			
Dep. Storage Average Slope	(%)=	1.00		2.00			
Length	(m)=	340.00		20.00			
Length Mannings n	` =	0.013		0.250			
NOTE: RAINE	ALL WAS TI	RANSFORME	D TO	5.0 MIN. T	IME ST	EP.	

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

Page 63

AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
INFLOW: ID= 2 (0460) 2.0070 0.241 6.25 46.92
OUTFLOW: ID= 1 (0525) 2.070 0.103 6.50 46.91

PEAK FLOW REDUCTION [Qout/Qin](%)= 42.89
TIME SHIFT OF PEAK FLOW (min)= 15.00
MAXIMUM STORAGE USED (ha.m.)= 0.0310

CALIB					
STANDHYD (0190)	Area	(ha)=	0.86		
ID= 1 DT= 5.0 min	Total	Imp(%)=	57.00	Dir. Conn.(%)=	57.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.4	9	0.37	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	340.0	0	50.00	
Mannings n	` =	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	49.78	9.33	1.02			
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02			
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02			
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	10.16	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03			
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03			
0.667	1.02	3.750	2.03	6.833	5.08	9.92	2.03			
0.750	1.02	3.833	2.03	6.917	5.08	10.00	2.03			
0.833	1.02	3.917	2.03	7.000	5.08	10.08	1.02			
0.917	1.02	4.000	2.03	7.083	4.06	10.17	1.02			
1.000	1.02	4.083	2.03	7.167	4.06	10.25	1.02			
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02			
1.167	1.02	4.250	2.03	7.333	3.05	10.42	1.02			
1.250	1.02	4.333	4.06	7.417	3.05	10.50	1.02			
1.333	1.02	4.417	4.06	7.500	3.05	10.58	1.02			
1.417	1.02	4.500	4.06	7.583	3.05	10.67	1.02			
1.500	1.02	4.583	4.06	7.667	3.05	10.75	1.02			
1.583	2.03	4.667	4.06	7.750	3.05	10.83	2.03			
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02			

Page 62

	Langs	taffRd_E	A_Propos	sed_WestDo	nWaters	hd	
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/h
0.083	0.00	3.167	2.03	6.250	49.78		1.02
0.167	0.00	3.250	2.03	6.333	9.14	9.42	1.02
0.250	0.00	3.333	3.05	6.417	9.14	9.50	1.02
0.333	1.02	3.417	3.05	6.500	9.14	9.58	2.03
0.417	1.02	3.500	3.05	6.583	10.16		2.03
0.500	1.02	3.583	2.03	6.667	10.16	9.75	2.03
0.583	1.02	3.667	2.03	6.750	10.16	9.83	2.03
0.667		3.750		6.833	5.08		2.03
0.750		3.833	2.03		5.08		2.03
0.833	1.02		2.03		5.08		1.02
0.917		4.000	2.03		4.06		1.02
1.000		4.083	2.03	7.167	4.06		1.02
1.083	1.02	4.167	2.03	7.250	4.06	10.33	1.02
1.167		4.250	2.03		3.05		1.02
1.250		4.333	4.06		3.05		1.02
1.333		4.417	4.06		3.05		1.02
1.417		4.500		7.583	3.05		1.02
1.500		4.583	4.06		3.05		1.02
1.583		4.667	4.06		3.05		2.03
1.667		4.750	4.06		4.06		2.03
1.750		4.833	4.06		4.06		2.03
1.833		4.917	4.06		4.06		1.02
1.917	1.02		4.06		3.05		1.02
2.000		5.083	3.05		3.05		1.02
2.083		5.167		8.250	3.05		1.02
2.167	1.02		3.05		2.03		1.02
2.250	1.02			8.417	2.03		1.02
2.333	2.03		7.11		2.03		1.02
2.417		5.500	7.11		2.03		1.02
2.500	2.03		7.11		2.03		1.02
2.583	2.03		7.11		2.03		1.02
2.667		5.750		8.833	3.05		1.02
2.750		5.833	49.78		3.05		1.02
2.833		5.917	49.78		3.05		1.02
2.917	2.03		49.78		2.03		1.02
3.000	2.03		49.78		2.03		1.02
3.083	2.03	6.167	49.78	9.250	2.03		
Max.Eff.Inten.(mm/		49.78		29.56			
over (m		5.00		15.00			
	in)=	7.04		11.00 (ii)		
Unit Hyd. Tpeak (m		5.00		15.00			
Unit Hyd. peak (c	ms)=	0.17		0.09	*T01	TALS*	
PEAK FLOW (c	ms)=	0.08		0.01		.093 (iii	١
	rs)=	6.25		6.33		5.25	,
	mm)=	53.37		24.78		5.22	
	mm)=	55.37		55.37		5.37	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

LangstaffRd_EA_Proposed_WestDonWatershd
CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0455)| | 1 + 2 = 3 | AREA QPEAK TPEAK R.V. (ha) 0.86 0.79 (cms) 0.081 0.093 (hrs) 6.25 6.25 (mm) 41.06 46.22 ID1= 1 (0190): + ID2= 2 (0195): ID = 3 (0455): 1.65 0.174 6.25 43.53

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0555)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE (cms) 0.0000 (ha.m.) (cms) 0.0238 (ha.m.) 0.0199 0.0000 0.0104 0.0024 0.0268 0.0259 0 0162 0 0079 0 0825 0 0346 0.0139 (cms) 0.174 0.055 (hrs) (ha) 1.650 (mm) 43.53 INFLOW : ID= 2 (0455) OUTFLOW: ID= 1 (0555) 1.650 6.67 43.50

PEAK FLOW REDUCTION [Qout/Qin](%)= 31.63
TIME SHIFT OF PEAK FLOW (min)= 25.00
MAXIMUM STORAGE USED (ha.m.)= 0.0303

ADD HYD (0465)| 1 + 2 = 3 | ARFA QPEAK TPFAK R.V. (cms) 0.103 0.055 (hrs) 6.50 6.67 ID1= 1 (0525): + ID2= 2 (0555): ID = 3 (0465): 3.72 6.58 0.156 45.40

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

********* ** SIMULATION:Run 04 **

Page 65

	Langs	taffRd_E	A_Propos	ed_WestD	onWaters	hd	
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02		7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583		5.667	8.13		2.03		2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90		3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03		1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03		
* (han)	F7 01		7 00			

57.91 5.00 5.51 (ii) 5.00 0.20 Max.Eff.Inten.(mm/hr)= over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 10.00 9.48 (ii) 10.00 0.12 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.07 0.01 0.084 (iii) 6.25 61.75 63.75 0.97 6.25 6.25 31.16 63.75 0.49 53.18

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

(1) CN* PROCEDURE SELECTED FOR FEATURES LOSSES.

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | CALIB | STANDHYD (0170)| |ID= 1 DT= 5.0 min | Area (ha)= 0.43 Total Imp(%)= 98.00 Dir. Conn.(%)= 98.00

LangstaffRd_EA_Proposed_WestDonWatershd

Filename: C:\Users\ray.zhao\AppD ata\Local\Temp\ e8da@adc-3bd3-467d-984d-5ab4a7d3492c\c585f216 Comments: 10yr-12hrSCS READ STORM RAIN | TIME TIME RAIN TIME RAIN | TIME mm/hr | hrs RAIN 11ME hrs 6.75 7.00 7.25 7.50 7.75 8.00 8.25 hrs mm/hr hrs mm/hr mm/hr 11.18 | 0.25 0.00 3.50 3.05 10.00 2.03 0.25 0.50 0.75 1.00 1.25 1.50 1.75 3.50 3.75 4.00 4.25 4.50 4.75 5.00 2.03 3.05 2.03 5.08 4.06 4.06 5.08 | 5.08 | 4.06 | 4.06 | 4.06 | 10.25 10.50 10.75 11.00 2.03 1.02 1.02 2.03 1.02 1.02 11.25 1.02 2.03 3.05 11.50 1.02 5.00 5.25 5.50 5.75 6.00 6.25 6.50 8.25 8.50 8.75 9.00 9.25 9.50 9.75 2.00 1.02 5.08 7.11 3.05 11.75 1.02 2.25 1.02 2.03 12.00

2.50 2.75 3.00 3.25 3.05 | 2.03 | 3.05 | 2.03 | 8.13 | 56.90 | 57.91 | 11.18 | 3.05 | 2.03 | 2.03 | 2.03 |

12.25

1.02

| CALIB | | STANDHYD (0165) | |ID= 1 DT= 5.0 min |

Area (ha)= 0.60 Total Imp(%)= 72.00 Dir. Conn.(%)= 72.00

IMPERVIOUS PERVIOUS (i) 0.43 2.00 1.00 250.00 0.013 0.17 5.00 2.00 Surface Area (ha)= Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)=

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH | ISFORMED HYETOGR RAIN | TIME | IMP | TIME | 2.03 | 6.250 | 2.03 | 6.333 | 3.05 | 6.417 | 3.05 | 6.500 | 3.05 | 6.583 | 2.03 | 6.667 | 2.03 | 6.650 | 2.03 | 6.650 | 3.05 | 6.917 | 3.05 | 7.000 TIME hrs 3.167 3.250 3.333 3.417 TTMF RATN I RAIN | TIME RATN 0.083 0.167 0.250 0.333 MM/hr 0.00 0.00 0.00 1.02 MM/hr 57.91 11.18 11.18 hrs 9.33 9.42 9.50 9.58 mm/hi 2.03 2.03 2.03 2.03 9.67 9.75 9.83 9.92 10.00 10.08 0.417 1.02 3.500 3.583 11.18 2.03 0.500 1.02 11.18 2.03 0.583 0.667 0.750 0.833 2.03 2.03 2.03 1.02 11.18 | 11.18 | 5.08 | 5.08 | 5.08 | 2.03 2.03 2.03 2.03 2.03 3.667 3.750 3.833 3.917

Page 66

LangstaffRd_EA_Proposed_WestDonWatershd
IMPERVIOUS PERVIOUS (i)

IMPERVIOUS 0.42 2.00 urface Area 0.01 Dep. Storage Average Slope (mm)= (%)= 5.00 1.00 2.00 Length Mannings n (m)= 250.00 20.00 0.013 0 250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				HYETOGR			
TIME	RAIN	TIME	RAIN		RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs		hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05		11.18	9.67	2.03
0.500	1.02	3.583	2.03		11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08		3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03		

Max.Eff.Inten.(mm/hr)= 57 91 10.00

LangstaffRd_EA_Proposed_WestDonWatershd Storage Coeff. (min)= 5 51 (ii) 6 73 (ii)

Storage Coeff.	(min)=	5.51 (11)	6./3 (11)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.20	0.14	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.00	0.068 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	61.75	38.29	61.27
TOTAL RAINFALL	(mm)=	63.75	63.75	63.75
RUNOFF COEFFICIE	ENT =	0.97	0.60	0.96

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0180)	Area	(ha)=	0.65				
ID= 1 DT= 5.0 min	Total	Imp(%)=	52.00	Dir.	Conn.(%)=	52.00	
		,			,		
		IMPERVI	OUS	PERVIO	JS (i)		
Surface Area	(ha)=	0.3	1	0.3	1 ` ′		
Dep. Storage	(mm)=	2.0	9	5.00	9		
Average Slope	`(%)=	1.0	9	2.00	a		
Length	(m)=	65.8		40.00	a		
	` '	0.01	-	0.25	-		
Mannings n	=	0.01	•	Ø. 25	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN				
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr				
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03				
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03				
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03				
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03				
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03				
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03				
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03				
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03				
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03				
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03				
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03				
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03				
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02				
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02				
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02				
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02				
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02				

Page 69

${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03		

0.01 6.33 0.063 (iii) 6.25 Page 71

TOTALS

57.91 32.68 5.00 15.00 5.37 (ii) 10.23 (ii) 5.00 15.00 0.21 0.09

Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=

PEAK FLOW (cms)= TIME TO PEAK (hrs)=

		Langs	taffRd F	A Propo	sed WestDon	Waters	hd	
	1.500	1 02	I 4 E02	4 06	1 7 667	1 06	10.75	1.02
	1.583	2.03	4.667	4.06	7.750 7.750 7.833 7.917	4.06	10.83	2.03
	1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
	1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
	1.833	1.02	4.91/	4.06	8.000	4.06	11.08	1.02
	2 000	1.02	5.000	4.06	8.083	3.05	11.1/	1.02
	2.000	1.02	5 167	5.00	8 250	3.05	11.23	1 02
	2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
	2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
	2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
	2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
	2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
	2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
	2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
	2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
	2.833	3.05	5.91/	56.90	9.000	3.05	12.08	1.02
	3 000	3.05	6.000 6.083	57 91	9.003	2.03	12.17	1.02
	3 083	2 03	6 167	57 91	9.107	2.03	12.23	1.02
	3.003	2.03	01107	37.132	7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250	2.03	'	
Max.Eff.	Inten.(m	m/hr)=	57.91		35.79			
	over	(min)	5.00		15.00			
Storage	Coeff.	(min)=	2.47	(ii)	13.12 (ii)			
Unit Hyd	I. Tpeak	(min)=	5.00		15.00			
Unit Hyd	l. peak	(cms)=	0.29		35.79 15.00 13.12 (ii) 15.00 0.08			
DEAK EL		(0.05		0.00	*10	TALS*	
TIME TO	M DEAV	(cms)= (hrs)=	0.05 6.25		0.02 6.33		.077 (iii) 5.25	
PLINOEE V	OLUME	(III'S)-	61 75		31.16		7.06	
TOTAL RA	TNFALL	(mm)=	63.75		63.75		3.75	
RUNOFF (OEFFICIE	(mm)= (mm)= NT =	0.97		0.49		0.74	
***** WARNING	: STORAG	E COEFF. 1	IS SMALLE	R THAN	TIME STEP!			
		RE SELECTE						
		3.0 Ia (DT) SHOUL						
		TORAGE COE			LQUAL			
		DOES NOT 1			I TF ANY.			
(/								
CALIB								
STANDHYD (0185)	Area	(ha)=	0.47				
ID= 1 DT= 5.	0 min	lotal in	np(%)= /	2.00	Dir. Conn.	(%)=	/2.00	
			IMDER//TOU	IS DE	RVIOUS (i)			
Surface	Area		0.34		0.13			
	rage	(mm)=	2.00		5.00			
Average	Slope	(%)=	2.00 1.00		2.00			
Length			240.00		20.00			
Mannings	n		0.013		0.350			
				_				
				Page	/0			

	Lang	staffRd_EA_P	roposed_WestDor	Watershd
RUNOFF VOLUME	(mm)=	61.75	27.34	52.11
TOTAL RAINFALL	(mm)=	63.75	63.75	63.75
RUNOFF COFFETCTI	NT =	0.97	0.43	0.82

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 79.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0445)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0180):	0.65	0.077	6.25	47.06
+ ID2= 2 (0185):	0.47	0.063	6.25	52.11
=======================================				
ID = 3 (0445):	1.12	0.141	6.25	49.18

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0450) 1 + 2 = 3 	AREA (ha) 0.60 0.43	QPEAK (cms) 0.084 0.068	TPEAK (hrs) 6.25 6.25	R.V. (mm) 53.18 61.27
============				
ID = 3 (0450):	1.03	0.152	6.25	56.56

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0450)				
3 + 2 = 1	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 3 (0450):	1.03	0.152	6.25	56.56
+ ID2= 2 (0445):	1.12	0.141	6.25	49.18
=======================================				
ID = 1 (0450):	2.15	0.293	6.25	52.71

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0520)	OVERFLOW 1	IS OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE	-	OUTFLOW	STORAGE
	(cms)	(ha.m.)	ĺ	(cms)	(ha.m.)

Langstaff	Rd_EA_Propos	ed_WestDonWat	tershd
0.0000	0.0000	0.0181	0.0552
0.0081	0.0048	0.0203	0.0732
0.0123	0.0192	0.0224	0.1152
0.0155	0.0372	0.0000	0.0000

(cms) 0.293 0.020 (ha) 2.150 (hrs) 6.25 (mm) 52.71 INFLOW : ID= 2 (0450) OUTFLOW: ID= 1 (0520) 2.150 8.08 52.65

							-
CALIB							
STANDHYD (0145)	Area	(ha)=	3.05				
ID= 1 DT= 5.0 min	Total	Imp(%)=	76.00	Dir.	Conn.(%)=	76.00	
		IMPERVIO	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	2.32	2	0.73	3		
Dep. Storage	(mm)=	2.00	9	5.00	9		
Average Slope	(%)=	1.00	9	2.00	9		
Length	(m)=	531.00)	40.00	9		
Mannings n	` =	0.013	3	0.256	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03			
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03			
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03			
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03			
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03			
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03			
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03			
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02			
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02			
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02			
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03			

Page 73

LangstaffRd_EA_Proposed_WestDonWatershd

		IR	ANSFORME) HYE I OGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03		

Max.Eff.Inten.(mm/hr)=	57.91	38.29	
over (min)	10.00	10.00	
Storage Coeff. (min)=	8.38 (ii)	9.55 (ii)	
Unit Hyd. Tpeak (min)=	10.00	10.00	
Unit Hyd. peak (cms)=	0.12	0.12	
			TOTALS
PEAK FLOW (cms)=	0.22	0.00	0.220 (iii)
TIME TO PEAK (hrs)=	6.25	6.25	6.25
RUNOFF VOLUME (mm)=	61.75	32.22	61.46
TOTAL RAINFALL (mm)=	63.75	63.75	63.75
RUNOFF COEFFICIENT =	0.97	0.51	0.96

Natershd
4.06 | 11.00
4.06 | 11.01
1.08
3.05 | 11.17
3.05 | 11.25
3.05 | 11.33
3.05 | 11.30
3.05 | 11.50
3.05 | 11.50
3.05 | 11.50
3.05 | 11.50
3.05 | 11.25
2.03 | 11.67
2.03 | 11.20
3.05 | 12.08
3.05 | 12.08
3.05 | 12.08 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 3.05 | 3.05 | 2.03 | 2.03 | 2.03 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 2.03 | 2.417 2.500 2.583 2.667 2.750 2.833 2.917 1.02 1.02 2.03 2.03 2.03 1.02 1.02 1.02 3.000 3.083 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 57.91 10.00 8.66 (ii) 10.00 0.12 39.56 20.00 18.88 (ii) 20.00 0.06 *TOTALS* 0.403 (iii) 6.25 55.21 63.75 0.87 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.36 0.05 6.25 61.75 63.75 0.97 6.42 34.48 63.75 0.54

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0135)	Area	(ha)=	1.43			
ID= 1 DT= 5.0 min	Total	Imp(%)=	99.00	Dir.	Conn.(%)=	99.00
		IMPERVI	OUS	PERVIOL	JS (i)	
Surface Area	(ha)=	1.4	2	0.01	1	
Dep. Storage	(mm)=	2.0	9	5.00	9	
Average Slope	(%)=	1.0	Э	2.00	9	
Length	(m)=	503.0	Э	30.00	9	
Mannings n	` =	0.01	3	0.256	9	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 74

${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* PROCEDURE SELECTED FOR FEXTURES GASSONS.

 (CN* = 84.0 Ia = Dep. Storage (Above.)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
STANDHYD (0140)	Area	(ha)=	1.27			
ID= 1 DT= 5.0 min				Dir.	Conn.(%)=	91.00

		IMPERVIOUS	PERVIOUS ((i
Surface Area	(ha)=	1.16	0.11	`
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	503.00	25.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02

2.333 2.417	Langstaff 3.05 5.4 3.05 5.5	Rd_EA_Prop 117 7.1 500 7.1	osed_WestD 1 8.500 1 8.583	onWaters 3.05 2.03	hd 11.58 11.67	1.02
2.500 2.583 2.667	3.05 5.5 2.03 5.6 2.03 5.7	8.1 667 8.1 750 8.1	8 8.667 3 8.750 3 8.833	2.03 2.03 3.05	11.75 11.83 11.92	1.02 2.03 2.03
2.750 2.833 2.917 3.000	Langstaff 3.05 5.4 3.05 5.5 3.05 5.5 2.03 5.6 2.03 5.6 3.05 6.6 3.05 6.6 2.03 6.6	333 56.9 917 56.9 900 56.9	8.917 9 9.000 9 9.083	3.05 3.05 2.03	12.00 12.08 12.17	2.03 1.02 1.02
3.083 Max.Eff.Inten.(mm/h	2.03 6.1 r)= 57	.91	37.09	2.03		
Max.Eff.Inten.(mm/h over (mi Storage Coeff. (mi Unit Hyd. Tpeak (mi Unit Hyd. peak (cm	n) 16 n)= 8 n)= 16	0.00 3.38 (ii) 0.00	15.00 11.00 (i 15.00 0.09	i)		
PEAK FLOW (cm TIME TO PEAK (hr RUNOFF VOLUME (m TOTAL RAINFALL (m RUNOFF COEFFICIENT				*10	ALS* 188 (iii) 5.25)
TOTAL RAINFALL (m	m)= 63 = 6	3.75 3.97	63.75 0.49	6:	3.75 3.93	
(i) CN PROCEDURE CN* = 83.0 (ii) TIME STEP (DT THAN THE STOR (iii) PEAK FLOW DOE	Ia = De) SHOULD BE AGE COEFFIC	p. Storag SMALLER SIENT.	e (Above) OR EQUAL			
ADD HYD (0420)						
1 + 2 = 3 1 + 2 = 1 ID1= 1 (0135):	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)		
ID1= 1 (0135): + ID2= 2 (0140):	1.43 1.27	0.220 0.188	6.25 6.25	51.46 59.00		
ID = 3 (0420):						
NOTE: PEAK FLOWS D	O NOT INCLU	JDE BASEFL	OWS IF ANY			
RESERVOIR(0530) IN= 2> OUT= 1						
DT- 50 min	(cms) 0.0000	(ha.m.) 0.0000	(cms) (ha	i.m.) 3.0823	
	0.0084 0.0105	0.0283 0.0553	0.03 0.05 0.00	16 6 90 6	0.1598 0.0000	

Page 77

LangstaffRd_EA_Proposed_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

```
NSFORMED HYETOGRANN | * TIME m/hr | * TIME m/hr | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TIME n. | * TI
                                                                                                                                                 TRANSFORMED HYETOGRAPH -
                                                                                                                                TIME
hrs
3.167
3.250
                                                                                                                                                                                                                                                 APH ----
RAIN | TIME
mm/hr | hrs
57.91 | 9.33
11.18 | 9.42
11.18 | 9.50
                                                                                             RAIN |
                                                                                                                                                                                                                                                                                                                                       RATN
                                                     hrs
0.083
0.167
                                                                                                                                                                                                                                                                                                                                    mm/hr
2.03
2.03
                                                     0.250
                                                                                               0.00
                                                                                                                                3.333
                                                                                                                                                                                                                                                                                              9.50
9.58
                                                                                                                                                                                                                                                                                                                                    2.03
                                                     0.333
                                                                                                                                3,417
                                                                                                                                                                                                                                                   11.18
                                                                                                                                                                                                                                                                                                                                    2.03
                                                                                             1.02
1.02
2.03
2.03
2.03
1.02
                                                                                                                                                                                                                                                 11.18 |
11.18 |
11.18 |
11.18 |
5.08 |
5.08 |
5.08 |
                                                     0.417
                                                                                                                                3.500
                                                                                                                                                                                                                                                                                              9.67
9.75
                                                                                                                                                                                                                                                                                                                                    2.03
                                                                                                                                                                                                                                                                                                                                    2 03
                                                     0.583
0.667
0.750
0.833
                                                                                                                                3.583
3.667
3.750
3.833
                                                                                                                                  3.917
                                                                                                                              4.000
4.083
4.167
4.250
4.333
4.417
4.500
4.583
4.667
                                                     0.917
                                                                                               1.02
                                                                                                                                                                                                                                                                                         10.17
                                                                                                                                                                                                                                                                                                                                    2.03
                                                     1.000
                                                                                                1.02
                                                                                                                                                                                                                                                        5.08
                                                                                                                                                                                                                                                                                         10.25
                                                                                                                                                                                                                                                                                                                                    2.03
                                                                                                                                                                                                                                                       5.08
5.08
4.06
4.06
4.06
4.06
4.06
4.06
                                                                                             1.02
1.02
1.02
1.02
                                                     1.083
                                                                                                                                                                                                                                                                                         10.33
                                                                                                                                                                                                                                                                                                                                    1.02
                                                                                                                                                                                                                                                                                        10.33
10.42
10.50
10.58
10.67
10.75
                                                       1 167
                                                     1.250
1.333
1.417
                                                                                                1.02
1.02
                                                                                                                                                                                                                                                                                                                                    1.02
                                                                                                                                                                                                                                                                                                                                    1.02
                                                                                                                                                                   4.06 7.753
4.06 7.833
4.06 7.917
4.06 8.000
5.08 8.157
5.08 8.157
5.08 8.333
7.11 8.447
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
7.11 8.590
                                                                                                                                                                           4.06
                                                     1.583
                                                                                               2.03
                                                                                                                                                                                                            7.750
                                                                                                                                                                                                                                                                                         10.83
                                                                                                                                                                                                                                                                                                                                    2.03
                                                     1.667
                                                                                               2.03
                                                                                                                                4.750
                                                                                                                                                                                                                                                        4.06
                                                                                                                                                                                                                                                                                         10.92
                                                                                                                                                                                                                                                                                                                                    2.03
                                                                                                                                                                                                                                                       4.06
4.06
3.05
3.05
3.05
3.05
                                                                                             2.03
1.02
1.02
1.02
                                                                                                                              4.833
4.917
5.000
5.083
                                                                                                                                                                                                                                                                                                                                    2.03
1.02
1.02
1.02
                                                     1.750
                                                                                                                                                                                                                                                                                         11.00
                                                     1.833
1.917
2.000
                                                                                                                                                                                                                                                                                        11.08
11.17
11.25
11.33
                                                     2.083
                                                                                               1.02
                                                                                                                               5.167
                                                                                                                                                                                                                                                                                                                                    1.02
                                                     2.167
                                                                                                1.02
                                                                                                                               5.250
                                                                                                                                                                                                                                                                                         11.42
                                                                                                                                                                                                                                                                                                                                    1.02
                                                     2.250
                                                                                               1.02
                                                                                                                               5.333
                                                                                                                                                                                                                                                        3.05
                                                                                                                                                                                                                                                                                        11.50
                                                                                                                                                                                                                                                                                                                                    1.02
                                                     2.333
                                                                                                3.05
                                                                                                                               5.417
                                                                                                                                                                                                                                                        3.05
                                                                                                                                                                                                                                                                                         11.58
                                                                                                                                                                                                                                                                                                                                    1.02
                                                                                                                                                                                                                                                       2.03
2.03
2.03
2.03
3.05
3.05
3.05
                                                                                             3.05
3.05
2.03
2.03
2.03
                                                                                                                                                                                                                                                                                        11.67
11.75
11.83
11.92
12.00
                                                     2.417
                                                                                                                               5.500
5.583
                                                                                                                                                                                                                                                                                                                                    1.02
                                                                                                                                5.667
5.750
5.833
                                                     2.750
                                                                                                                                                                                                                                                                                                                                    2.03
                                                     2.833
                                                                                               3.05
                                                                                                                                5.917
                                                                                                                                                                                                                                                                                        12.08
                                                                                                                                                                                                                                                                                                                                    1.02
                                                     2.917
                                                                                             3.05
                                                                                                                              6.000
                                                                                                                                                                                                                                                        2.03
                                                                                                                                                                                                                                                                                       12.17
                                                                                                                                                                                                                                                                                                                                   1.02
                                                                                               3.05
                                                                                                                               6.083
                                                                                                                                                                                                                                                        2.03
                                                                                                                                                                                                                                                                                       12.25
                                                                                                                                                                      57.91 | 9.250
                                                     3.083
                                                                                             2.03 | 6.167
                                                                                                                                                                                                                                                       2.03
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                        5.00 10.00
5.64 (ii) 9.78 (ii)
5.00 10.00
                                                                                                                                        0.20
                                                                                                                                                                                                        0.11
                                                                                                                                                                                                                                                                 *TOTALS*
```

0.08

PEAK FLOW (cms)=

0.01

Page 79

0.085 (iii)

(ha)= (mm)= (%)= (m)= 0.47 2.00 1.00 260.00 0.11 5.00 2.00 Surface Area Dep. Storage Average Slope Length 30.00 Page 78 LangstaffRd_EA_Proposed_WestDonWatershd
TIME TO PEAK (hrs)= 6.25 6.25 6.25
RUNOFF VOLUME (mm)= 61.75 31.16 55.30
TOTAL RAINFALL (mm)= 63.75 63.75 63.75
RUNOFF COEFFICIENT = 0.97 ^ - -(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | CALIB | | STANDHYD (0220) | |ID= 1 DT= 5.0 min | Area (ha)= 0.65 Total Imp(%)= 66.00 Dir. Conn.(%)= 66.00 IMPERVIOUS PERVIOUS (i) 0.43 2.00 1.00 260.00 0.013 Surface Area (ha)= 0.22 5.00 2.00 Dep. Storage Average Slope Length (mm)= (%)= (m)= Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. NSFORMED HYETOGR RAIN | TIME mm/hr | hrs 2.03 | 6.250 2.03 | 6.333 3.05 | 6.417 3.05 | 6.500 3.05 | 6.500 3.05 | 6.500 3.05 | 6.500 3.05 | 6.750 2.03 | 6.750 2.03 | 6.750 2.03 | 6.750 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 3.05 | 7.000 TRANSFORMED HYFTOGRAPH -RAIN | mm/hr | 0.00 | 0.00 | TIME hrs 3.167 RAIN | TIME mm/hr | hrs 57.91 | 9.33 TIME RATN 0.167 3.250 11.18 2.03 0.250 0.00 3.333 11.18 2.03 0.333 1.02 3.417 11.18 9.58 9.67 2.03 0.417 1.02 11.18 2.03 0.500 0.583 0.667 0.750 3.583 3.667 3.750 3.833 3.917 11.18 11.18 5.08 5.08 9.75 9.83 9.92 10.00 1.02 2.03 2.03 2.03 2.03 0.833 1.02 1.02 | 3.917 1.02 | 4.000 1.02 | 4.083 1.02 | 4.167 1.02 | 4.250 1.02 | 4.333 1.02 | 4.417 1.02 | 4.583 2.03 | 4.667 2.03 | 4.750 2.03 | 4.833 1.02 | 4.917 5.08 10.08 2.03 0.917 5.08 10.17 2.03 1.000 5.08 10.25 2.03 7.250 7.333 7.417 7.500 7.583 7.667 1.083 2.03 5.08 10.33 1.02 2.03 2.03 5.08 5.08 5.08 4.06 1.167 1.250 1.333 1.417 1.500 4.06 4.06 4.06 4.06 4.06 10.42 10.50 10.58 10.67 1.02 1.02 1.02 1.02

LangstaffRd_EA_Proposed_WestDonWatershd QPEAK TPEAK (cms) (hrs)

0.408 0.039

(hrs) 6.25 7.33 (mm) 55.21

6.25

60.18

57.54

STORAGE

(ha.m.) 0.1003 0.1284 0.1594

0.1934

0.2308

R V

OUTFLOW

(cms) 0.0471 0.0636 0.0763

0.0870

0.0964

TΡΕΔΚ

PEAK | FLOW | REDUCTION | [Qout/Qin](%) = | 9.48 | TIME | SHIFT OF | PEAK | FLOW | (min) = | 65.00 | MAXIMUM | STORAGE | USED | (ha.m.) = | 0.1109

(cms) 0.403

STORAGE

(ha.m.) 0.0000 0.0165 0.0331

0.0526

AREA

0.0526 | 0.0750 |

PEAK FLOW REDUCTION [Qout/Qin](%)= 15.40 TIME SHIFT OF PEAK FLOW (min)=125.00 MAXIMUM STORAGE USED (ha.m.)= 0.1292

Area (ha)= 0.58 Total Imp(%)= 81.00 Dir. Conn.(%)= 81.00 IMPERVIOUS PERVIOUS (i)

QPEAK

AREA (ha)

(ha)

3.05 2.70 0.039

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

(cms) 0.0000 0.0071 0.0098

0.0119

0.0138

OVERFLOW IS OFF OUTELOW

ID = 3 (0425): 5.75 0.415

INFLOW : ID= 2 (0420) OUTFLOW: ID= 1 (0530)

ADD HYD (0425) | 1 + 2 = 3 |

RESERVOIR(0512)| IN= 2---> OUT= 1 | DT= 5.0 min

| CALIB | | STANDHYD (0215) |ID= 1 DT= 5.0 min |

ID1= 1 (0145): + ID2= 2 (0530):

4 96 Page 80

4.06 İ

4.06

1.583

1.667

1 750

1.833

7.750 7.833 7.917 8.000

10.75

11.08

4.06 10.83

4.06 10.92

4 96 11 00 1.02

2.03

2.03

	1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.6
	2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.6
	2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.6
	2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.6
	2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.6
			5.417		8.500		11.58	1.6
	2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.6
	2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.6
	2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.6
	2.667		5.750		8.833	3.05		
			5.833		8.917	3.05		2.6
			5.917		9.000		12.08	1.6
			6.000		9.083		12.17	
	3.000				9.167		12.25	1.6
	3.083	2.03	6.167	57.91	9.250	2.03		
Max.Eff.In	ten.(mm/	hr)=	57.91		37.09			
	over (m		5.00		15.00			
					10.08 (ii)			
Unit Hyd.			5.00		15.00			
Unit Hyd.	peak (c	ms)=	0.20		0.10			
							TALS*	
PEAK FLOW		ms)=	0.07		0.02		.086 (iii)	
TIME TO PE					6.33		5.25	
RUNOFF VOL			61.75		31.16		1.35	
TOTAL RAIN		mm)=	63.75		63.75		3.75	
	FFICIENT	=	0.97		0.49	6	0.81	

- CN* = 83.0 i a = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

	-				
ADD HYD (0470) 1 + 2 = 3		OPEAK	TPEAK	R.V.	
	- (ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0		0.085	6.25	55.93	
+ ID2= 2 (0	220): 0.65	0.086	6.25	51.35	
ID = 3 (0	470): 1.23	0.171	6.25	53.51	
NOTE: PEAK FI	OWS DO NOT TNCLL	IDE BASEFI	OWS TE AM	IY.	

IN= 2> OUT= 1 DT= 5.0 min		
(cms) (ha.m.)	OUTFLOW STORAGE (cms) (ha.m.)	

Page 81

	Langs	taffRd_E	A_Propo	sed_WestDon	Waters	hd	
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750		5.833			3.05		2.03
2.833		5.917	56.90		3.05		1.02
2.917		6.000	56.90	9.083	2.03		1.02
3.000		6.083			2.03		1.02
3.083	2.03	6.167	57.91	9.250	2.03		
Max.Eff.Inten.(m	m/hr)=	57.91		37.09			
	(min)	5.00		10.00			
	(min)=		(ii)	8.41 (ii)			
Unit Hyd. Tpeak		5.00	` '	10.00			
	(cms)=	0.18		0.12			
	, ,				*T0	TALS*	
PEAK FLOW	(cms)=	0.08		0.01	0	.089 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.25		5.25	
RUNOFF VOLUME	(mm)=	61.75		31.16	50	5.55	
TOTAL RAINFALL	(mm)=	63.75		63.75	6	3.75	
RUNOFF COEFFICIE	NT =	0.97		0.49	(0.89	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

, ,				
I CALTB				
STANDHYD (0230)	Area	(ha)= 0	.70	
ID= 1 DT= 5.0 min	Total	Imp(%) = 66	.00 Dir. Conn.(%)=	66.00
ii		,		
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.46	0.24	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	320.00	25.00	
Mannings n	=	0.013	0.300	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Proposed_WestDonWatershd 0.0000 0.0000 | 0.0116 0.0 0.0053 0.0048 0.0131 0.0 0.0080 0.0154 0.0202 0.0 0.0100 0.0261 | 0.0000 0.0 0.0367 0.0474 0.0639 0.0000 QPEAK (cms) 0.171 0.012 R.V. (mm) 53.51 53.33 (ha) 1.230 1.230 (hrs) 6.25 8.00 INFLOW : ID= 2 (0470) OUTFLOW: ID= 1 (0535)

PEAK FLOW REDUCTION [Qout/Qin](%)= 7.26
TIME SHIFT OF PEAK FLOW (min)=105.00
MAXIMUM STORAGE USED (ha.m.)= 0.0426

| CALIB | STANDHYD (0225)| |ID= 1 DT= 5.0 min Area (ha)= 0.60 Total Imp(%)= 83.00 Dir. Conn.(%)= 83.00 IMPERVIOUS 0.50 2.00 1.00 320.00 0.013 PERVIOUS (i) Surface Area Dep. Storage Average Slope Length Mannings n (ha)= (mm)= (%)= (m)= 0.10 5.00 2.00 10.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03

Langs			sed_WestDo			
			D HYETOGRA			
TIME RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs mm/hr			' hrs	mm/hr		mm/hr
0.083 0.00		2.03	6.250	57.91		2.03
	3.250		6.333	11.18	9.42	2.03
0.250 0.00			6.417	11.18	9.50	2.03
0.333 1.02	3.417		6.500	11.18	9.58	2.03
0.417 1.02		3.05		11.18	9.67	2.03
0.500 1.02	3.583	2.03		11.18	9.75	2.03
0.583 2.03		2.03		11.18	9.83	2.03
	3.750	2.03		5.08		2.03
	3.833	3.05		5.08		2.03
	3.917	3.05	7.000	5.08		2.03
0.917 1.02		3.05		5.08		2.03
	4.083	2.03		5.08		2.03
	4.167	2.03		5.08		1.02
	4.250	2.03	7.333	4.06		1.02
	4.333	5.08	7.417	4.06		1.02
	4.417	5.08	7.500	4.06		1.02
	4.500	5.08		4.06		1.02
	4.583	4.06	7.667	4.06		1.02
	4.667	4.06		4.06		2.03
	4.750	4.06		4.06		2.03
1.750 2.03		4.06		4.06		2.03
	4.917		8.000	4.06		1.02
	5.000		8.083	3.05		1.02
	5.083	5.08		3.05		1.02
	5.167	5.08		3.05		1.02
	5.250 5.333	5.08 7.11	8.333	3.05		1.02
	5.333	7.11	8.417	3.05		1.02
	5.500	7.11	8.500	2.03		1.02
	5.583		8.667	2.03		1.02
	5.667	8.13	8.750	2.03		2.03
	5.750	8.13		3.05		2.03
		56.90		3.05		2.03
		56.90		3.05		1.02
		56.90		2.03		1.02
		57.91	9.167	2.03		1.02
		57.91		2.03		1.02
	•					
Max.Eff.Inten.(mm/hr)=	57.91		34.81			
over (min)	5.00		20.00			
Storage Coeff. (min)=	6.39 (ii)	15.45 (ii)			
Unit Hyd. Tpeak (min)=	5.00		20.00			
Unit Hyd. peak (cms)=	0.18		0.07	****		
PEAK FLOW (cms)=	0.07		0.02		ALS* 087 (iii)	
TIME TO PEAK (hrs)=	6.25		6.42		5.25	
RUNOFF VOLUME (mm)=	61.75		29.17		0.66	
TOTAL RAINFALL (mm)=	63.75		63.75		3.75	
RUNOFF COEFFICIENT =	0.97		0.46		3.79	
	0.57		- 1-10			

LangstaffRd_EA_Proposed_WestDonWatershd

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0475)| | 1 + 2 = 3 | QPEAK (cms) 0.089 0.087 R.V. (mm) 56.55 50.66 AREA TPEAK (ha) 0.60 0.70 (hrs) 6.25 6.25 ID1= 1 (0225): + ID2= 2 (0230): ID = 3 (0475): 1.30 0.176 6.25 53.38

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0540)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE OUTFLOW STORAGE STORAGE (ha.m.) 0.0000 0.0048 0.0154 0.0261 STORAGE (ha.m.) 0.0367 0.0474 0.0639 0.0000 (cms) 0.0000 (cms) 0.0271 0.0000 0.0118 0.0184 0.0232 0.0271 0.0306 0.0415 0.0000 TPEAK QPEAK (cms) 0.176 0.027 (hrs) 6.25 6.92 (mm) 53.38 53.30 (ha) 1.300 INFLOW: ID= 2 (0475) OUTFLOW: ID= 1 (0540)

PEAK FLOW REDUCTION [Qout/Qin](%)= 15.21 TIME SHIFT OF PEAK FLOW (min)= 40.00 MAXIMUM STORAGE USED (ha.m.)= 0.0358

ADD HYD (0480)| 1 + 2 = 3 | AREA (ha) 1.23 1.30 QPEAK (cms) 0.012 0.027 TPEAK (hrs) 8.00 6.92 R.V. (mm) 53.33 53.30 ID1= 1 (0535): + ID2= 2 (0540): ID = 3 (0480): 2.53 0.039 7.00 53.32

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page 85

LangstaffRd_EA_Proposed_WestDonWatershd 2.03 | 6.167 57.91 | 9.250 2.03 |

Max.Eff.Inten.(mm/hr)=	57.91	42.12	
over (min)	5.00	10.00	
Storage Coeff. (min)=	5.64 (i	i) 8.21 (ii)	
Unit Hyd. Tpeak (min)=	5.00	10.00	
Unit Hyd. peak (cms)=	0.20	0.13	
			TOTALS
PEAK FLOW (cms)=	0.08	0.00	0.087 (iii)
TIME TO PEAK (hrs)=	6.25	6.25	6.25
RUNOFF VOLUME (mm)=	61.75	35.70	59.92
TOTAL RAINFALL (mm)=	63.75	63.75	63.75
RUNOFF COEFFICIENT =	0.97	0.56	0.94

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 87.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Area (ha)= 0.43 Total Imp(%)= 95.00 Dir. Conn.(%)= 95.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.41 2.00 1.00 260.00 0.013 0.02 5.00 2.00 20.00 0.250 Surface Area Dep. Storage Average Slope Length Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02

Page 87

LangstaffRd_EA_Proposed_WestDonWatershd

CALIB		_	_	_	
STANDHYD (0155)	Area	(ha)= (0.56		
ID= 1 DT= 5.0 min	Total	Imp(%) = 93	3.00	Dir. Conn.(%)=	93.00
		IMPERVIOUS	S	PERVIOUS (i)	
Surface Area	(ha)=	0.52		0.04	
Dep. Storage	(mm)=	2.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	260.00		25.00	
Mannings n	_	0 012		0.200	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03			
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03			
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03			
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03			
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03			
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03			
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03			
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02			
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02			
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02			
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02			
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02			
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02			
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02			
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02			
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02			
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02			
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02			
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02			
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03			
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03			
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03			
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02			
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02			
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02			

	Langs	taffRd E	A Propos	ed WestDo	onWaters	hd	
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03
2.667	2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90	8.917	3.05	12.00	2.03
2.833	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.083	2.03	6.167	57.91	9.250	2.03	l	
T-1		F7 04					

Max.Eff.Inten.(r	mm/hr)=	57.91	44.85	
over	(min)	5.00	10.00	
Storage Coeff.	(min)=	5.64 (ii)	7.42 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.20	0.13	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.00	0.068 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	61.75	38.29	60.57
TOTAL RAINFALL	(mm)=	63.75	63.75	63.75
RUNOFF COEFFICIE	ENT =	0.97	0.60	0.95

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0430)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0155):	0.56	0.087	6.25	59.92
+ ID2= 2 (0160):	0.43	0.068	6.25	60.57

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB	Area Total	(ha)= Imp(%)=	3.81 95.00	Dir.	Conn.(%)=	95.00	
		TMPERVTO	ııc	PERVIOL	IC (1)		
Surface Area	(ha)=	3.62		0.19	9		
Dep. Storage	(mm)=	2.00		5.00	9		
Average Slope	(%)=	1.00		2.00	9		
Length	(m)=	150.00		40.00	9		
Mannings n	` ´=	0.013		0.256	•		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH										
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	57.91	9.33	2.03			
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03			
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03			
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03			
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03			
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03			
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03			
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03			
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02			
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02			
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02			
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03			
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02			
1.917	1.02	5.000	4.06	8.083	3.05	11.17	1.02			
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02			
2.083	1.02	5.167	5.08	8.250	3.05	11.33	1.02			
2.167	1.02	5.250	5.08	8.333	3.05	11.42	1.02			
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02			
2.333	3.05	5.417	7.11	8.500	3.05	11.58	1.02			
2.417	3.05	5.500	7.11	8.583	2.03	11.67	1.02			
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02			
2.583	2.03	5.667	8.13	8.750	2.03	11.83	2.03			
			Page	89						

Page 89

	Lan	gstaffRo	_EA_Pro	posed_Wes	tDonWater	rshd
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (043 + ID2= 2 (051	0): 5):	(ha) 0.99 3.81	(cms) 0.155 0.010	(hrs) 6.25 12.25	(mm) 60.20 59.71	
ID = 3 (044 NOTE: PEAK FLOW	0):	4.80	0.163	6.25	59.81	
CALIB STANDHYD (0210) ID= 1 DT= 5.0 min				Dir. Co	onn.(%)=	78.00
Surface Area Dep. Storage Average Slope Length Mannings n	(mm) = (%) = (m) =	0.1 2.0 1.0 470.0	75 00 00 00	5.00 2.00 20.00	(i)	
NOTE: DATE						

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME	STEP.
---	-------

		TR	ANC EODMEI	D HYETOGR	ADU		
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	l TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	57.91 l	9.33	2.03
0.167	0.00	3.250	2.03	6.333	11.18	9.42	2.03
0.250	0.00	3.333	3.05	6.417	11.18	9.50	2.03
0.333	1.02	3.417	3.05	6.500	11.18	9.58	2.03
0.417	1.02	3.500	3.05	6.583	11.18	9.67	2.03
0.500	1.02	3.583	2.03	6.667	11.18	9.75	2.03
0.583	2.03	3.667	2.03	6.750	11.18	9.83	2.03
0.667	2.03	3.750	2.03	6.833	5.08	9.92	2.03
0.750	2.03	3.833	3.05	6.917	5.08	10.00	2.03
0.833	1.02	3.917	3.05	7.000	5.08	10.08	2.03
0.917	1.02	4.000	3.05	7.083	5.08	10.17	2.03
1.000	1.02	4.083	2.03	7.167	5.08	10.25	2.03
1.083	1.02	4.167	2.03	7.250	5.08	10.33	1.02
1.167	1.02	4.250	2.03	7.333	4.06	10.42	1.02
1.250	1.02	4.333	5.08	7.417	4.06	10.50	1.02
1.333	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.583	2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.667	2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.833	1.02	4.917	4.06	8.000	4.06	11.08	1.02

Page 91

	Lang	ctaffRd E	A Propos	ed WestDon	Waterch	nd	
2.				8.833		11.92	2.03
2	750 2 03	I 5 833	56 90	8 917	3 05 İ	12 00	2 03
2.	833 3.05	5.917	56.90	9.000	3.05 j	12.08	1.02
2.	917 3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.	000 3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.	833 3.05 917 3.05 000 3.05 083 2.03	6.167	57.91	9.250	2.03		
Max.Eff.Inten							
	er (min)						
Storage Coeff							
Unit Hyd. Tpe							
Unit Hyd. pea							
, . , ,	(/				*T0T	ALS*	
PEAK FLOW	(cms)=	0.58		0.02	0.	603 (iii)	
TIME TO PEAK	(hrs)= (mm)= L (mm)=	6.25		6.25	6	.25	
RUNOFF VOLUME	(mm)=	61.75	:	36.96	60	.51	
TOTAL RAINFAL	L (mm)=	63.75	(53.75	63	.75	
RUNOFF COEFFI	CIENT =	0.97		0.58	6	.95	
***** WARNING: STO	DACE COFFE	TC CMALL	D THAN	TTME CTEDI			
WARNING: 510	RAGE CUEFF.	15 SMALLI	I I I I I I I I I I I I I I I I I I I	IIME SIEP!			
(i) CN PROC	EDURE SELECT	FD FOR PI	RVTOUS	OSSES:			
	88.0 Ia						
(ii) TIME ST							
` ´ THAN TH	E STORÁGE CO	EFFICIEN	Γ.				
(iii) PEAK FL	OW DOES NOT	INCLUDE E	BASEFLOW	IF ANY.			
RESERVOIR(0515) OVER	LOW IS OF					
IN= 2> OUT= 1		LOW 13 01					
DT= 5.0 min		.OW STO	DRAGE	OUTFLOW	STO	RAGE	
,		(ha		(cms)			
	0.00			0.0091		.1797	
	0.00	13 0	.0157	0.0095		.2004	

RESERVOIR(0515)	OVERFLOW 1	S OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0.0091	0.1797	
	0.0013	0.0157	0.0095	0.2004	
	0.0033	0.0320	0.0100	0.2216	
	0.0044	0.0487	0.0104	0.2433	
	0.0053	0.0659	0.0109	0.2655	
	0.0061	0.0837	0.0113	0.2882	
	0.0068	0.1019	0.0116	0.3114	
	0.0074	0.1206	0.1520	0.3592	
	0.0080	0.1398	0.5654	0.4336	
	0.0086	0.1595	1.1316	0.5100	
			TPEAK		
	(ha	i) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (01	.50) 3.8	310 0.6	03 6.25	60.51	
OUTFLOW: ID= 1 (05	15) 3.8	810 0.0	10 12.25	59.71	
PEAK			ut/Qin](%)=		
	SHIFT OF PE		(min)=3		
MAXI	MUM STORAGE	USED	(ha.m.)=	0.2067	

Page 90

		Lange	taffRd E	A Propo	sed WestDon	Waters	hd	
	1.91			4.06		3.05		1.02
	2.00		5.083	5.08	8.167	3.05	11.25	1.02
	2.08		5.167		8.250	3.05		1.02
	2.16		5.250	5.08		3.05		1.02
	2.25		5.333	7.11		3.05		1.02
	2.33	3 3.05	5.417	7.11	8.500	3.05	11.58	1.02
	2.41	7 3.05	5.500	7.11	8.583	2.03	11.67	1.02
	2.50	0 3.05	5.583	8.13	8.667	2.03	11.75	1.02
	2.58	3 2.03	5.667	8.13	8.750	2.03	11.83	2.03
	2.66	7 2.03	5.750	8.13	8.833	3.05	11.92	2.03
	2.75	0 2.03	5.833	56.90	8.917	3.05	12.00	2.03
	2.83	3 3.05	5.917	56.90	9.000	3.05	12.08	1.02
	2.91	7 3.05	6.000	56.90	9.083	2.03	12.17	1.02
	3.00	0 3.05	6.083	57.91	9.167	2.03	12.25	1.02
	3.08	3 2.03	6.167	57.91	9.250	2.03		
Max.Eff			57.91		37.09			
		(min)	10.00		15.00			
Storage		(min)=	8.04	(ii)	11.54 (ii)			
Unit Hyd			10.00		15.00			
Unit Hyd	i. peak	(cms)=	0.13		0.09			
							TALS*	
PEAK FLO		(cms)=	0.12		0.02		.133 (iii)	
TIME TO		(hrs)=	6.25		6.33		5.25	
RUNOFF \		(mm)=	61.75		31.16		5.02	
TOTAL RA		(mm)=	63.75		63.75		3.75	
RUNOFF (OEFFICI	ENT =	0.97		0.49	6	9.86	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0205)	Area	(ha)=	1.11				
ID= 1 DT= 5.0 min	Total	Imp(%)=	77.00	Dir.	Conn.(%)=	77.00	
		IMPERVIOU	JS	PERVIOU	S (i)		
Surface Area	(ha)=	0.85		0.26			
Dep. Storage	(mm)=	2.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m)=	470.00		20.00			
Mannings n	` =	0.013		0.250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

				sed_WestDo			
hr			mm/hr				mm/hr
0.08					57.91		2.03
0.16					11.18		2.03
0.25		3.333	3.05		11.18		2.03
0.33		3.417			11.18		2.03
0.41		3.500	3.05		11.18		2.03
0.500			2.03		11.18		2.03
0.58		3.667			11.18		2.03
0.66		3.750		6.833	5.08		2.03
0.75		3.833		6.917		10.00	2.03
0.83		3.917	3.05		5.08		2.03
0.91		4.000		7.083	5.08		2.03
1.000		4.083	2.03		5.08		2.03
1.08		4.167	2.03		5.08		1.02
1.16		4.250	2.03	7.333		10.42	1.02
1.250		4.333	5.08			10.50	1.02
1.33	1.02	4.417	5.08	7.500	4.06	10.58	1.02
1.41	7 1.02	4.500	5.08		4.06	10.67	1.02
1.500	1.02	4.583	4.06	7.667	4.06	10.75	1.02
1.58	3 2.03	4.667	4.06	7.750	4.06	10.83	2.03
1.66	7 2.03	4.750	4.06	7.833	4.06	10.92	2.03
1.750	2.03	4.833	4.06	7.917	4.06	11.00	2.03
1.83	1.02	4.917	4.06	8.000	4.06	11.08	1.02
1.91	7 1.02	5.000	4.06	8.083	3.05	11.17	1.02
2.000	1.02	5.083	5.08	8.167	3.05	11.25	1.02
2.08		5.167	5.08	8.250	3.05	11.33	1.02
2.16	7 1.02	5.250	5.08	8.333	3.05	11.42	1.02
2.250	1.02	5.333	7.11	8.417	3.05	11.50	1.02
2.33	3.05	5.417	7.11	8.500	3.05	11.58	1.02
2.41	7 3.05	5.500	7.11	8.583	2.03	11.67	1.02
2.500	3.05	5.583	8.13	8.667	2.03	11.75	1.02
2.58	3 2.03	5.667	8.13		2.03	11.83	2.03
2.66	7 2.03	5.750	8.13	8.833	3.05	11.92	2.03
2.750	2.03	5.833	56.90		3.05	12.00	2.03
2.83	3.05	5.917	56.90	9.000	3.05	12.08	1.02
2.91	7 3.05	6.000	56.90	9.083	2.03	12.17	1.02
3.000	3.05	6.083	57.91	9.167	2.03	12.25	1.02
3.08	2.03	6.167	57.91	9.250	2.03	I	
Max.Eff.Inten.(nm/hr)=	57.91		37.09			
	(min)	10.00		15.00			
Storage Coeff.	(min)=	8.04	(ii)	11.62 (ii)	1		
Unit Hyd. Tpeak	(min)=	10.00		15.00			
Unit Hyd. peak	(cms)=	0.13		0.09			
						TALS*	
PEAK FLOW	(cms)=	0.13		0.02		.152 (iii)	
TIME TO PEAK	(hrs)=	6.25		6.33		6.25	
RUNOFF VOLUME	(mm)=	61.75		31.16		4.71	
TOTAL RAINFALL	(mm)=	63.75		63.75		3.75	
RUNOFF COEFFICI	NT =	0.97		0.49	,	0.86	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

Page 93

LangstaffRd_EA_Proposed_WestDonWatershd ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME RAIN | m/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr hrs mm/hr hrs mm/hr 57.91 | hrs mm/hr 2.03 3.167 6.250 6.333 6.417 6.500 6.583 6.667 7.000 7.003 7.167 7.250 7.333 7.417 9.33 0.083 0.00 2.03 0.167 0.00 3.250 2.03 11.18 9.42 2.03 3.05 3.05 3.05 2.03 2.03 0 250 9 99 3 333 9 50 2 03 0.250 0.333 0.417 0.500 0.583 1.02 1.02 1.02 2.03 3.333 3.417 3.500 3.583 3.667 3.750 11.18 11.18 11.18 11.18 9.58 9.67 9.75 9.83 2.03 2.03 2.03 2.03 2.03 2.03 0.667 2.03 5.08 5.08 9.92 2.03 0.750 3.833 3.05 2.03 0.833 1.02 3.917 4.000 3.05 3.05 2.03 2.03 2.03 5.08 5.08 5.08 10.08 2.03 0 917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 1.02 1.167 1.250 1.02 1.333 1.02 7.500 10.58 1.02 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 1.417 1.02 10.67 1.02 1.02 2.03 2.03 2.03 1.02 4.06 4.06 4.06 4.06 4.06 4.06 4.06 1.500 10.75 1.02 4.667 4.750 4.833 4.917 10.75 10.83 10.92 11.00 11.08 2.03 1.667 1.750 1.833 1.02 1.02 1.917 5.000 11.17 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 5.08 5.08 3.05 2.000 1.02 5.083 11.25 1.02 2.083 1.02 5.167 3.05 11.33 1.02 5.167 5.250 5.333 5.417 5.500 5.583 3.05 3.05 3.05 3.05 2.03 2.03 2.03 1.02 1.02 3.05 3.05 5.08 7.11 7.11 7.11 8.13 1.02 1.02 1.02 1.02 2.167 11.42 11.58 11.67 11.75 2.500 2.583 3.05 1.02 2.03 5.667 8.13 11.83 2.03 8.13 | 8.750 8.13 | 8.833 56.90 | 8.917 56.90 | 9.000 56.90 | 9.083 57.91 | 9.167 57.91 | 9.250 2.667 2.03 5.750 3.05 11.92 2.03 2.750 2.03 5.833 3.05 12.00 2.03 3.05 | 3.05 | 3.05 | 2.03 | 5.917 6.000 6.083 6.167 3.05 | 2.03 | 2.03 | 2.03 | 2.833 12.08 1.02 2.917 3.000 3.083 Max.Eff.Inten.(mm/hr)= 35.79 57.91 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 20.00 18.79 (ii) 5.00 6.62 (ii)

TRANSFORMED HYETOGRAPH ----ME RAIN | TIME RAIN | TIME TIME mm/hr | 57.91 | hrs mm/hr 0.00 hrs mm/hr hrs mm/hr 2.03 3.167 6.250 9.33 9.42 0.083 2.03 0.167 0.00 3.250 11.18 İ 2.03 0.00 1.02 1.02 1.02 2.03 2.03 3.250 3.333 3.417 3.500 3.583 3.667 3.750 0.250 0.333 0.417 0.500 0.583 3.05 3.05 3.05 2.03 6.417 6.500 6.583 6.667 6.750 11.18 11.18 11.18 11.18 11.18 9.50 9.58 9.67 9.75 2.03 2.03 2.03 2.03 2.03 9.83 9.92 2.03 0.667 2.03 6.833 5.08 2.03 0.750 2.03 3.833 3.05 6.917 7.000 5.08 10.00 2.03 0.833 1.02 3.917 3.05 5.08 10.08 2.03 0.917 1.000 1.083 1.167 4.000 4.083 4.167 4.250 4.333 3.05 2.03 2.03 2.03 7.083 7.167 7.250 7.333 7.417 5.08 5.08 5.08 4.06 4.06 10.17 10.25 10.33 10.42 2.03 2.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.250 5.08 10.50 1.333 1.02 4.417 5.08 7.500 7.583 4.06 10.58 1.02 1.417 1.02 4.500 5.08 4.06 10.67 1.02 1.500 1.02 4.06 4.06 10.75 1.02 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 1.583 1.667 1.750 1.833 2.03 2.03 2.03 1.02 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06 10.83 10.92 11.00 11.08 2.03 2.03 2.03 1.02 1.02 1.02 4.06 1.917 3.05 11.17 2.000 1.02 5.08 3.05 11.25 1.02 2.083 1.02 5.08 3.05 11.33 1.02 2 167 1 02 5 08 3 05 11 42 1 02

7.11 Page 96 11.50

2.250

1.02

LangstaffRd_EA_Proposed_WestDonWatershd

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0460)| | 1 + 2 = 3 | R.V. AREA QPEAK TPEAK (ha) 1.11 0.96 (cms) 0.152 0.133 (hrs) 6.25 6.25 (mm) 54.71 55.02 ID1= 1 (0205): + ID2= 2 (0210): ID = 3 (0460): 2.07 0.285 54.85 6.25 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. RESERVOIR(0525)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE (ha.m.) 0.0000 0.0026 0.0084 (cms) 0.0000 (cms) 0.0733 (ha.m.) 0.0214 0.0274 0.0831 0.0278 0 0478 0 1449 0 0374 0.0619 (cms) 0.285 0.136 (ha) 2.070 (hrs) INFLOW : ID= 2 (0460) OUTFLOW: ID= 1 (0525) 6.25 6.50 2.070 54.85 PEAK FLOW REDUCTION [Qout/Qin](%)= 47.57
TIME SHIFT OF PEAK FLOW (min)= 15.00
MAXIMUM STORAGE USED (ha.m.)= 0.0361 CALIB STANDHYD (0190) Area (ha)= 0.86 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 |ID= 1 DT= 5.0 min | IMPERVIOUS 0.49 2.00 1.00 PERVIOUS (i) 0.37 5.00 2.00 Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= Length 340.00 50.00 Mannings n 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 94

${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0195)	Area	(ha)=	0.79				
ID= 1 DT= 5.0 min	Total	Imp(%) = 7	5.00	Dir. Con	n.(%)=	75.00	
		IMPERVIOU	S	PERVIOUS (i)		
Surface Area	(ha)=	0.59		0.20			
Dep. Storage	(mm)=	2.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m)=	340.00		20.00			
Mannings n	=	0.013		0.250			
NOTE: BATNE	ΔΙΙ WΔS	TRANSFORME	р то	5 0 MTN	TTMF	TEP	

6.42

31.16

63.75

6.25 61.75

63.75

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

TOTALS 0.099 (iii)

6.25 48.59

	Langeta	tto4 c	A Drono	cod Noc	tDonWate	achd	
2 222	2 AE I I	111KU_E	M_F1 OPO	l o cor	a a ac	rshd 11.58 11.67 11.75 11.83 11.92 12.08 12.17 12.25	1 02
2.333	3.05 3	5.41/	7.11	1 0.500	נט.כ נ	11.50	1.02
2.41/	3.05 3	5.500	7.11	0.50	2.03	11.0/	1.02
2.500	3.05	5.583	8.13	8.66	2.03	11.75	1.02
2.583	2.03 5	5.667	8.13	8.75	2.03	11.83	2.03
2.667	2.03 5	5.750	8.13	8.833	3 3.05	11.92	2.03
2.750	2.03 5	5.833	56.90	8.917	7 3.05	12.00	2.03
2.833	3.05 5	5.917	56.90	9.000	3.05	12.08	1.02
2.917	3.05 6	5.000	56.90	9.083	3 2.03	12.17	1.02
3.000	3.05 İ 6	5.083	57.91	9.167	7 2.03	12.25	1.02
3.083	2.03 6	5.167	57.91	9.256	2.03	i	
						'	
Max.Eff.Inten.(mm/h over (mi Storage Coeff. (mi Unit Hyd. Tpeak (mi Unit Hyd. peak (cm	ır)=	57.91		37.09			
over (mi	.n)	5.00		15.00			
Storage Coeff. (mi	.n)=	6.62	(ii)	10.36	(ii)		
Unit Hyd. Tpeak (mi	.n)=	5.00		15.00			
Unit Hyd. peak (cm	ıs)=	0.18		0.09			
						OTALS*	
PEAK FLOW (cm	15)=	0.09		0.02		0.110 (iii)	
TIME TO PEAK (hr	·s)=	6 25		6 33		6.25	
PLINGE VOLUME (#	m)-	61 75		31 16		5/ 10	
TOTAL DATABALL (-	····) -	62.75		62.75		54.10 63.75	
PEAK FLOW (cm TIME TO PEAK (hr RUNOFF VOLUME (m TOTAL RAINFALL (m RUNOFF COEFFICIENT	ını)=	03./3		03./5			
KUNUFF CUEFFICIENT	=	0.97		0.49		0.85	
CN* = 83.0 (ii) TIME STEP (DT THAN THE STOR (iii) PEAK FLOW DOE	SHOULD AGE COEFF	BE SMA FICIENT CLUDE E	LLER OF BASEFLOW	RÈQUAL	•		
ADD HYD (0455)							
1 + 2 = 3	AREA	A QF	PEAK	TPEAK	R.V.		
	(ha)) (ms)	(hrs)	(mm)		
1 + 2 = 3 ID1= 1 (0190):	0.86	5 0.6	99	6.25	48.59		
+ ID2= 2 (0195):	0.79	9 0.1	10	6.25	54.10		
ID = 3 (0455):							
(
NOTE: PEAK FLOWS D							
RESERVOIR(0555)	OVERFLO	W IS OF	F				
IN= 2> OUT= 1							
DT= 5.0 min	OUTFLOW	STO	RAGE	OUT	LOW S	TORAGE	
	(cms) 0.0000 0.0104 0.0162	(ha	ı.m.)	(cr	ns) (ha.m.)	
	0.0000	0.	0000	0.6	9238	0.0199	
	0.0104	0.	0024	0.6	9268	0.0259	
	0.0162	0.	0079	0.6	9825	0.0346	
	0.0202		0120	1 00	2000	0 0000	

Page 97

0.0259 0.0346 0.0000

	Lan	ngstaffRd_EA_Pro	posed_WestDonWate	rshd
ID= 1 DT= 5.0 min	Total	Imp(%) = 72.00	Dir. Conn.(%)=	72.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.43	0.17	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	250.00	20.00	
Mannings n		0 013	0 250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMFI	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	l' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03		

Page 99

LangstaffRd_EA_Proposed_WestDonWatershd AREA QPEAK TPEAK R. (ha) (cms) (hrs) (m AREA (ha) 1.650 (hrs) 6.25 6.50 INFLOW: ID= 2 (0455) OUTFLOW: ID= 1 (0555) PEAK FLOW REDUCTION [Qout/Qin](%)= 38.44 TIME SHIFT OF PEAK FLOW (min)= 15.00 MAXIMUM STORAGE USED (ha.m.)= 0.0343 ADD HYD (0465) | 1 + 2 = 3 | ID1= 1 (0525): + ID2= 2 (0555): QPEAK (cms) 0.136 0.080 R.V. (mm) 54.85 51.19 (hrs) 6.50 6.50 (ha) 2.07 1.65 ID = 3 (0465): 3.72 0.216 53.23 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. READ STORM Filename: C:\Users\ray.zhao\AppD ata\Local\Temp\ eda∂adac-3ha3-467d-984d-5ab4a7d3492c\d55f05e6 Comments: 25yr-12hrSCS | Ptotal= 74.42 mm | RAIN | TIME mm/hr | hrs 3.05 | 6.75 | 3.05 | 7.00 | 3.05 | 7.25 | 5.08 | 8.00 | 6.10 | 8.25 | 5.08 | 8.50 | 8.13 | 8.75 | 9.14 | 9.00 | 6.706 | 9.25 | 67.06 | 9.50 | 13.21 | 9.75 TIME TIME RATN I RATN I TTMF RAIN | TIME RATN RAIN mm/hr 0.00 1.02 2.03 1.02 2.03 1.02 2.03 mm/hr 2.03 2.03 2.03 1.02 2.03 mm/hr 13.21 | 6.10 | 6.10 | 5.08 | 4.06 | 4.06 | 5.08 | 3.05 | 3.05 | 2.03 | hrs 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 hrs 0.25 0.50 0.75 1.00 1.25 1.50 1.75 hrs 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 6.25 6.50 1.02 2.03 2.03 | 1.02 | 2.03 | 3.05 | 3.05 | 3.05 | 2.03 | 2.00 2.25 2.50 2.75 3.00 3.25 1.02 2.03 1.02 3.05 | 2.03 |

	La	ngstaffRd_E	A_Propo	sed_We	stDonk	latershd	
Max.Eff.Inten.(r	mm/hr)=	67.06		46.22			
over	(min)	5.00		10.00			
Storage Coeff.	(min)=	5.19	(ii)	8.94	(ii)		
Unit Hyd. Tpeak	(min)=	5.00		10.00			
Unit Hyd. peak	(cms)=	0.21		0.12			
						TOTALS	*
PEAK FLOW	(cms)=	0.08		0.02		0.099	(iii)
TIME TO PEAK	(hrs)=	6.25		6.25		6.25	
RUNOFF VOLUME	(mm)=	72.42		39.68		63.24	
TOTAL RAINFALL	(mm)=	74.42		74.42		74.42	
PLINOEE COFFEETCT	ENT -	a 97		0 53		0.85	

Page 98

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0170)	Area	(ha)= 0	.43	
ID= 1 DT= 5.0 min	Total	Imp(%) = 98	.00 Dir. Conn.(%)=	98.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.42	0.01	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	250.00	20.00	
Mannings n	` =	0.013	0.250	
_				

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05			
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05			
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05			
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03			
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03			
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03			
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03			
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03			
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03			
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03			
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03			

LangstaffRd EA Proposed WestDonWatershd									
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02		
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02		
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02		
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03		
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03		
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03		
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02		
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02		
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02		
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03		
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03		
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03		
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02		
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02		
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02		
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03		
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03		
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03		
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02		
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02		
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02		
3.083	2.03	6.167	67.06	9.250	2.03				

Max.Eff.Inten.(mm/hr)= 67.06 54.54 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 5.19 (ii) 5.00 0.21 10.00 6.35 (ii) 10.00 0.15 *TOTALS* 0.080 (iii) PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.08 6.25 72.42 74.42 6.25 6.25 71.92 47.80 74.42 RUNOFF COEFFICIENT 0.97

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 89.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0180) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.65 52.00	Dir. Conn.(%)=	52.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.3	4	0.31	
Dep. Storage	(mm)=	2.0	Э	5.00	
Average Slope	(%)=	1.0	Э	2.00	
Length	(m)=	65.8	3	40.00	

Page 101

LangstaffRd EA Proposed WestDonWatershd

TIME TO PEAK	(hrs)=	6.17	6.33	6.25
RUNOFF VOLUME	(mm)=	72.42	39.68	56.70
TOTAL RAINFALL	(mm)=	74.42	74.42	74.42
RUNOFF COEFFICI	ENT =	0.97	0.53	0.76

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0185)	Area	(ha)= 0.4	47	
ID= 1 DT= 5.0 min	Total	Imp(%) = 72.0	00 Dir. Conn.(%)=	72.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.34	0.13	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	240.00	20.00	
Mannings n	` =	0.013	0.350	
•				

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED HYETOGRAPH									
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr			
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05			
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05			
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05			
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03			
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03			
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03			
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03			
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03			
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03			
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03			
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03			
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03			
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03			
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03			
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03			
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02			
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02			
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02			
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03			
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03			
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03			

Page 103

LangstaffRd_EA_Proposed_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | 5.66 67.65 | 9.33 3.250 2.03 | 6.333 13.21 | 9.42 TIME RAIN | RAIN mm/hr 0.00 0.00 0.00 1.02 1.02 2.03 2.03 hrs 6.250 6.333 6.6917 7.250 6.833 7.417 7.250 8.833 7.417 8.900 8.833 8.167 8.8083 8.167 8.8083 8.167 8.8083 8.9167 9.9083 9.167 0.083 3.05 0.167 3.05 0.167 0.250 0.333 0.417 0.500 0.583 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.05 3.05 3.05 3.05 3.05 3.05 3.05 9.42 9.50 9.58 9.67 9.75 9.83 9.92 13.21 13.21 13.21 13.21 3.05 2.03 2.03 2.03 13.21 2.03 0.667 6.10 6.10 6.10 6.10 6.10 5.08 5.08 5.08 2.03 9.92 10.00 10.08 10.17 10.25 10.33 10.42 10.50 10.58 0.750 0.833 2.03 3.833 3.05 2.03 1.02 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 1.02 1.02 2.03 2.03 2.03 1.02 3.05 3.05 3.05 3.05 3.05 5.08 5.08 0.917 1.000 1.083 1.167 1.250 2.03 1.333 1.02 1.02 1.02 2.03 2.03 2.03 1.02 4.06 4.06 4.06 4.06 4.06 4.06 1.02 1.02 2.03 2.03 2.03 1.02 1.417 5.08 5.08 5.08 5.08 6.10 6.10 6.10 5.08 10.67 10.75 10.83 10.92 11.00 11.08 11.17 11.33 11.42 11.50 11.58 11.67 11.75 11.83 1.41/ 1.500 1.583 1.667 1.750 1.833 1.917 5.08 5.08 1.02 5.000 1.02 2,000 1.02 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 5.08 5.08 5.08 8.13 8.13 8.13 9.14 9.14 5.08 5.08 3.05 3.05 3.05 3.05 3.05 3.05 2.03 2.03 2.03 1.02 1.02 2.03 2.03 2.03 3.05 3.05 3.05 3.05 3.05 3.05 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000 6.083 6.167 2.03 11.92 12.00 12.08 12.17 12.25 2.667 9.15 3.05 3.05 2.03 2.750 67.06 2.03 2.833 2.917 3.000 3.083 3.05 3.05 3.05 2.03 67.06 67.06 67.06 67.06 3.05 2.03 2.03 2.03 1.02 1.02 1.02 Max.Eff.Inten.(mm/hr)= 46.22 67.06 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 15.00 2.33 (ii) 11.94 (ii) 5.00 15.00 *TOTALS* 0.093 (iii)

Page 102

					sed_WestDor			
	1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.0
	1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.0
	2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.0
	2.083		5.167		8.250	5.08	11.33	2.0
	2.167	2.03	5.250		8.333		11.42	2.0
	2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.0
	2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.0
	2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.0
	2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.0
	2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.0
	2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.0
	2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.0
	2.833	3.05	5.917		9.000	3.05	12.08	1.0
	2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.0
	3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.0
	3.083	2.03	6.167	67.06	9.250	2.03	l	
Max.Eff.I	nten.(mm/	hr)=	67.06		41.26			
	over (m	in)	5.00		10.00			
Storage C	oeff. (m	in)=	5.07	(ii)	9.65 (ii)			
Unit Hyd.	Tpeak (m	in)=	5.00		10.00			
	peak (ci	ms)=	0.21		0.11			
Unit Hyd.								
Unit Hyd.						*T0	IALS*	
,	(cı	ms)=	0.06		0.01		IALS* .076 (iii)
PEAK FLOW		ms)= rs)=	0.06 6.25		0.01 6.25	0)
PEAK FLOW TIME TO P	EAK (h					0	.076 (iii)
Unit Hyd. PEAK FLOW TIME TO PI RUNOFF VO TOTAL RAI	EAK (h LUME (i	rs)=	6.25		6.25	0 6	.076 (iii 5.25)

ADD HYD (0445)		QPEAK	TPEAK	R.V.
1 + 2 = 3		(cms)	(hrs)	(mm)
ID1= 1 (018		0.093	6.25	56.70
+ ID2= 2 (018		0.076	6.25	61.99
ID = 3 (044	5): 1.12	0.169	6.25	58.92

| ADD HYD (0450)| | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.

```
LangstaffRd_EA_Proposed_WestDonWatershd
                                      (ha)
0.60
                                              (cms)
0.099
                                                             (hrs)
6.25
                                                                       (mm)
63.24
      ID1= 1 ( 0165):
+ ID2= 2 ( 0170):
                                      0.43
                                                0.080
                                                             6.25
                                                                        71.92
                                               0.179
         ID = 3 ( 0450):
                                     1.03
                                                             6.25
                                                                        66.87
      NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD ( 0450)|
| 3 + 2 = 1 |
                                               QPEAK
(cms)
0.179
0.169
                                      ΔRFΔ
                                                             TΡΕΔΚ
                                                             (hrs)
6.25
6.25
                                      (ha)
1.03
       ID1= 3 ( 0450):
+ ID2= 2 ( 0445):
                                      1.12
                                                                        58.92
        ID = 1 ( 0450):
                                     2.15 0.348
                                                            6.25
                                                                        62.73
      NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 RESERVOIR( 0520) |
IN= 2---> OUT= 1 |
DT= 5.0 min |
                                OVERFLOW IS OFF
                                OUTFLOW
                                               STORAGE
                                                                OUTFLOW
                                                                                STORAGE
                                               STORAGE
(ha.m.)
0.0000
0.0048
0.0192
0.0372
                                                                               STORAGE
(ha.m.)
0.0552
0.0732
0.1152
0.0000
                                  (cms)
0.0000
                                                                  (cms)
0.0181
                                  0.0081
0.0123
0.0155
                                                                  0.0203
0.0224
0.0000
                                                                    TPEAK
                                          AREA
                                                      QPEAK
                                                                    (hrs)
6.25
8.33
                                                                                    (mm)
62.73
62.66
                                          (ha)
2.150
                                                      (cms)
   INFLOW : ID= 2 ( 0450)
OUTFLOW: ID= 1 ( 0520)
                                                        0.348
                                          2.150
```

Dep. Storage Average Slope Length Mannings n (mm) = (%) = (m) = 1.00 531.00 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

IMPERVIOUS

2.32

(ha)=

Page 105

Area (ha)= 3.05 Total Imp(%)= 76.00 Dir. Conn.(%)= 76.00

PERVIOUS (i)

0.73 5.00 2.00

40.00

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

Surface Area

CALTB | CALIB | STANDHYD (0145)| |ID= 1 DT= 5.0 min |

(1) CN* = 86.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB					
STANDHYD (0135)	Area	(ha)=	1.43		
ID= 1 DT= 5.0 min	Total	Imp(%)=	99.00	Dir. Conn.(%)=	99.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	1.4	2	0.01	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	503.0	0	30.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03

Page 107

LangstaffRd_EA_Proposed_WestDonWatershd

		TP	ANS EORME	D HYETOGR	NDH	_	
TIME	RAIN	TIME	RAIN		RAIN		RAIN
hrs		l hrs	mm/hr	l' hrs	mm/hr		mm/hr
0.083		3.167	2.03	6.250	67.05		3.05
0.167		3.250	2.03	6.333	13.21	9.33	3.05
0.167		3.333	3.05	6.417	13.21	9.42	3.05
0.333		3.417	3.05	6.500	13.21	9.58	2.03
0.333		3.500	3.05	6.583	13.21	9.56	2.03
0.500		3.583	3.05	6.667	13.21		2.03
0.583		3.667	3.05	6.750	13.21	9.83	2.03
0.667			3.05	6.833	6.10		2.03
0.750			3.05	6.917	6.10		2.03
0.833		3.917	3.05	7.000	6.10		2.03
0.917			3.05	7.083	6.10		2.03
1.000		4.083	3.05	7.167	6.10		2.03
1.083			3.05	7.250	6.10		2.03
1.167		4.250	3.05	7.333	5.08		2.03
1.250		4.333	5.08	7.417	5.08		2.03
1.333		4.417	5.08	7.500	5.08		1.02
1.417			5.08	7.583	4.06	10.67	1.02
1.500		4.583	5.08	7.667	4.06	10.75	1.02
1.583			5.08	7.750	4.06	10.83	2.03
1.667			5.08	7.833	4.06		2.03
1.750		4.833	6.10	7.917	4.06		2.03
1.833		4.917	6.10	8.000	4.06	11.08	1.02
1.917			6.10	8.083	5.08		1.02
2.000		5.083	5.08	8.167	5.08		1.02
2.083				8.250	5.08		2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250		5.333	8.13	8.417	3.05		2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917		6.000	67.06	9.083	2.03	12.17	1.02
3.000			67.06	9.167	2.03		1.02
3.083	2.03	6.167	67.06	9.250	2.03		
Max.Eff.Inten.(m		67.06		50.27			
over		10.00		20.00			
	(min)=	8.16	(ii)	17.46 (ii)		
Unit Hyd. Tpeak	(min)=	10.00		20.00			
Unit Hyd. peak	(cms)=	0.13		0.06			
						TALS*	
PEAK FLOW	(cms)=	0.42		0.07		.479 (iii))
TIME TO PEAK	(hrs)=	6.25		6.42		5.25	
RUNOFF VOLUME	(mm)=	72.42		43.51		.48	
TOTAL RAINFALL	(mm)=	74.42		74.42	74	1.42	

Page 106

LangstaffRd_EA_Proportion
2.03 | 5.250 | 5.08 |
2.03 | 5.333 | 8.13 |
3.05 | 5.417 | 8.13 |
3.05 | 5.500 | 8.13 |
3.05 | 5.5667 | 9.14 |
3.05 | 5.667 | 9.14 |
3.05 | 5.633 | 67.06 |
3.05 | 6.080 | 67.06 |
3.05 | 6.083 | 67.06 |
2.03 | 6.167 | 67.06 | ed_WestDo
8.333
8.417
8.500
8.583
8.667
8.750
8.833
8.917
9.000
9.083
9.167
9.250 2.167 2.250 2.333 11.42 11.50 11.58 11.67 2.03 1.02 3.05 2.417 3.05 1.02 3.05 3.05 3.05 3.05 3.05 3.05 2.03 2.03 2.500 11.75 11.83 1.02 2.583 2.667 2.750 2.833 2.917 11.83 11.92 12.00 12.08 12.17 2.03 2.03 2.03 1.02 1.02 12.25 3.000 1.02 3.083 67.06 İ Max.Eff.Inten.(mm/hr)= 67 86 47 54 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 10.00 7.90 (ii) 10.00 0.13 47.54 10.00 9.01 (ii) 10.00 0.12 *TOTALS* PEAK FLOW (cms)= 0.26 0.00 0.258 (iii) TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 6.25 72.42 74.42 0.97 6.25 40.91 74.42 0.55 6.25 72.10 74.42 0.97

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 84.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | | CALIB | | STANDHYD (0140) | |ID= 1 DT= 5.0 min | Area (ha)= 1.27 Total Imp(%)= 91.00 Dir. Conn.(%)= 91.00 PERVIOUS (i) 0.11 5.00 2.00 IMPERVIOUS 1.16 2.00 1.00 Dep. Storage Average Slope (mm)= (%)= Length (m)= 503.00 25.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORMED	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05

		taffRd E	A Danas	ad Haata		h.al	
0.250	0.00	1 3.333	3.05	6.417	13.21	l 9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750		3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03	l	
iten.(mm/	hr)=	67.06		46.22			
over (m	in)	10.00		15.00			

over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 10.00 15.00 7.90 (ii) 10.38 (ii) 10.00 0.13 0.09

TOTALS PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.220 (iii) 6.25 69.47 a a1 6.33 39.68 74.42 0.97 0.53

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^*=83.0$ Ia=Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

Page 109

LangstaffRd_EA_Proposed_WestDonWatershd 0.0071 0.0165 | 0.0636 0.1 0.0098 0.0331 | 0.0763 0.1 0.1934 0.0119 0.0526 0.0870 0.0138 0.0750 0.0964 0.2308 ΟΡΕΔΚ TPFΔK R V

INFLOW : ID= 2 (0425) OUTFLOW: ID= 1 (0512) PEAK FLOW REDUCTION [Qout/Qin](%)= 14.79
TIME SHIFT OF PEAK FLOW (min)=135.00

MAXIMUM STORAGE USED (ha.m.)= 0.1531

TMPERVTOUS PERVIOUS (i)

(ha)= (mm)= (%)= (m)= 0.47 2.00 1.00 260.00 0.11 5.00 2.00 30.00 Dep. Storage Average Slope Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH ---ME RAIN | TIME RAIN | TIME
rs mm/hr | hrs mm/hr | hrs
67 2.03 | 6.250 67.05 | 9.33 hrs 0.083 mm/hr hrs 3.167 ' hrs 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 mm/hr 3.05 0.00 0.167 0.00 3.250 2.03 13.21 9.42 3.05 0.250 0.00 3.333 3.05 13.21 9.50 3.05 0.250 0.333 0.417 0.500 0.583 0.667 0.750 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.05 3.05 3.05 3.05 3.05 3.05 1.02 1.02 1.02 2.03 2.03 2.03 2.03 2.03 2.03 13.21 9.58 9.67 9.75 9.83 9.92 3.05 | 6.833 3.05 | 6.917 3.05 | 7.000 3.05 | 7.083 3.05 | 7.250 3.05 | 7.250 3.05 | 7.333 5.08 | 7.500 5.08 | 7.500 5.08 | 7.500 5.08 | 7.500 5.08 | 7.750 5.08 | 7.750 6.10 2.03 2.03 2.03 0.833 1.02 3.917 6.10 10.08 2.03 0.917 1.02 | 4.000 1.02 | 4.083 2.03 | 4.167 2.03 | 4.250 2.03 | 4.333 1.02 | 4.417 1.02 | 4.500 1.02 | 4.583 2.03 | 4.667 2.03 | 4.750 1.02 4.000 10.17 2.03 2.03 2.03 2.03 2.03 2.03 6.10 6.10 5.08 5.08 10.17 10.25 10.33 10.42 10.50 10.58 1.333 1.02 1.417 4.06 10.67 1.02 4.06 1.500 10.75 1.02 1 583 4.06 | 2 03

Page 111

LangstaffRd_EA_Proposed_WestDonWatershd (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0420)| | 1 + 2 = 3 | QPEAK (ha) 1.43 (cms) 0.258 (hrs) 6.25 (mm) 72.10 ID1= 1 (0135): + ID2= 2 (0140): 1.27 0.220 69.47 ID = 3 (0420): 2.70 0.478 6.25 70.86

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0530)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE OUTFLOW STORAGE (cms) 0.0000 0.0056 (ha.m.) 0.0000 0.0072 (cms) 0.0122 0.0382 0.0283 0.0516 0.1598 0.0105 0.0000 0.0000 AREA ΟΡΕΔΚ TΡΕΔΚ R V (ha) 2.700 2.700 INFLOW : ID= 2 (0420) OUTFLOW: ID= 1 (0530) PEAK FLOW REDUCTION [Qout/Qin](%)= 9.16
TIME SHIFT OF PEAK FLOW (min)= 65.00
MAXIMUM STORAGE USED (ha.m.)= 0.1303

| ADD HYD (0425)| | 1 + 2 = 3 | AREA (hrs) 6.25 7.33 (ha) 3.05 (cms) (mm) 65.48 ID1= 1 (0145): + ID2= 2 (0530): 0.479 2.70 0.044 70.75 ID = 3 (0425):

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0512)| OVERFLOW IS OFF IN= 2---> OUT= 1 DT= 5.0 min OUTFLOW STORAGE | OUTFLOW (cms) (ha.m.) | (cms) 0.0000 | 0.0471 STORAGE

Page 110

				sed_WestDon			
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02		6.10		4.06		1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03	İ	
Max.Eff.Inten.(mm	/hr)=	67.06		46.22			
over (min)	5.00		10.00			
	min)=	5.32	(ii)	9.22 (ii)			
Unit Hyd. Tpeak (5.00		10.00			
	cms)=	0.21		0.12			
, peen (/						

TOTALS 0.100 (iii) 6.25 PEAK FLOW TIME TO PEAK (cms)= (hrs)= (mm)= (mm)= 6.25 6.25 RUNOFF VOLUME TOTAL RAINFALL 72.42 39.68 66.19 74.42 RUNOFF COEFFICIENT

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0220) | |ID= 1 DT= 5.0 min | Area (ha)= 0.65 Total Imp(%)= 66.00 Dir. Conn.(%)= 66.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.43 2.00 1.00 260.00 0.22 5.00 2.00 Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Proposed_WestDonWatershd

TRANSFORMED HYETOGRAPH									
TIME	RAIN		RAIN	' TIME	RAIN	TIME			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr		
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05		
0.167	0.00	3.250	2.03	6.333	13.21		3.05		
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05		
0.333	1.02	3.417	3.05	6.500	13.21		2.03		
0.417		3.500	3.05	6.583	13.21	9.67	2.03		
0.500	1.02	3.583	3.05	6.667	13.21		2.03		
0.583	2.03	3.667	3.05	6.750	13.21				
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03		
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03		
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03		
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03		
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03		
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03		
1.167	2.03	4.167 4.250 4.333	3.05	7.333	5.08	10.42	2.03		
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03		
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02		
1.417	1.02	4.500	5.08	7.583	4.06	10.58 10.67 10.75	1.02		
1.500	1.02	4.500 4.583 4.667	5.08	7.667	4.06	10.75	1.02		
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03		
		4.750		7.833	4.06				
1.750	2.03	4.833	6.10	7.917	4.06	10.92 11.00	2.03		
1.833	1.02	4.917	6.10	8.000					
		5.000			5.08	11.17			
2.000	1.02	5.083	5.08	8.167	5.08		1.02		
2.083	2.03	5.167	5.08	8.250	5.08	11.25	2.03		
2.167	2.03	5.250	5.08	8.333					
		5.333				11.50	2.03		
2.333	3.05	5.417	8.13	8.500	3.05				
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02		
						11.75	1.02		
		5.667			3.05	11.83	2.03		
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03		
2.750	3.05	5.833 5.917	67.06	8.917	3.05	12.00	2.03		
					3.05	12.08	1.02		
2.917		6.000		9.083					
3.000 3.083		6.083 6.167		9.167		12.25	1.02		
3.083	2.03	0.16/	07.06	9.250	2.03				
Max.Eff.Inten.(mm	/hr)-	67.06		46.22					
over (5.00		10.00					

10.00 9.51 (ii) 10.00 0.12 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.32 (ii) 5.00 0.21 *TOTALS* 0.08 6.25 72.42 74.42 0.97 0.104 (iii) 6.25 0.02 PEAK FLOW (cms)= TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 6.25 39.68 74.42 0.53 61.28 74.42 0.82

Page 113

LangstaffRd_EA_Proposed_WestDonWatershd

		TRA	NSFORME	HYETOGR	APH		
TIME	RAIN		RAIN		RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr		mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05		6.10		2.03
0.750	2.03	3.833	3.05		6.10		2.03
0.833	1.02		3.05		6.10		2.03
0.917	1.02	4.000	3.05		6.10		2.03
1.000	1.02	4.083	3.05	7.167	6.10		2.03
1.083	2.03	4.167	3.05	7.250	6.10		2.03
1.167		4.250	3.05	7.333	5.08		2.03
1.250		4.333	5.08		5.08		2.03
1.333	1.02	4.417	5.08		5.08		1.02
1.417		4.500	5.08		4.06		1.02
1.500		4.583	5.08		4.06		1.02
1.583		4.667	5.08		4.06		2.03
1.667	2.03	4.750	5.08		4.06		2.03
1.750	2.03	4.833	6.10		4.06		2.03
1.833		4.917	6.10		4.06		1.02
1.917	1.02	5.000	6.10		5.08		1.02
2.000	1.02	5.083	5.08		5.08	11.25	1.02
2.083	2.03		5.08		5.08		2.03
2.167	2.03		5.08		3.05		2.03
2.250	2.03	5.333	8.13		3.05		2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05		1.02
2.500	3.05	5.583	9.14	8.667	3.05		1.02
2.583	3.05	5.667	9.14		3.05		2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06		3.05	12.00	2.03
2.833	3.05	5.917	67.06		3.05	12.08	1.02
2.917	3.05	6.000	67.06		2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03		
nten.(mm	/hr)=	67.06	4	16.22			

Max.Eff.Inten.(mm/hr)= over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 6.02 (ii) 5.00 0.19 10.00 7.94 (ii) 10.00 0.13 *TOTALS* 0.104 (iii) 6.25 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= 0.09 0.01 6.25 6.25 74.42

Page 115

LangstaffRd_EA_Proposed_WestDonWatershd

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0470)| | 1 + 2 = 3 | QPEAK (cms) 0.100 0.104 ΔRFΔ (hrs) 6.25 6.25 ID1= 1 (0215): + ID2= 2 (0220): 61.28 0.65 ID = 3 (0470): 1.23 0.204 6.25 63.60

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0535)| IN= 2---> OUT= 1 | DT= 5.0 min | OVERFLOW IS OFF OUTFLOW STORAGE OUTFLOW STORAGE STORAGE (ha.m.) 0.0000 0.0048 0.0154 0.0261 STORAGE (ha.m.) 0.0367 0.0474 0.0639 0.0000 (cms) 0.0000 0.0053 0.0080 0.0100 (cms) 0.0116 0.0116 0.0131 0.0202 0.0000 TPEAK AREA QPEAK (hrs) 6.25 7.58 (ha) 1.230 (cms) INFLOW : ID= 2 (0470) OUTFLOW: ID= 1 (0535) 0.204 63.60

CAL TB | STANDHYD (0225)| |ID= 1 DT= 5.0 min | Area (ha)= 0.60 Total Imp(%)= 83.00 Dir. Conn.(%)= 83.00 PERVIOUS (i) IMPERVIOUS Surface Area 0.50 2.00 1.00 0.10 5.00 Dep. Storage Average Slope Length Mannings n (mm) = (%) = (m) = 2.00 320.00 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 114

 $\label{eq:loss_loss} \begin{array}{lll} & LangstaffRd_EA_Proposed_WestDonWatershd \\ RUNOFF \ COEFFICIENT & = \ 0.97 & 0.53 & 0.9 \\ \end{array}$

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (1) CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0230) | |ID= 1 DT= 5.0 min | Area (ha)= 0.70 Total Imp(%)= 66.00 Dir. Conn.(%)= 66.00

PERVIOUS (i) 0.24 5.00 2.00 IMPERVIOUS Surface Area 0.46 2.00 (mm)= (%)= (m)= Dep. Storage Average Slope 1.00 Length Mannings n 320.00 25.00 0.013 0.300

1 02

2.03

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN | TIME RAIN | TIME RAIN mm/hr hrs mm/hr hrs mm/hr mm/hr 3.167 3.250 3.333 3.417 3.500 3.583 6.250 6.333 6.417 6.500 6.583 6.667 0.083 0.167 0.250 0.333 0.417 0.00 0.00 0.00 1.02 67.05 | 13.21 | 13.21 | 13.21 | 9.33 9.42 9.50 9.58 3.05 3.05 3.05 2.03 1.02 3.05 13.21 9.67 9.75 2.03 0.500 1.02 3.05 13.21 2.03 0.583 2.03 3.667 3.750 3.05 6.750 6.833 13.21 9.83 2.03 0.667 2.03 3.05 6.10 2.03 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 0.750 0.833 0.917 1.000 1.083 2.03 1.02 1.02 1.02 2.03 3.833 3.917 4.000 4.083 4.167 3.05 3.05 3.05 3.05 3.05 6.10 6.10 6.10 6.10 10.00 10.08 10.17 10.25 10.33 2.03 2.03 2.03 2.03 3.05 6.10 2.03 1.167 2.03 4.250 3.05 5.08 10.42 2.03 1.250 2.03 5.08 5.08 10.50 2.03 4.533 4.417 4.500 4.583 4.667 4.750 4.833 7.500 7.583 7.667 7.750 7.833 7.917 1.333 1.02 5.08 5.08 10.58 1.02 1.417 1.500 1.583 1.667 1.750 1.02 1.02 2.03 2.03 2.03 5.08 5.08 5.08 5.08 10.67 10.75 10.83 10.92 1.02 1.02 2.03 2.03 4.06 6.10 11.00 2.03 8.000 8.083 8.167 8.250 4.917 5.000 5.083 5.167 1.833 1.02 6.10 4.06 11.08 1.02 1.917 1.02 6.10 5.08 11.17 1.02

5 08 Page 116 1 02

11.33

```
LangstaffRd_EA_Proposed_WestDonWatershd
2.03 | 5.250 | 5.08 | 8.333 | 3.05 | 1
2.03 | 5.333 | 8.13 | 8.417 | 3.05 | 1
3.05 | 5.417 | 8.13 | 8.590 | 3.05 | 1
3.05 | 5.500 | 8.13 | 8.583 | 3.05 | 1
3.05 | 5.567 | 9.14 | 8.667 | 3.05 | 1
3.05 | 5.667 | 9.14 | 8.750 | 3.05 | 1
3.05 | 5.667 | 9.15 | 8.833 | 3.05 | 1
3.05 | 5.333 | 67.06 | 8.917 | 3.05 | 1
3.05 | 5.333 | 67.06 | 9.083 | 2.03 | 1
3.05 | 5.000 | 67.06 | 9.083 | 2.03 | 1
3.05 | 6.083 | 67.06 | 9.167 | 2.03 | 1
2.03 | 6.167 | 67.06 | 9.250 | 2.03 |
                                      2.167
                                                                                                                                                   3.05 | 11.42
3.05 | 11.50
                                       2.250
                                                                                                                                                                                              2.03
                                      2.333
2.417
2.500
2.583
                                                                                                                                                                                             1.02
1.02
1.02
2.03
2.03
                                                                                                                                                                      11.58
                                       2.667
                                                                                                                                                                      11.92
                                       2.750
                                                                                                                                                                      12.00
                                                                                                                                                                                              2.03
                                       2.833
                                                                                                                                                                     12.08
                                                                                                                                                                                              1.02
                                       2.917
                                                                                                                                                                                              1.02
                                                                                                                                                                    12.25
         Max.Eff.Inten.(mm/hr)=
         over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                     5.00 15.00
6.02 (ii) 14.30 (ii)
                                                                                     5.00
0.19
                                                                                                                      15.00
                                                                                                                        0.08
                                                                                                                                                         *TOTALS*
         PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                    0.09
6.25
72.42
74.42
                                                                                                                      0.02
6.33
37.36
                                                                                                                                                              0.106 (iii)
6.25
60.49
                                                                                                                       74.42
                                                                                      0.97
                                                                                                                                                                 0.81
         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
DD HYD ( 0475)

1 + 2 = 3 |

ID1= 1 ( 0225):

+ ID2= 2 ( 0230):
                                                                         (ha)
0.60
                                                                                                                      (hrs)
6.25
                                                                                                                                           (mm)
66.85
                                                                                           (cms)
0.104
                                                                         0.70
                                                                                            0.106
                                                                                                                      6.25
                                                                                                                                            60.49
            ID = 3 ( 0475):
                                                                 1.30 0.210
                                                                                                                     6.25
                                                                                                                                           63.42
         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
RESERVOIR( 0540)
                                                             OVERFLOW IS OFF
```

Page 117

OUTFLOW

(cms) 0.0271 0.0306 0.0415

STORAGE

STORAGE

(ha.m.) 0.0000 0.0048 0.0154

IN= 2---> OUT= 1 | DT= 5.0 min |

OUTFLOW

(cms) 0.0000

0.0184

				sed_WestDon			
1.000	1.02	4.083	3.05	7.167		10.25	2.03
1.083	2.03	4.167	3.05	7.250		10.33	2.03
1.167	2.03	4.250	3.05	7.333		10.42	2.03
1.250		4.333				10.50	2.03
1.333	1.02	4.417		7.500		10.58	1.02
1.417	1.02	4.500	5.08	7.583 7.667 7.750	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
						10.83	2.03
1.667		4.750		7.833		10.92	2.03
1.750	2.03	4.833	6.10	7.917		11.00	2.03
1.833	1.02	4.91/	6.10	8.000		11.08	1.02
1.91/	1.02	4.917 5.000 5.083	6.10	8.083 8.167		11.17	1.02
						11.25	1.02
2.083		5.167		8.250		11.33	2.03
2.167		5.250		8.333	3.05	11.42 11.50	2.03
2.250	2.03	5.333 5.417 5.500	8.13	8.417 8.500 8.583	3.05	11.50	2.03
2.333	3.05	5.41/	8.13	8.500	3.05	11.58	1.02
						11.67	1.02
		5.583		8.667		11.75	1.02
2.583		5.667		8.750	3.05	11.83 11.92	2.03
2.667	3.05	5./50	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.833 8.917 9.000	3.05	12.00	2.03
						12.08	1.02
				9.083		12.17	1.02
3.000	3.05	6.083	67.06	9.167		12.25	1.02
3.083	2.03	6.16/	67.06	9.250	2.03	l	
Max.Eff.Inten.(mm/				51.67			
over (m		5.00		10.00			
Storage Coeff. (mi Unit Hyd. Tpeak (mi	in)=	5.32 5.00	(ii)	7.74 (ii)			
		5.00		10.00			
Unit Hyd. peak (cr	ns)=	0.21		0.13			
						TALS*	
	ns)=	0.10		0.01		.102 (iii)	
	`s)=	6.25		6.25		5.25	
	nm)=	72.42		44.88		0.49	
	nm)=	74.42		74.42		4.42	
RUNOFF COEFFICIENT	=	0.97		0.60	•	0.95	
(i) CN PROCEDURE							
CN* = 87.6				(Above)			
(ii) TIME STEP (DI				LQUAL			
THAN THE STOR	KAGE COI	ELLICIEN1	Γ.				

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

STANDHYD (0160) Area (ha)= 0.43 Total Imp(%)= 95.00 Dir. Conn.(%)= 95.00

IMPERVIOUS PERVIOUS (i)

ID= 1 DT= 5.0 min

LangstaffRd_EA_Proposed_WestDonWatershd 0.0232 0.0261 | 0.0000 0.6 0.0000

ARFA OPFAK (cms) 0.210 0.029 (mm) 63.42 63.35 INFLOW : ID= 2 (0475) OUTFLOW: ID= 1 (0540)

| ADD HYD (0480)| | 1 + 2 = 3 | AREA OPEAK (ha) (cms) 0.015 (hrs) 7.58 (mm) 63.42 ID1= 1 (0535): + ID2= 2 (0540): 1.30 0.029 6.92 63.35 ID = 3 (0480): 2.53 0.044 7.25 63.38

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALTR | CALIB | STANDHYD (0155) |ID= 1 DT= 5.0 min | Area (ha)= 0.56 Total Imp(%)= 93.00 Dir. Conn.(%)= 93.00

PERVIOUS (i) Surface Area 0.52 2.00 0.04 5.00 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= 1.00 2.00 0.013 0.290

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH FORNED IT. TOME
M/hr | ' hrs
2.03 | 6.250
2.03 | 6.333
3.05 | 6.417
3.05 | 6.500
3.05 | 6.583
3.05 | 6.750
3.05 | 6.833
3.05 | 6.750
3.05 | 6.833
3.05 | 6.770
3.05 | 7.000
3.05 | 7.000 RAIN | TIME mm/hr | hrs 67.05 | 9.33 TIME RAIN | TIME RAIN 0.083 0.167 0.250 0.333 0.417 mm/hr 0.00 0.00 0.00 1.02 hrs 3.167 3.250 3.333 3.417 3.500 9.33 9.42 9.50 9.58 9.67 mm/hr mm/hi 3.05 3.05 3.05 2.03 13.21 1.02 13.21 2.03 9.75 9.83 9.92 10.00 10.08 0.500 0.583 1.02 3.583 13.21 2.03 2.03 3.667 13.21 2.03 2.03 2.03 1.02 1.02 3.750 3.833 3.917 4.000 6.10 | 6.10 | 6.10 | 6.10 | 2.03 2.03 2.03 2.03 2.03 0.667 0.750

Page 118

LangstaffRd_EA_Proposed_WestDonWatershd
)= 0.41 0.02
)= 2.00 5.00
)= 1.00 2.00 (ha)= (mm)= (%)= (m)= Dep. Storage Average Slope Length Mannings n 260.00 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

RAIN | TIME RAIN | TIME RAIN | TIME mm/hr hrs mm/hr hrs mm/hr İ mm/hr 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 0.083 0.167 0.250 0.333 0.417 2.03 2.03 3.05 3.05 3.05 3.05 67.05 | 13.21 | 3.05 3.05 3.05 2.03 2.03 0.00 3.167 0.00 1.02 1.02 1.02 3.250 3.333 3.417 3.500 3.583 13.21 13.21 13.21 13.21 13.21 2.03 3.667 3.750 3.05 13.21 9.83 2.03 2.03 3.05 2.03 2.03

0.500 0.583 6.10 6.10 6.10 6.10 6.10 6.10 5.08 0.667 0.667 0.750 0.833 0.917 1.000 1.083 1.167 2.03 1.02 1.02 1.02 2.03 2.03 3.05 3.05 3.05 3.05 3.05 3.05 3.05 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 10.00 10.08 10.17 10.25 10.33 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 2.03 2.03 2.03 2.03 10.42 2.03 1.250 2.03 5.08 5.08 5.08 10.50 2.03 1.333 1.02 5.08 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 10.58 1.02 1.417 1.500 1.583 1.667 1.750 1.02 1.02 2.03 2.03 5.08 5.08 5.08 5.08 4.06 4.06 4.06 4.06 4.06 10.67 10.75 10.83 10.92 1.02 1.02 2.03 2.03 2.03 6.10 11.00 2.03 4.917 1.833 1.02 6.10 4.06 11.08 1.02 1.917 1.02 5.000 6.10 5.08 5.08 11.17 1.02 5.08 | 8.167 5.08 | 8.250 5.08 | 8.333 8.13 | 8.417 8.13 | 8.500 8.13 | 8.583 9.14 | 8.650 9.15 | 8.833 67.06 | 9.000 67.06 | 9.000 67.06 | 9.000 67.06 | 9.167 67.06 | 9.250 2.000 1.02 5.08 11.25 1.02 2.03 2.03 2.03 2.03 3.05 3.05 3.05 5.083 5.167 5.250 5.333 5.417 5.500 5.583 2.083 2.167 2.250 2.333 2.417 5.08 3.05 3.05 3.05 2.03 2.03 2.03 1.02 1.02 11.33 3.05 11.67 2.500 3.05 11.75 1.02 2.583 3.05 5.667 3.05 11.83 2.03 2.667 3.05 5.750 5.833 5.917 6.000 6.083 3.05 11.92 2.03 3.05 | 3.05 | 3.05 | 3.05 | 2.03 | 3.05 | 3.05 | 2.03 | 2.03 | 2.03 | 12.00 12.08 12.17 12.25 2.03 1.02 1.02 1.02 2.750

67.06 Max.Eff.Inten.(mm/hr)= 54.54 over (min) Storage Coeff. (min)= 5.00 10.00 5.32 (ii) 7.00 (ii)

6.167

2.833 2.917 3.000

3.083

${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$ Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 0.21 0.14 *TOTALS* PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 0.08 6.25 72.42 74.42 0.00 6.25 47.80 74.42 0.079 (iii) 6.25 71.18 74.42 0.97 0.64 0.96

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0430)| 1 + 2 = 3 | TD1= 1 (0155): + ID2= 2 (0160): AREA QPEAK (ha) (cms) 0.56 0.102 TPEAK (hrs) 6.25 R.V. (mm) 70.49 (ha) 0.56 0.43 6.25 71.18 0.079 ID = 3 (0430): 0.99 0.181 6.25 70.79

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Area (ha)= 3.81 Total Imp(%)= 95.00 Dir. Conn.(%)= 95.00 IMPERVIOUS 3.62 2.00 1.00 PERVIOUS (i) 0.19 5.00 2.00 Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH ---ME RAIN ' TIME RAIN | TIME
rs mm/hr | hrs mm/hr | hrs
67 2.03 | 6.250 | 67.05 | 9.33
50 2.03 | 6.333 | 13.21 | 9.42
313 3.05 | 6.417 | 13.21 | 9.58
107 3.05 | 6.583 | 13.21 | 9.58
108 3.05 | 6.583 | 13.21 | 9.75 RAIN | TIME TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 mm/hr 0.00 0.00 hrs 3.167 3.250 mm/hr 3.05 3.05 0.00 | 3.333 1.02 | 3.417 1.02 | 3.500 1.02 | 3.583 3.05 2.03 2.03 2.03

Page 121

 ${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

RESERVOIR(0515) IN= 2> OUT= 1	OVERFLO	W IS OFF		
DT= 5.0 min	OUTFLOW (cms)	(ha.m.)	OUTFLOW (cms)	STORAGE (ha.m.)
	0.0000	0.0000	0.0091	0.1797
	0.0013	0.0157	0.0095	0.2004
	0.0033	0.0320	0.0100	0.2216
	0.0044	0.0487	0.0104	0.2433
	0.0053	0.0659	0.0109	0.2655
	0.0061	0.0837	0.0113	0.2882
	0.0068	0.1019	0.0116	0.3114
	0.0074	0.1206	0.1520	0.3592
	0.0080	0.1398	0.5654	0.4336
	0.0086	0.1595	1.1316	0.5100
		AREA QPEA	K TPEAK	R.V.
		(ha) (cms)) (hrs)	(mm)
INFLOW : ID= 2 (3.810 0.	700 6.25	71.12
OUTFLOW: ID= 1 (0515)	3.810 0.6	010 12.25	70.16

PEAK FLOW REDUCTION [Qout/Qin](%)= 1.49
TIME SHIFT OF PEAK FLOW (min)=360.00
MAXIMUM STORAGE USED (ha.m.)= 0.2448

ADD HYD (0440)| 1 + 2 = 3 | ID1= 1 (0430): + ID2= 2 (0515): AREA (ha) 0.99 3.81 QPEAK (cms) 0.181 0.010 TPEAK (hrs) 6.25 12.25 R.V. (mm) 70.79 70.16 ID = 3 (0440): 4.80 0.189 6.25 70.29

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0210) ID= 1 DT= 5.0 min	Area Total	(ha)= 0.96 Imp(%)= 78.00	Dir. Conn.(%)=	78.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.75	0.21	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	470.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	Langs	taffRd F	Δ Prono	sed WestDo	nWaters	hd	
0.583		3.667		6.750	13.21		2.03
0.667	2.03		3.05		6.10		2.03
0.750	2.03		3.05		6.10		2.03
0.833		3.917		7.000	6.10		2.03
0.917		4.000		7.083	6.10		2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083		4.167		7.250	6.10		2.03
1.167		4.250		7.333	5.08		2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06		2.03
1.833		4.917		8.000	4.06		1.02
1.917		5.000		8.083	5.08		1.02
2.000		5.083		8.167			1.02
2.083		5.167		8.250	5.08		2.03
2.167	2.03	5.250		8.333	3.05		2.03
2.250	2.03		8.13				2.03
2.333		5.417		8.500	3.05		1.02
2.417		5.500		8.583	3.05		1.02
2.500		5.583	9.14				1.02
2.583		5.667		8.750	3.05		2.03
2.667		5.750		8.833		11.92	2.03
2.750	3.05			8.917			2.03
2.833		5.917		9.000	3.05		1.02
2.917		6.000		9.083		12.17	1.02
3.000		6.083					1.02
3.083	2.03	6.167	67.06	9.250	2.03	l	
Max.Eff.Inten.(mm,		67.06		53.10			
over (r		5.00		10.00			
	nin)=	3.82	(ii)	6.37 (ii)		
Unit Hyd. Tpeak (r		5.00		10.00			
Unit Hyd. peak (cms)=	0.25		0.15			
						TALS*	
	cms)=	0.67		0.03		.700 (iii)
	nrs)=	6.25		6.25		5.25	
	(mm)=	72.42		46.31		1.12	
	(mm)=	74.42		74.42		4.42	
RUNOFF COEFFICIEN	Γ =	0.97		0.62	(9.96	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 88.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page 122

LangstaffRd EA Proposed MestDom LangstaffRd EA Proposed MestDom LangstaffRd Langstaf								
TIME		Langs	taffRd E	A Propos	ed WestDo	nWaters	hd	
hrs mm/hr hrs mm/hr c 1. hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs mm/hr hrs hrs hrs hrs hrs hrs hrs hrs hrs h			TR	ANSFORME	D HYETOGR	APH	-	
0.083 0.00 3.167 2.03 6.250 67.05 9.33 3.05 0.167 0.00 3.250 2.03 6.333 13.21 9.42 3.05 0.250 0.00 3.333 3.05 6.417 13.21 9.50 3.05 0.333 1.02 3.417 3.05 6.580 13.21 9.67 2.03 0.500 1.02 3.583 3.05 6.658 13.21 9.67 2.03 0.500 1.02 3.583 3.05 6.658 13.21 9.67 2.03 0.667 2.03 3.667 3.05 6.675 13.21 9.75 2.03 0.667 2.03 3.353 3.05 6.667 13.21 9.83 2.03 0.667 2.03 3.3750 3.05 6.691 6.10 9.92 2.03 0.667 2.03 3.3750 3.05 6.917 6.10 10.08 2.03 0.917 1.02 4.083 3.05 7.080 6.17 6.10 10.08 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.02 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.167 2.03 4.250 3.05 7.590 5.08 10.58 1.02 1.133 1.02 4.407 3.05 7.590 5.08 10.58 1.02 1.1417 1.02 4.500 5.08 7.583 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.758 4.06 10.83 2.03 1.590 1.02 4.458 5.08 7.750 4.06 10.72 1.02 1.590 1.02 4.458 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.735 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.735 5.08 7.583 4.06 10.67 1.02 1.917 1.02 5.000 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.735 5.08 7.573 4.06 10.02 2.03 1.750 2.03 4.735 5.08 7.583 4.06 10.05 1.02 1.917 1.02 5.000 6.10 8.003 5.08 11.17 1.02 2.003 3.05 5.583 9.14 8.667 3.05 11.58 2.03 2.167 2.03 5.585 5.00 8.18 8.833 5.05 11.55 1.02 2.083 3.05 5.580 9.14 8.667 3.05 11.59 2.03 2.250 2.03 5.533 8.13 8.417 3.05 11.55 1.02 2.250 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.250 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.250 3.05 5.580 6.08 6.08 6.09 6.00 3.05 11.50 2.283 3.05 5.66 6.08 6.06 6.06 9.00	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
0.167 0.00 3.250 2.03 6.333 13.21 9.58 2.03 0.250 0.00 3.333 3.05 6.500 13.21 9.58 2.03 0.417 1.02 3.500 3.05 6.583 13.21 9.58 2.03 0.417 1.02 3.500 3.05 6.583 13.21 9.56 2.03 0.583 2.03 3.667 3.05 6.667 13.21 9.56 2.03 0.583 2.03 3.667 3.05 6.750 13.21 9.56 2.03 0.583 2.03 3.667 3.05 6.750 13.21 9.58 2.03 0.750 2.03 3.750 3.05 6.6750 13.21 9.58 2.03 0.750 2.03 3.750 3.05 6.6750 13.21 9.58 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.000 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.150 2.03 4.353 5.08 7.417 5.08 10.58 2.03 1.333 1.02 4.417 3.05 7.500 5.08 10.58 1.02 1.417 1.02 4.500 5.08 7.5758 4.06 10.67 1.02 1.500 1.02 4.533 5.08 7.417 5.08 10.58 1.02 1.533 2.03 4.467 5.08 7.667 4.06 10.075 1.02 1.533 2.03 4.457 5.08 7.750 4.06 10.075 1.02 1.533 1.02 4.475 5.08 7.750 4.06 10.075 1.02 1.533 1.02 4.475 5.08 7.667 4.06 10.075 1.02 1.533 1.02 4.475 5.08 7.633 4.06 10.075 1.02 1.667 2.03 4.458 5.08 7.667 4.06 10.075 1.02 1.670 2.03 4.450 5.08 7.833 4.06 10.075 1.02 1.200 1.02 5.083 5.08 7.833 4.06 10.075 1.02 1.200 1.02 5.083 5.08 7.667 4.06 10.09 2.03 1.667 2.03 4.750 5.08 7.833 4.06 10.075 1.02 2.083 3.05 5.167 5.08 8.167 5.08 11.13 1.02 2.090 1.02 5.083 5.08 6.10 8.083 5.08 11.15 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.590 3.05 5.500 8.13 8.833 3.05 11.50 2.03 2.550 3.05 5.500 8.13 8.833 3.0	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.250 0.00 1.333 3.05 6.417 13.21 9.50 3.05 0.335 0.335 0.335 0.333 3.05 6.500 13.21 9.58 2.03 0.417 1.02 3.580 3.05 6.580 13.21 9.58 2.03 0.590 1.02 3.583 3.05 6.667 13.21 9.58 2.03 0.580 0.667 2.03 3.657 3.05 6.667 13.21 9.58 2.03 0.667 2.03 3.750 3.05 6.667 13.21 9.58 2.03 0.667 2.03 3.750 3.05 6.667 13.21 9.83 2.03 0.667 2.03 3.750 3.05 6.6917 6.10 19.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 19.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 19.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 19.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 19.00 2.03 1.000 1.02 4.000 3.05 7.000 6.10 19.00 2.03 1.000 1.02 4.003 3.05 7.167 6.10 19.00 2.03 1.000 1.02 4.003 3.05 7.167 6.10 19.00 2.03 1.000 1.02 4.003 3.05 7.167 6.10 19.02 2.03 1.167 2.03 4.250 3.05 7.167 6.10 19.02 2.03 1.167 2.03 4.250 3.05 7.167 6.10 19.05 2.03 1.167 2.03 4.250 3.05 7.167 6.10 19.05 2.03 1.167 2.03 4.250 3.05 7.500 5.08 19.04 2.03 1.167 2.03 4.250 3.05 7.500 5.08 19.05 2.03 1.333 1.02 4.417 5.08 7.500 5.08 19.58 19.58 1.02 1.333 1.02 4.417 5.08 7.500 5.08 19.05	0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.333 1.02 3.417 3.05 6.500 13.21 9.58 2.03 0.500 1.02 3.583 3.05 6.653 13.21 9.67 2.03 0.583 2.03 3.667 3.05 6.750 13.21 9.67 2.03 0.667 2.03 3.750 3.05 6.750 13.21 9.67 2.03 0.750 2.03 3.750 3.05 6.750 13.21 9.67 2.03 0.750 2.03 3.750 3.05 6.633 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.08 2.03 0.917 1.02 4.000 3.05 7.000 6.10 10.17 2.03 1.000 1.02 4.033 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.250 6.10 10.13 2.03 1.167 2.03 4.250 3.05 7.250 6.10 10.33 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.500 5.08 10.52 2.03 1.417 1.02 4.500 5.08 7.580 5.08 10.52 1.02 1.500 1.02 4.533 5.08 7.583 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.075 1.02 1.667 2.03 4.750 5.08 7.750 4.06 10.02 2.03 1.667 2.03 4.450 5.08 7.750 4.06 10.02 2.03 1.833 1.02 4.417 5.08 7.833 4.06 10.92 2.03 1.667 2.03 4.750 5.08 7.750 4.06 10.02 2.03 1.833 1.02 4.917 5.08 7.917 4.06 10.02 2.03 1.833 1.02 4.917 5.08 8.250 5.08 11.15 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.15 1.02 2.000 1.02 5.083 5.167 5.08 8.167 5.08 11.15 1.02 2.000 1.02 5.083 5.333 8.13 8.417 3.05 11.50 2.03 2.167 2.03 5.550 5.83 6.10 9.000 3.05 11.50 2.03 2.550 3.05 5.560 9.18 8.250 5.08 11.33 2.03 2.570 3.05 5.667 9.14 8.750 3.05 11.50 2.03 2.583 3.05 5.667 9.14 8.750 3.05 11.50 2.03 2.590 3.05 6.000 67.06 9.003 3.05 11.02 2.03 2.750 3.05 5.833 67.06 9.000 3.05 11.02 2.03 2.750 3.05 5.833 67.06 9.00	0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.417 1.02 3.500 3.05 6.583 13.21 9.67 2.03 0.500 1.02 3.583 3.05 6.667 3.21 9.75 2.03 0.583 2.03 3.667 3.05 6.750 13.21 9.75 2.03 0.667 2.03 3.750 3.05 6.750 13.21 9.78 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.00 2.03 1.000 1.02 4.000 3.05 7.167 6.10 10.25 2.03 1.000 1.02 4.003 3.05 7.167 6.10 10.25 2.03 1.001 1.02 3.05 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.167 3.05 7.250 6.10 10.32 2.03 1.167 2.03 4.250 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.250 3.05 7.733 5.08 10.42 2.03 1.133 1.02 4.417 5.08 7.500 5.08 10.58 1.02 1.590 1.02 4.583 5.08 7.583 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.590 1.02 4.583 5.08 7.750 4.06 10.83 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.750 2.03 4.750 5.08 7.590 4.06 10.83 2.03 1.750 2.03 4.750 5.08 7.833 4.06 10.97 1.02 2.000 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.03 2.167 2.03 5.550 5.08 8.833 5.08 11.17 1.02 2.03 2.250 2.03 5.333 8.18 8.417 3.05 11.58 1.02 2.2167 2.03 5.550 5.08 8.833 3.05 11.48 2.03 2.250 2.03 5.550 5.08 8.833 3.05 11.48 2.03 2.250 2.03 5.550 6.08 8.050 5.05 11.58 1.02 2.250 3.05 5.500 6.10 8.083 3.05 11.58 1.02 2.250 3.05 5.500 6.10 8.083 3.05 11.50 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.55 1.02 2.250 3.05 5.500 6.10 8.083 3.05 11.50 2.03 2.250 2.03 5.353 8.13 8.417 3.05 11.55 1.02 2.253 3.05 5.500 6.10 8.083 3.05 11.83 2.03 2.250 3.05 5.500 6.08 6.000 3.05 11.05 1.	0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.500 1.02 3.583 3.05 6.667 13.21 9.75 2.03 0.583 2.03 3.667 3.05 6.675 13.21 9.83 2.03 0.667 2.03 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.917 1.02 3.9317 3.05 7.080 6.10 10.00 2.03 0.917 1.02 4.080 3.05 7.083 6.10 10.17 2.03 1.080 1.02 4.080 3.05 7.700 6.10 10.03 2.03 1.083 2.03 4.167 3.05 7.250 6.10 10.13 2.03 1.167 2.03 4.250 3.05 7.250 6.10 10.33 2.03 1.250 2.03 4.333 5.00 7.417 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.590 5.08 10.50 2.03 1.590 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.667 2.03 4.750 5.08 7.750 4.06 10.87 1.02 1.667 2.03 4.457 5.08 7.750 4.06 10.92 2.03 1.667 2.03 4.450 5.08 7.750 4.06 10.92 2.03 1.633 1.02 4.4917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.4917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.083 5.08 7.617 5.08 11.50 2.03 1.833 1.02 5.083 5.08 8.167 5.08 11.15 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.15 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.15 1.02 2.000 1.02 5.083 5.333 8.13 8.417 3.05 11.50 2.03 2.167 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.550 5.83 6.06 9.083 2.05 11.58 2.03 2.503 3.05 5.560 9.14 8.750 3.05 11.50 2.03 2.504 3.05 5.583 67.06 9.14 8.750 3.05 11.50 2.03 2.507 3.05 5.583 67.06 9.14 8.750 3.05 11.50 2.03 2.509 3.05 5.833 67.06 9.16 8.833 5.05 11.50 2.03 2.500 3.05 6.000 67.06 9.083 2.03 12.17 1.02 2.500 3.05 5.833 67.06 9.16 8.833 3.05 11.42 2.03 2.500 3.05 6.0	0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.583 2.03 3.667 3.05 6.750 13.21 9.83 2.03 8.667 2.03 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.833 1.02 3.917 3.055 7.080 6.10 10.08 2.03 0.833 1.02 3.917 3.055 7.080 6.10 10.08 2.03 0.833 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.080 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.080 1.02 4.083 3.05 7.167 6.10 10.25 2.03 1.167 2.03 4.157 3.05 7.7250 6.10 10.33 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.333 1.02 4.417 5.08 7.590 5.08 10.58 1.02 1.417 1.02 4.580 5.08 7.583 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.750 4.06 10.075 1.02 1.583 2.03 4.750 5.08 7.750 4.06 10.92 2.03 1.667 2.03 4.750 5.08 7.750 4.06 11.00 2.03 1.750 2.03 4.750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.750 5.08 5.08 5.08 1.102 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.100 2.03 1.917 1.02 5.000 5.08 8.000 5.08 11.55 1.02 2.003 2.03 5.167 5.08 8.000 5.08 11.55 1.02 2.033 2.250 2.03 5.567 5.08 8.033 5.08 11.17 1.02 2.033 2.250 2.03 5.533 8.13 8.417 3.05 11.58 2.03 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.535 5.000 8.13 8.583 3.05 11.46 2.03 2.250 2.03 5.567 9.14 8.750 3.05 11.50 2.03 2.250 2.03 5.560 6.083 67.06 9.167 2.03 12.25 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.50 2.03 2.253 2.250 3.05 5.500 8.13 8.583 3.05 11.167 1.02 2.583 3.05 5.5750 9.15 8.833 3.05 11.167 1.02 2.583 3.05 5.5750 9.15 8.833 3.05 11.50 2.03 2.250 3.000 3.0	0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.667 2.03 3.750 3.05 6.833 6.10 9.92 2.03 0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03 0.833 1.02 3.917 3.05 7.000 6.10 10.08 2.03 0.917 1.02 4.000 3.05 7.003 6.10 10.17 2.03 1.000 1.02 4.033 3.05 7.167 6.10 10.25 2.03 1.083 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.05 7.250 6.10 10.33 2.03 1.250 2.03 4.167 3.05 7.250 6.10 10.25 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.59 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.250 2.03 4.560 5.08 7.590 5.08 10.52 2.03 1.417 1.02 4.500 5.08 7.500 4.06 10.57 1.02 1.500 1.02 4.583 5.08 7.750 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.07 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.07 1.02 1.583 2.03 4.450 5.08 7.750 4.06 10.07 1.02 1.583 2.03 4.450 5.08 7.750 4.06 10.07 1.02 1.583 2.03 4.450 5.08 7.750 4.06 10.07 1.02 1.583 2.03 4.450 5.08 7.750 4.06 10.07 1.02 1.583 2.03 4.450 5.08 7.750 4.06 10.02 2.03 1.667 2.03 4.433 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.4917 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.083 5.080 8.167 5.08 11.12 1.02 2.000 1.02 5.083 5.080 8.167 5.08 11.12 1.02 2.000 1.02 5.083 5.250 5.08 8.250 5.08 11.13 2.03 2.167 2.03 5.157 5.00 8.167 5.08 1.50 11.50 2.583 3.05 5.560 9.14 8.750 3.05 11.50 2.03 2.590 3.05 5.560 9.13 8.833 3.05 11.50 2.03 2.590 3.05 5.583 67.06 8.917 3.05 11.50 2.03 2.590 3.05 5.833 67.06 9.167 2.03 12.17 1.02 2.500 3.05 6.000 67.06 9.003 2.05 11.50 2.667 3.05 5.530 67.06 9.167 2.03 12.17 1.02 2.500 3.05 6.000 67.06 9.003 2.05 11.58 1.02 2.533 3.05 5.667 9.14 8.833 3.05 11.150 2.03 2.750	0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.750 2.03 3.833 3.05 6.917 6.10 10.00 2.03	0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.833 1.02 3.917 3.05 7.000 6.10 10.08 2.03 1.000 1.02 4.000 3.05 7.167 6.10 10.17 2.03 1.000 1.02 4.008 3.05 7.167 6.10 10.17 2.03 1.003 1.003 2.03 4.167 3.05 7.250 6.10 10.25 2.03 1.083 2.03 4.167 3.05 7.250 6.10 10.25 2.03 1.250 2.03 4.250 3.05 7.250 6.10 10.25 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.250 2.03 4.333 5.08 7.500 5.08 10.58 10.20 1.417 1.02 4.500 5.08 7.583 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 1.02 4.417 1.02 5.000 6.10 8.000 4.06 11.00 2.03 1.667 2.03 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.003 5.08 8.167 5.08 8.167 5.08 11.17 1.02 2.000 6.10 8.000 4.06 11.00 2.03 2.03 2.167 2.03 5.500 5.08 8.167 5.08 11.125 1.02 2.000 2.167 2.03 5.550 5.08 8.167 5.08 11.125 1.02 2.050 2.03 2.167 2.03 5.550 5.00 8.333 3.05 11.42 2.03 2.250 2.03 5.560 5.00 8.333 3.05 11.58 1.02 2.583 3.05 5.500 5.08 8.833 3.05 11.58 1.02 2.583 3.05 5.500 5.08 8.833 3.05 11.58 1.02 2.03 2.550 3.05 5.583 67.06 8.917 3.05 11.50 2.03 2.550 2.603 3.05 5.583 67.06 8.917 3.05 11.50 2.03 2.550 2.603 3.05 5.583 67.06 8.917 3.05 11.50 2.03 2.550 2.603 2.550 3.05 5.583 67.06 8.917 3.05 11.50 11.02 2.03 2.550 3.05 5.583 67.06 8.917 3.05 11.50 1.02 2.03 2.550 3.05 5.583 67.06 8.917 3.05 11.50 1.02 2.03 2.550 3.05 5.833 67.06 9.167 2.03 12.17 1.02 2.03 2.550 3.05 5.833 67.06 9.167 2.03 12.17 1.02	0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.917 1.02 4.000 3.05 7.083 6.10 10.17 2.03 1.080 1.02 4.080 3.05 7.167 6.10 10.25 2.03 1.083 2.03 4.167 3.05 7.250 6.10 10.25 2.03 1.083 2.03 4.157 3.05 7.250 6.10 10.33 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 10.20 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.58 10.58 1.250 1.250 2.03 4.333 5.08 7.417 5.08 10.58 1.02 1.417 1.02 4.560 5.08 7.500 5.08 10.58 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.500 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.67 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.67 1.02 1.667 2.03 4.450 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.450 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.450 5.08 7.750 4.06 10.80 2.03 1.667 2.03 4.450 5.08 7.917 4.06 10.92 2.03 1.667 2.03 4.590 5.08 7.833 4.06 10.92 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.003 5.167 5.08 8.167 5.08 11.15 1.02 2.033 2.03 5.167 5.08 8.167 5.08 11.15 1.02 2.033 2.250 2.03 5.333 8.13 8.417 3.05 5.500 8.13 8.500 3.05 11.50 2.03 2.333 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.500 2.583 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.500 2.583 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.500 2.05 5.000 8.000 3.05 11.58 1.02 2.03 2.500 3.05 5.500 8.13 8.583 3.05 11.50 2.03 2.500 2.03 5.500 6.083 6.060 9.083 2.03 12.17 1.02 2.03 2.03 2.550 3.05 5.83 6.060 9.083 2.03 12.17 1.02 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.	0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
1.000	0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
1.083 2.03 4.167 3.05 7.250 6.10 10.33 2.03 1.167 2.03 4.250 3.65 7.250 6.10 10.33 2.03 1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.510 5.08 10.50 2.03 1.500 1.02 4.500 5.08 7.583 4.06 10.57 1.02 1.500 1.02 4.500 5.08 7.575 4.06 10.67 5.102 1.500 1.02 4.500 5.08 7.667 4.06 10.67 5.102 1.500 1.02 4.500 5.08 7.667 4.06 10.63 2.03 1.667 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.450 5.08 7.750 4.06 10.92 2.03 1.667 2.03 4.450 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.003 5.067 5.08 8.250 5.08 11.17 1.02 2.000 1.02 5.003 5.507 5.08 8.250 5.08 11.17 1.02 2.003 2.333 3.05 5.417 8.13 8.500 3.05 11.52 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.250 2.03 5.508 8.250 5.08 11.15 2.250 2.03 5.508 8.250 5.08 11.42 2.510 2.510 3.05 5.500 8.13 8.500 3.05 11.50 2.520 2.03 5.500 5.00 2.550 3.05 5.500 8.13 8.500 3.05 11.50 2.550 3.05 5.500 8.13 8.850 3.05 11.50 2.550 3.05 5.500 8.13 8.833 3.05 11.67 2.550 3.05 5.500 8.13 8.833 3.05 11.50 2.550 3.05 5.500 8.13 8.833 3.05 11.50 2.550 3.05 5.500 8.13 8.850 3.05 11.50 2.583 3.05 5.567 9.14 8.750 3.05 11.50 2.583 3.05 5.567 9.14 8.750 3.05 11.50 2.917 3.05 6.000 67.06 9.083 2.03 12.17 2.018 2.019 3.05 6.083 67.06 9.167 2.03 12.25 2.02 2.03 6.167 67.06 9.083 2.03 12.17 2.03 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.001 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.002 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.003 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.001 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.001 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.001 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.001 3.000 3.05 6.083 67.06 9.167 2.03 12.25 2.001 3.0000 3.	0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.167 2.03 4.250 3.05 7.333 5.08 10.42 2.03 1.250 2.03 4.333 5.08 7.500 5.08 10.50 2.03 1.333 1.02 4.417 5.08 7.500 5.08 10.50 1.02 1.417 1.02 4.500 5.08 7.567 4.06 10.58 1.02 1.500 1.02 4.533 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.92 2.03 1.750 2.03 4.730 5.08 7.753 4.06 11.00 2.03 1.750 2.03 4.730 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.003 5.08 11.17 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.25 1.02 2.083 2.03 5.167 5.08 5.08 8.167 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.33 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.547 8.13 8.500 3.05 11.56 2.03 2.417 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.833 3.05 5.583 6.06 8.917 3.05 11.50 2.03 2.667 3.05 5.583 6.06 8.917 3.05 12.00 2.03 2.833 3.05 5.570 9.14 8.667 3.05 11.57 1.02 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.050 67.06 9.000 3.05 12.00 2.03 3.000 3.05 6.050 67.06 9.000 3.05	1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.250 2.03 4.333 5.08 7.417 5.08 10.50 2.03	1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.333 1.02 4.417 5.08 7.590 5.08 1.02 1.417 1.02 4.590 5.08 7.657 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.67 1.02 1.583 2.03 4.467 5.08 7.759 4.06 10.67 1.02 1.583 1.02 4.917 6.10 7.917 4.06 11.09 1.833 1.02 4.917 6.10 8.000 4.06 11.09 1.917 1.02 5.000 6.10 8.003 5.08 11.17 1.02 5.000 6.10 8.003 5.08 11.17 1.02 5.000 6.10 8.003 5.08 11.17 1.02 5.000 6.10 8.003 5.08 11.17 1.02 2.003 5.50 5.00 8.107 5.08 11.25 1.917 1.02 5.000 5.00 8.003 5.08 8.112 2.000 1.02 5.003 5.00 5.00 8.003 5.00 11.17 1.02 5.000 6.10 8.003 5.00 11.17 1.02 2.003 5.550 5.00 8.333 3.05 11.42 2.167 2.03 5.250 5.00 8.333 3.05 11.42 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.250 3.05 5.500 8.13 8.580 3.05 11.50 2.417 3.05 5.500 8.13 8.580 3.05 11.67 2.500 3.05 5.583 9.14 8.667 3.05 11.58 2.667 3.05 5.583 9.14 8.667 3.05 11.50 2.833 3.05 5.567 9.14 8.667 3.05 11.50 2.833 3.05 5.5750 9.15 8.833 3.05 11.42 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.833 3.05 6.003 67.06 9.000 3.05 12.00 3.000 3.05 6.003 67.06 9.000 3.05 12.00 3.000 3.05 6.003 67.06 9.167 2.03 12.15 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.003 67.06 9.250 2.03 3.000 3.05 6.000 67.06 9.250 2.03 3.000 3.05 6.000 67.06 9.250 2.03 3.000 3.05	1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.417 1.02 4.500 5.08 7.583 4.06 10.67 1.02 1.590 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.75 1.02 1.667 2.03 4.4750 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.4750 5.08 7.791 4.06 11.09 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.000 6.10 8.000 4.06 11.08 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.17 1.02 2.083 2.03 5.157 5.08 8.250 5.08 11.15 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.167 2.03 5.550 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.560 8.13 8.583 3.05 11.57 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.58 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.53 2.03 2.750 3.05 5.583 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.583 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.667 9.14 8.750 3.05 11.58 1.02 2.917 3.05 5.667 9.15 8.833 3.05 11.02 2.03 2.750 3.05 6.000 67.06 9.083 2.03 12.17 1.02 2.917 3.05 6.000 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.150 2.03 Max.Eff.Inten.(mm/hr) =	1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.590 1.02 4.583 5.08 7.667 4.06 10.75 1.02 1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.4750 5.08 7.833 4.06 10.92 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.167 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.250 2.03 5.533 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.56 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.57 1.02 2.583 3.05 5.667 9.14 8.750 3.05 11.58 2.03 2.667 3.05 5.583 9.14 8.667 3.05 11.59 2.03 2.590 3.05 5.583 6.06 8.917 3.05 11.20 2.03 2.590 3.05 5.667 9.14 8.750 3.05 11.20 2.03 2.590 3.05 5.667 9.15 8.833 3.05 11.02 2.03 2.590 3.05 5.667 9.15 8.833 3.05 11.20 2.03 2.590 3.05 5.667 9.16 9.000 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.03 5.05 6.083 67.06 9.167 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.0	1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.583 2.03 4.667 5.08 7.750 4.06 10.83 2.03 1.667 2.03 4.750 5.08 7.833 4.06 10.92 2.03 1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 1.02 1.000 6.10 8.000 4.06 11.00 1.02 2.000 6.10 8.000 4.06 11.00 1.02 2.000 6.10 8.000 4.06 11.00 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.003 2.03 5.167 5.08 8.250 5.08 11.17 1.02 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.58 1.02 2.500 3.05 5.560 9.14 8.667 3.05 11.58 1.02 2.583 3.05 5.667 9.14 8.667 3.05 11.75 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.75 1.02 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.250 2.03 2.03 12.17 1.02 3.000 3.05	1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.667 2.03 4.750 5.08 7.833 4.06 10.92 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 2.03 1.833 1.02 5.000 6.10 8.000 4.06 11.00 1.02 1.	1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.750 2.03 4.833 6.10 7.917 4.06 11.00 2.03 1.833 1.02 4.917 6.10 8.000 4.06 11.00 1.02 1.917 1.02 5.000 6.10 8.003 5.08 11.17 1.02 2.000 1.02 5.003 5.08 8.167 5.08 11.17 1.02 2.083 2.03 5.167 5.08 8.250 5.08 11.32 2.03 2.167 2.03 5.550 5.08 8.250 5.08 11.33 2.03 2.250 2.03 5.550 5.08 8.333 3.05 11.42 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.500 8.13 8.500 3.05 11.58 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.75 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.75 1.02 2.583 3.05 5.667 9.15 8.833 3.05 11.67 1.02 2.590 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.167 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)	1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.833 1.02 4.917 6.10 8.000 4.06 11.08 1.02 1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.083 5.08 8.167 5.08 11.17 1.02 2.083 2.083 2.03 5.167 5.08 8.250 5.08 11.25 1.02 2.083 2.167 2.03 5.250 5.08 8.250 5.08 11.25 1.02 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.50 2.03 2.417 3.05 5.500 8.13 8.500 3.05 11.50 2.03 2.500 3.05 5.500 8.13 8.583 3.05 11.67 1.02 2.500 3.05 5.560 8.13 8.583 3.05 11.67 1.02 2.500 2.653 3.05 5.560 8.13 8.583 3.05 11.57 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.75 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.50 2.03 2.570 3.05 5.583 67.06 8.917 3.05 11.00 2.03 2.570 3.05 5.833 67.06 9.083 2.03 12.17 1.02 2.03 2.33 3.05 5.833 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.083 2.03 12.17 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.250 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.55 1.02 3.000 3.05 6.083 67.06 9.250 2.03 3.05 5.000 3.05 6.083 67.06 9.250 2.03 3.05 6.050 3.05 6.05	1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.917 1.02 5.000 6.10 8.083 5.08 11.17 1.02 2.000 1.02 5.000 6.10 8.083 5.08 11.25 1.02 2.083 2.03 5.167 5.08 8.156 5.08 11.25 2.03 2.167 2.03 5.157 5.08 8.250 5.08 11.33 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.57 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.67 1.02 2.583 3.05 5.583 9.14 8.750 3.05 11.67 1.02 2.583 3.05 5.583 9.14 8.750 3.05 11.83 2.03 2.750 3.05 5.833 67.06 8.917 3.05 12.08 10.2 2.93 2.750 3.05 6.000 67.06 9.083 2.03 12.17 1.02 2.93 3.065 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.083 2.03 6.167 67.06 9.157 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 3.05 3.	1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
2.000	1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
2.083 2.03 5.167 5.08 8.250 5.08 1.1.33 2.03 2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.45 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.158 1.02 2.03 2.417 3.05 5.547 8.13 8.500 3.05 11.67 1.02 2.03 2.500 3.05 5.583 9.14 8.667 3.05 11.67 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.67 1.02 2.583 3.05 5.583 9.14 8.667 3.05 11.83 2.03 2.667 3.05 5.583 6.760 8.893 3.05 11.83 2.03 2.675 3.05 5.583 6.760 8.917 3.05 11.83 2.03 2.833 3.05 5.5750 9.14 8.893 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.00 2.03 2.917 3.05 6.083 67.06 9.000 3.05 12.00 2.03 3.000 3.05 6.083 67.06 9.167 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.17 1.02 3.000 3.05 6.067 67.06 9.250 2.03 12.17 1.02 3.000 3.05 6.067 67.06 9.250 2.03 12.17 1.02 3.000 3.05 6.067 67.06 9.250 2.03 12.17 1.02 3.000 3.05 6.067 67.06 9.250 2.03 12.17 1.02 3.000 3.05 6.057 3.000 3.057 3.000 3.057 3.000 3.057 3.000 3.057 3.000 3.057 3.000 3.057 3.0000 3.0000 3.000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000	1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.167 2.03 5.250 5.08 8.333 3.05 11.42 2.03 2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03 2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02 2.417 3.05 5.500 8.13 8.583 3.05 11.58 1.02 2.500 3.05 5.583 9.14 8.667 3.05 11.58 1.02 2.583 3.05 5.567 9.14 8.750 3.05 11.75 1.02 2.567 3.05 5.567 9.14 8.750 3.05 11.75 1.02 2.667 3.05 5.583 67.06 8.917 3.05 11.92 2.750 3.05 5.833 67.06 8.917 3.05 12.08 1.02 2.750 3.05 6.833 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.083 2.03 6.167 67.06 9.250 2.03 3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)	2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.250 2.03 5.333 8.13 8.417 3.05 11.50 2.03	2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.333 3.05 5.417 8.13 8.500 3.05 11.58 1.02	2.167	2.03				3.05		2.03
2.417 3.65 5.500 8.13 8.583 3.05 11.67 1.02	2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.590 3.05 5.583 9.14 8.667 3.05 11.75 1.02	2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.583 3.05 5.567 9.14 8.750 3.05 11.93 2.03 2.667 3.05 5.750 9.15 8.833 3.05 11.90 2.03 2.750 3.05 5.833 67.06 8.917 3.05 11.90 2.03 2.833 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 3.000 3.05 6.000 67.06 9.000 3.05 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 4.622 5.000 5.00 5.00 5.000 5.00 5.00 5.00 5.000 5.00 5.00 5.00 5.000 5.000 5.00 5.00 5.000 5.000 5.00 5.00 5.000 5.000 5.00 5.00 5.000 5.000 5.00 5.00 5.000 5.000 5.000 5.00 5.000 5.000 5.000 5.00 5.000 5.000 5.000 5.00 5.000 5.000 5.000 5.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000								
2.667 3.05 5.750 9.15 8.833 3.05 11.92 2.03 2.750 3.05 5.750 9.15 8.833 3.05 12.08 2.03 2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.0803 2.03 12.17 1.02 3.000 3.05 6.080 67.06 9.167 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 12.25 1.02 3.083 3.083 3.083 6.167 67.06 9.250 2.03 12.25 1.02 3.083 3.083 3.083 6.167 67.06 9.250 2.03 12.25 1.02 3.083 3.083 3.083 6.167 67.06 9.250 2.03 12.25 1.02 3.083 3.083 3.05 12.05 3.083 3.083 3.05 12.05 3.083								
2.750 3.05 5.833 67.06 8.917 3.05 12.00 2.03 2.93 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.080 3.05 6.083 67.06 9.167 2.03 12.15 1.02 3.083 2.03 61.07 67.06 9.250 2.03 12.15 1.02 3.083 2.03 61.07 67.06 9.250 2.03 12.25 1.02 3.083 2.03 61.07 67.06 9.250 2.03 12.25 1.02 3.083 2.03 61.07 67.06 67.05 67.								
2.833 3.05 5.917 67.06 9.000 3.05 12.08 1.02 2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 Max.Eff.Inten.(mm/hr)=								
2.917 3.05 6.000 67.06 9.083 2.03 12.17 1.02 3.000 3.05 6.000 67.06 9.167 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)								
3.000 3.05 6.083 67.06 9.167 2.03 12.25 1.02 3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)=								
3.083 2.03 6.167 67.06 9.250 2.03 Max.Eff.Inten.(mm/hr)								
Max.Eff.Inten.(mm/hr)= 67.06 46.22 over (min) 10.00 15.00 Storage Coeff. (min)= 7.59 (ii) 10.88 (ii) Unit Hyd. Tpeak (min)= 10.00 15.00 Unit Hyd. peak (cms)= 0.13 0.09 **TOTALS** PEAK FLOW (cms)= 0.14 0.02 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RATNALL (mm)= 74.42 74.42								1.02
over (min) 10.00 15.00 Storage Coeff. (min)= 7.59 (ii) 10.88 (ii) Unit Hyd. Tpeak (min)= 10.00 15.00 Unit Hyd. peak (cms)= 0.13 0.09 PEAK FLOW (cms)= 0.14 0.02 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	3.083	2.03	6.167	67.06	9.250	2.03	l	
over (min) 10.00 15.00 Storage Coeff. (min)= 7.59 (ii) 10.88 (ii) Unit Hyd. Tpeak (min)= 10.00 15.00 Unit Hyd. peak (cms)= 0.13 0.09 PEAK FLOW (cms)= 0.14 0.02 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RAINFALL (mm)= 74.42 74.42 74.42								
Storage Coeff. (min = 7.59 (ii) 10.88 (ii)								
Unit Hyd. Tpeak (min)= 10.00 15.00 Unit Hyd. peak (cms)= 0.13 0.09 *TOTALS* PEAK FLOW (cms)= 0.14 0.02 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RATNFALL (mm)= 74.42 74.42								
Unit Hyd. peak (cms)= 0.13 0.09 **TOTALS* PEAK FLOW (cms)= 0.14 0.02 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RAINFALL (mm)= 74.42 74.42 74.42)		
PEAK FLOW (cms)= 0.14 0.92 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RATNAFLL (mm)= 74.42 74.42 74.42								
PEAK FLOW (cms)= 0.14 0.02 0.157 (iii) TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RAINFALL (mm)= 74.42 74.42 74.42	Unit Hyd. peak (cms)=	0.13		0.09			
TIME TO PEAK (hrs)= 6.25 6.33 6.25 RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RAINFALL (mm)= 74.42 74.42 74.42								
RUNOFF VOLUME (mm)= 72.42 39.68 65.21 TOTAL RAINFALL (mm)= 74.42 74.42 74.42)
TOTAL RAINFALL (mm)= 74.42 74.42 74.42								
KUNUFF CUEFFICIENI = 0.9/ 0.53 0.88								
	RUNUFF CUEFFICIEN	. =	0.97		v.53	•	0.68	

LangstaffRd_EA_Proposed_WestDonWatershd

CALIB | CALIB | STANDHYD (0205)| |ID= 1 DT= 5.0 min | Area (ha)= 1.11 Total Imp(%)= 77.00 Dir. Conn.(%)= 77.00 Surface Area 0.85 2.00 0.26 5.00 Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= = 1.00 2.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	2.03	6.250	67.05	9.33	3.05
0.167	0.00	3.250	2.03	6.333	13.21	9.42	3.05
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03

20.00

Page 125

LangstaffRd_EA_Proposed_WestDonWatershd AREA QPEAK TPEAK R. (ha) (cms) (hrs) (m) 0) 2.070 0.338 6.25 (6) 2.070 0.173 6.42 (6) INFLOW: ID= 2 (0460) OUTFLOW: ID= 1 (0525) 65.03

PEAK FLOW REDUCTION [Qout/Qin](%)= 51.32 TIME SHIFT OF PEAK FLOW (min)= 10.00 MAXIMUM STORAGE USED (ha.m.)= 0.0422

CALIB | CALIB | STANDHYD (0190)| |ID= 1 DT= 5.0 min | Area (ha)= 0.86 Total Imp(%)= 57.00 Dir. Conn.(%)= 57.00 IMPERVIOUS PERVIOUS (i) Surface Area

0.49 2.00 1.00 0.37 5.00 2.00 (mm)= (%)= (m)= Dep. Storage Average Slope Length Mannings n 340.00 50.00 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH MSFORMED HYELUGRAPH ---RAIN | TIME RAIN | TIME
mm/hr | hrs mm/hr | hrs
2.03 | 6.250 | 67.05 | 9.33
2.03 | 6.333 | 3.21 | 9.42
3.05 | 6.417 | 13.21 | 9.50
3.05 | 6.500 | 13.21 | 9.58
3.05 | 6.500 | 13.21 | 9.58 RAIN TIME hrs hrs 0.083 0.167 0.250 0.333 0.417 mm/hr 0.00 0.00 0.00 1.02 1.02 9.33 9.42 9.50 9.58 9.67 9.75 mm/hr 3.05 3.05 3.05 2.03 2.03 3.167 3.250 3.333 3.417 3.500 3.583 2,83 | 6,259 | 6,333 | 3,65 | 6,667 | 3,65 | 6,667 | 3,65 | 6,667 | 3,65 | 6,583 | 3,65 | 6,67 | 3,65 | 7,269 | 3,65 | 7,269 | 3,65 | 7,259 | 5,88 | 7,417 | 5,88 | 7,583 | 5,88 | 7,417 | 5,88 | 7,583 | 6,10 | 7,583 | 6,10 | 7,591 | 6,88 | 7,583 | 13.21 0.500 0.583 13.21 2.03 2.03 3.667 13.21 9.83 2.03 2.03 | 3.750 2.03 | 3.833 1.02 | 3.917 1.02 | 4.080 2.03 | 4.167 2.03 | 4.25 2.03 | 4.25 2.03 | 4.50 2.03 | 4.50 2.03 | 4.50 2.03 | 4.50 2.03 | 4.50 1.02 | 4.50 2.03 | 4.50 2.03 | 4.50 2.03 | 4.50 2.03 | 4.50 2.03 | 4.50 2.03 | 5.00 2.03 | 5.00 2.03 | 5.00 2.03 | 5.00 2.03 | 5.00 2.03 | 5.00 2.03 | 5.00 2.03 | 5.00 3.00 | 5.00 | 5.00 3.00 | 5.00 | 5.00 3.00 | 5 0.667 2.03 3,750 6.10 | 6. 9.92 2.03 0.667 0.750 0.833 0.917 1.000 1.083 10.00 10.08 10.17 10.25 10.33 2.03 2.03 2.03 2.03 2.03 2.03 1.167 10.42 2.03 1.250 10.50 2.03 1.333 10.58 1.02 1.417 1.500 1.583 1.667 10.67 10.75 10.83 10.92 1.02 1.02 2.03 2.03 2.03 1.750 11.00 1.833 11.08 1.02 1.917 11.17 1.02 1 02 11.33

Page 127

2 222	Langstat	TRO_EA_PI	oposed_Wes	tDonWate	ershd	1 02
2.333	3.05 5.	.41/ 8	.13 8.506	3.0	5 11.58	1.02
2.41/	3.05 5.	.500 6	14 0.56	7 2 0	5 11.0/	1.02
2.300	3.03 3.	. 565 5	14 0.007	3.0	5 11.75 E 11.00	2.02
2.363	3.65 5	750 0	15 8 83	3.0	5 11.03	2.03
2.007	3.65 5	833 67	A6 8 Q1	7 3.0	5 11.92	2.03
2.730	3.65 5	917 67	as 9 aa	3.0	5 12.00	1 02
2.033	3.65 5.	000 67	a6 9.000	2 2 0	3 12.00	1 02
3 000	3.65 6	083 67	06 9.08.	7 2.0	3 12.17	1 02
3.083	2.03 6.	.167 67	.06 9.256	2.0	Prind 11.58	1.02
Max.Eff.Inten.(mm/ over (m Storage Coeff. (m Unit Hyd. Tpeak (m Unit Hyd. peak (co						
over (m	in) 1	L0.00	15.00			
Storage Coeff. (m	in)=	7.59 (ii) 10.96 ((ii)		
Unit Hyd. Tpeak (m	in)= 1	10.00	15.00			
Unit Hyd. peak (c	ms)=	0.13	0.09			
				*	TOTALS*	
PEAK FLOW (ci	ms)=	0.16	0.03		0.181 (iii))
TIME TO PEAK (h	rs)=	6.25	6.33		6.25	
RUNOFF VOLUME (mm)= 7	72.42	39.68		64.89	
PEAK FLOW (CI TIME TO PEAK (h RUNOFF VOLUME (I TOTAL RAINFALL (I RUNOFF COEFFICIENT	mm)= 7	74.42	74.42		74.42	
RUNOFF COEFFICIENT	=	0.97	0.53		0.87	
ADD HYD (0460)						
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.		
1 + 2 - 3	(ha)	(cms)	(hrs)	(mm)		
ID1= 1 (0205)	: 1.11	0.181	6.25	64.89		
ID1= 1 (0205) + ID2= 2 (0210)	: 0.96	0.157	6.25	65.21		
ID = 3 (0460)						
NOTE: PEAK FLOWS						
	OVERFLOW	TS OFF				
TN 3 CUT 4 I						
DT= 5.0 min	OUTFI OW	STORAG	F OUTS	-I OW	STORAGE	
TN= 2> UUT= 1 DT= 5.0 min	(cms)	(ha.m.) ((cr	ns)	(ha.m.)	
	0.0000	0.000	ο i ο.e	9733	0.0214	
	0.0274	0.002	6 0.6	9831	0.0278	
				440	0.0274	
	0.0478	0.008	4 0.1			
	0.0478 0.0619	0.008 0.014	4 0.1 9 0.6	1449 9000	0.0374	
	0.0478 0.0619	0.008 0.014	9 0.0	0000	0.0000	

Page 126

	LangstaffRd_					
2.167	2.03 5.250			3.05		2
2.250	2.03 5.333		8.417	3.05	11.50	2
2.333	3.05 5.417			3.05		1
2.417	3.05 5.500			3.05		1
2.500	3.05 5.583			3.05		1
2.583	3.05 5.667			3.05		2
2.667	3.05 5.750			3.05		2
2.750	3.05 5.833	67.06	8.917	3.05	12.00	2
2.833	3.05 5.917	67.06		3.05		1
2.917	3.05 6.000		9.083	2.03	12.17	1
3.000	3.05 6.083	67.06	9.167	2.03	12.25	1
3.083	2.03 6.167	67.06	9.250	2.03	I	
Max.Eff.Inten.(mm/	nr)= 67.06		44.81			
over (m	in) 5.06) :	20.00			
Storage Coeff. (m.	in)= 6.25	(ii) :	17.37 (ii)			
Unit Hyd. Tpeak (m	in)= 5.00) :	20.00			
Unit Hyd. peak (c	ns)= 0.19		0.06			
				T0	TALS	
PEAK FLOW (cr	ms)= 0.09		0.03	0	.119 (iii)	
TIME TO PEAK (h	rs)= 6.25		6.42		6.25	
RUNOFF VOLUME (nm)= 72.42	! :	39.68	5	8.33	
TOTAL RAINFALL (nm)= 74.42		74.42	7-	4.42	
RUNOFF COEFFICIENT	= 0.97		0.53		0.78	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | CALIB | | STANDHYD (0195) | |ID= 1 DT= 5.0 min | Area (ha)= 0.79 Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 IMPERVIOUS 0.59 2.00 1.00 PERVIOUS (i) 0.20 5.00 (mm) = (%) = (m) = Dep. Storage Average Slope 2.00 Length 340.00 20.00 Mannings n 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

> TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs RAIN

	Langs	taffRd_E	A_Propos	ed_WestD	onWaters	hd	
0.250	0.00	3.333	3.05	6.417	13.21	9.50	3.05
0.333	1.02	3.417	3.05	6.500	13.21	9.58	2.03
0.417	1.02	3.500	3.05	6.583	13.21	9.67	2.03
0.500	1.02	3.583	3.05	6.667	13.21	9.75	2.03
0.583	2.03	3.667	3.05	6.750	13.21	9.83	2.03
0.667	2.03	3.750	3.05	6.833	6.10	9.92	2.03
0.750	2.03	3.833	3.05	6.917	6.10	10.00	2.03
0.833	1.02	3.917	3.05	7.000	6.10	10.08	2.03
0.917	1.02	4.000	3.05	7.083	6.10	10.17	2.03
1.000	1.02	4.083	3.05	7.167	6.10	10.25	2.03
1.083	2.03	4.167	3.05	7.250	6.10	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	5.08	7.417	5.08	10.50	2.03
1.333	1.02	4.417	5.08	7.500	5.08	10.58	1.02
1.417	1.02	4.500	5.08	7.583	4.06	10.67	1.02
1.500	1.02	4.583	5.08	7.667	4.06	10.75	1.02
1.583	2.03	4.667	5.08	7.750	4.06	10.83	2.03
1.667	2.03	4.750	5.08	7.833	4.06	10.92	2.03
1.750	2.03	4.833	6.10	7.917	4.06	11.00	2.03
1.833	1.02	4.917	6.10	8.000	4.06	11.08	1.02
1.917	1.02	5.000	6.10	8.083	5.08	11.17	1.02
2.000	1.02	5.083	5.08	8.167	5.08	11.25	1.02
2.083	2.03	5.167	5.08	8.250	5.08	11.33	2.03
2.167	2.03	5.250	5.08	8.333	3.05	11.42	2.03
2.250	2.03	5.333	8.13	8.417	3.05	11.50	2.03
2.333	3.05	5.417	8.13	8.500	3.05	11.58	1.02
2.417	3.05	5.500	8.13	8.583	3.05	11.67	1.02
2.500	3.05	5.583	9.14	8.667	3.05	11.75	1.02
2.583	3.05	5.667	9.14	8.750	3.05	11.83	2.03
2.667	3.05	5.750	9.15	8.833	3.05	11.92	2.03
2.750	3.05	5.833	67.06	8.917	3.05	12.00	2.03
2.833	3.05	5.917	67.06	9.000	3.05	12.08	1.02
2.917	3.05	6.000	67.06	9.083	2.03	12.17	1.02
3.000	3.05	6.083	67.06	9.167	2.03	12.25	1.02
3.083	2.03	6.167	67.06	9.250	2.03		

67.06 5.00 6.25 (ii) 5.00 0.19 46.22 10.00 9.77 (ii) over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 0.11 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.131 (iii) 6.25 64.23 74.42 a a2 6.25 39.68 74.42 0.97 0.53

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^*=83.0$ Ia=Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

Page 129

LangstaffRd_EA_Proposed_WestDonWatershd ata\Local\Temp\ e8da0adc-3b43-467d-984d-5ab4a7d3492c\d7466973 Comments: 50yr-12hrSCS Ptotal= 82.04 mm RAIN | RAIN | TTME TTMF TTMF mm/hr 0.00 2.03 1.02 2.03 mm/hr 3.05 3.05 4.06 3.05 1 ME RAIN hrs mm/hr 6.75 14.22 | 7.00 7.11 | 7.25 6.10 | 7.50 5.08 | 7.75 5.08 | 8.00 5.08 | | IIME | hrs 10.00 10.25 10.50 10.75 mm/hr 3.05 2.03 2.03 1.02 hrs 3.50 3.75 4.00 4.25 0.25 0.50 0.75 1.00 1.25 5.08 6.10 1.02 4.50 11.00 2.03 1.50 4.75 11.25 2.03 6.10 5.08 10.16 10.16 73.15 74.17 8.25 8.50 8.75 9.00 9.25 2.03 1.02 2.03 3.05 3.05 4.06 4.06 3.05 3.05 3.05 1.75 5.00 11.50 1.02 2.00 2.25 2.50 2.75 5.25 5.50 5.75 6.00 6.25

3.25 3.05 | 6.50 15.24 9.75 2.03

| CALIB | | STANDHYD (0165)| |ID= 1 DT= 5.0 min | Area (ha)= 0.60 Total Imp(%)= 72.00 Dir. Conn.(%)= 72.00 IMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.43 2.00 1.00 250.00 0.013 0.17 5.00 2.00 20.00 Surface Area Dep. Storage Average Slope Length Mannings n 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

\$FORMED HYETOGR RAIN | TIME mn/hr | TIME mn/hr | TIME mn/hr | Time 3.05 | 6.258 | 3.05 | 6.417 | 3.05 | 6.503 | 3.05 | 6.503 | 3.05 | 6.503 | 3.05 | 6.503 | 3.05 | 6.750 | 3.05 | 6.750 | 4.06 | 7.000 | 4.06 | 7.083 | 3.05 | 7.083 | 3.05 | 7.250 | 7.250 TRANSFORMED HYETOGRAPH RAPH ---RAIN | TIME
mm/hr | hrs
74.17 | 9.33
15.24 | 9.42
15.24 | 9.50 RAIN | mm/hr | 3.05 | TIME hrs 0.083 RAIN | mm/hr | 0.00 | 0.00 | TIME hrs 3.167 mm/hr 3.05 0.167 3.250 0.250 0.00 3.333 3.05 0.333 3.417 15.24 9.58 2.03 2.03 2.03 2.03 3.05 3.05 3.05 0.417 0.500 0.583 0.667 2.03 2.03 1.02 1.02 3.500 3.583 3.667 3.750 14.22 14.22 14.22 7.11 7.11 9.67 9.75 9.83 9.92 3.833 10.00 0.750 1.02 0.833 2.03 3.917 7.11 10.08 2.03 2.03 | 4.000 2.03 | 4.083 1.02 | 4.167 0.917 6.10 10.17 2.03 6.10 2 03

Page 131

LangstaffRd_EA_Proposed_WestDonWatershd (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0455)| | 1 + 2 = 3 | (ha) 0.86 (cms) (hrs) 6.25 (mm) 58.33 ID1= 1 (0190): + ID2= 2 (0195): 0.119 0.79 64.23 ID = 3 (0455): 1.65 0.250 6.25 61.16

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOTR(0555)| OVERFLOW IS OFF RESERVUIK(, IN= 2---> OUT= 1 DT= 5.0 min OUTFLOW OUTFLOW STORAGE STORAGE (cms) 0.0000 0.0104 (ha.m.) 0.0000 0.0024 0.0079 (ha.m.) 0.0199 0.0259 0.0024 | 0.0079 | 0.0139 | 0.0162 0.0825 0.0346 0.0203 0.0000 0.0000 TΡΕΔΚ R V

AREA QPEAK
(ha) (cms)
1.650 0.250
1.650 0.112 (ha) 1.650 1.650 INFLOW: ID= 2 (0455) OUTFLOW: ID= 1 (0555)

| ADD HYD (0465)| | 1 + 2 = 3 | AREA (ha) (cms) 2.07 0.173 (cms) (hrs) 6.42 (mm) 65.03 ID1= 1 (0525): + ID2= 2 (0555): 1.65 0.112 6.42 61.12 ID = 3 (0465): 3.72 0.285

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

READ STORM | Filename: C:\Users\ray.zhao\AppD

Page 130

LangstaffRd_EA_Pro 1.02 | 4.250 3. 1.02 | 4.333 5. 2.03 | 4.417 5. 1.167 1.250 1.333 10.58 5.08 1.02 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 1.417 2.03 5.08 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 10.67 1.02 1.500 2.03 6.10 5.08 5.08 10.75 1.02 2 03 6 10 10 83 1.667 1.750 1.833 1.917 2.03 2.03 2.03 1.02 1.02 6.10 6.10 6.10 6.10 6.10 10.83 10.92 11.00 11.08 11.17 5.083 2.000 2.083 1.02 4.06 11.25 2.03 2.03 5.167 5.08 4.06 11.33 1.02 11.42 11.50 11.58 11.67 11.75 2.167 2.03 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000 6.083 6.167 5.08 4.06 1.02 2.03 2.03 3.05 3.05 3.05 3.05 3.05 10 16 2.250 2.333 2.417 2.500 2.583 2.03 2.03 2.03 10.16 11.83 1.02 8.833 8.917 9.000 9.083 9.167 9.250 2.667 10.16 3.05 11.92 1.02 2.750 3.05 73.15 3.05 12.00 1.02 2.833 2.917 3.000 3.083 4.06 4.06 4.06 3.05 73.15 | 73.15 | 73.15 | 74.17 | 3.05 3.05 3.05 3.05 3.05 12.08 2.03

Max.Eff.Inten.(mm/hr)= 74.17 53.29 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 4.99 (ii) 10.00 8.59 (ii) 5.00 10.00 *TOTALS* PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.111 (iii) 6.25 80.04 6.25 6.25 70.50 45.99 82.04 82.04 82.04 0.98

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0170)| Area (ha)= 0.43 |ID= 1 DT= 5.0 min | Total Imp(%)= 98.00 Dir. Conn.(%)= 98.00 IMPERVIOUS PERVIOUS (i) ha)= 0.42 0.01 Surface Area (ha)=

LangstaffRd_EA_Proposed_WestDonWatershd
Dep. Storage (mm)= 2 00 5 00

Dep. Storage	(11111)-	2.00	3.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	250.00	20.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TR/	NSFORME	D HYETOGRA	ΔPH		
TIME RAIN	TIME	RAIN		RAIN		RAIN
hrs mm/hr	hrs	mm/hr	' hrs	mm/hr		mm/hr
0.083 0.00	3.167	3.05	6.250	74.17		3.05
	3.250	3.05	6.333	15.24		3.05
	3.333	3.05	6.417	15.24	9.50	3.05
	3.417		6.500	15.24		2.03
0.417 2.03		3.05		14.22		2.03
	3.583		6.667	14.22	9.75	2.03
	3.667		6.750	14.22		3.05
	3.750	3.05		7.11	9.92	3.05
	3.833		6.917	7.11		3.05
0.833 2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917 2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000 2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083 1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167 1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250 1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333 2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417 2.03	4.500	5.08	7.583	5.08	10.67	1.02
	4.583	6.10		5.08		1.02
	4.667	6.10		5.08	10.83	2.03
	4.750	6.10	7.833	5.08		2.03
	4.833	6.10	7.917	5.08		2.03
	4.917		8.000		11.08	2.03
	5.000	6.10		4.06		2.03
	5.083		8.167		11.25	2.03
	5.167	5.08	8.250	4.06	11.33	1.02
	5.250	5.08		4.06	11.42	1.02
	5.333		8.417		11.50	1.02
	5.417	10.16		4.06		2.03
2.417 3.05			8.583		11.67	2.03
2.500 3.05		10.16		3.05		2.03
	5.667		8.750	3.05	11.83	1.02
	5.750		8.833			1.02
2.750 3.05 2.833 4.06	5.833	73.15		3.05	12.00	1.02
		73.15	9.000		12.00	
2.917 4.06 3.000 4.06	6.000	74.17	9.083	3.05	12.17	2.03
3.083 3.05		74.17	9.250	3.05		2.03
3.063 3.03	0.10/	/4.1/	9.250	3.05	l	
Max.Eff.Inten.(mm/hr)=	74.17		61.96			
over (min)	5.00		10.00			
Storage Coeff. (min)=	4.99	(ii)	6.10 (ii))		
Unit Hyd. Tpeak (min)=	5.00		10.00			

74.17 61.96 5.00 10.00 4.99 (ii) 6.10 (ii) 5.00 10.00 Page 133

	Langs	taffRd E	A Propos	ed_WestDon	Waters	hd	
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05		
Max.Eff.Inten.(mm/h	r)=	74.17		53.29			
over (mi		5.00		15.00			
	n)=	2.24		11.32 (ii)			
Unit Hyd. Tpeak (mi		5.00		15.00			
Unit Hyd. peak (cm		0.30		0.09			
(-,				*T0	TALS*	
PEAK FLOW (cm	s)=	0.07		0.04		.105 (iii)	
TIME TO PEAK (hr.		6.25		6.33		6.25	
	m)=	80.04		45.99		3.69	
	m)=	82.04		82.04		2.04	
RUNOFF COEFFICIENT	=	0.98		0.56		0.78	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE S	TORÁGE C	OEFFICIE	NT.		
(iii) PEAK FLOW	DOES NOT	INCLUDE	BASEFL	OW IF ANY.	
, ,					
CALIB					
STANDHYD (0185)	Area	(ha)=	0.47		
ID= 1 DT= 5.0 min	Total	Imp(%)=	72.00	Dir. Conn.(%)=	72.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha)=	0.3	4	0.13	
Dep. Storage	(mm)=	2.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m)=	240.0	0	20.00	
Mannings n	=	0.01	3	0.350	

Page 135

LangstaffRd_EA_Proposed_WestDonWatershd

Unit Hyd. peak	(cms)=	0.22	0.15	
				TOTALS
PEAK FLOW	(cms)=	0.09	0.00	0.088 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	80.04	54.74	79.53
TOTAL RAINFALL	(mm)=	82.04	82.04	82.04
RUNOFF COEFFICI	ENT =	0.98	0.67	0.97

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 89.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0180)	Area	(ha)=	0.65				
ID= 1 DT= 5.0 min	Total	Imp(%)=	52.00	Dir.	Conn.(%)=	52.00	
ii							
		IMPERVI	OUS	PERVIOL	JS (i)		
Surface Area	(ha)=	0.3	4	0.31			
Dep. Storage	(mm)=	2.0	0	5.00)		
Average Slope	(%)=	1.0	0	2.00)		
Length	(m)=	65.8	3	40.00)		
Mannings n	=	0.01	3	0.250)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TD	ANCEODME	HYFTOGR	ADII		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
			Dago	124			

Page 134

LangstaffRd_EA_Proposed_WestDonWatershd
NOTE: RAINFALL WAS TRANSFORMED TO 5 0 MTN TIME CITE

:	RAINF	ALL WAS	TRANSFORM	D TO	5.0 MIN.	TIME STE	Ρ.	
				NCFORM	D HYETOGE			
	TTME	RAIN		RAIN			TIME	DATM
		mm/hr		mm/nr	hrs	mm/nr	l nrs	
	0.083	0.00	3.167	3.05	6.250	/4.1/	9.33	3.05
	0.16/	0.00	3.250	3.05	6.333	15.24	9.42	3.05
	0.250		3.333	3.05	6.417	15.24	9.50	3.05
	0.333			3.05	6.500	15.24	9.58	2.03
	0.417 0.500	2.03	3.500	3.05	6.583	14.22	9.67	2.03
	0.500	2.03	3.583			14.22	9.75	2.03
	0.583		3.667	3.05	6.750			3.05
	0.667		3.750	3.05	6.833		9.92	3.05
	0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
	0.833	2.03	3.917	4.06	1 /.000	/.11	10.08	2.03
	0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
	1.000	2.03	4.083	3.05	7.167 7.250 7.333	6.10	10.25	2.03
	1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
	1.167	1.02	4.250	3.05			10.42	2.03
	1.250	1.02	4.333	5.08	7.417		10.50	
	1.333	2.03	4.250 4.333 4.417 4.500	5.08	7.500		10.58	1.02
	1.417	2.03	4.500	5.08	7.583		10.67	1.02
	1.500		4.583		7.667		10.75	1.02
	1.583	2.03	4.667	6.10	7.750		10.83	2.03
	1.667		4.750		7.833		10.92	2.03
	1.750		4.833		7.917		11.00	2.03
	1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
	1.833 1.917 2.000	1.02	5.000		8.083		11.17	2.03
		1.02	5.083	5.08	8.167		11.25	2.03
	2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
	2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
	2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
	2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
	2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
	2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
	2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
	2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
							12.00	1.02
			5.917				12.08	2.03
	2.917		6.000		9.083		12.17	2.03
	3.000		6.083				12.25	2.03
	3.083	3.05	6.167	74.17	9.250	3.05		
т.	nten /~	m/hr)-	74.17		47.96			
		(min)			10.00			
c	neff	(min)=	4 87		9.27 (i	i)		
1	Tneak	(min)= (min)=	5.00		10.00	-,		
		(cms)=			0.12			

Max.Eff.Inten.(mm/hr)=	74.17	47.96	
over	(min)	5.00	10.00	
Storage Coeff.	(min)=	4.87 (ii)	9.27 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.22	0.12	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.02	0.085 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	80.04	41.06	69.12

LangstaffRd_EA_Proposed_WestDonWatershd (mm)= 82.04 82.04 82.0 NT = 0.98 0.50 0.8 TOTAL RAINFALL RUNOFF COEFFICIENT

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 79.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0445) 1 + 2 = 3	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V.
/				
ID1= 1 (0180):	0.65	0.105	6.25	63.69
+ ID2= 2 (0185):	0.47	0.085	6.25	69.12
ID = 3 (0445):	1.12	0.190	6.25	65.97

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (1 + 2 = ID1= + ID2=	1 (0165):	AREA (ha) 0.60 0.43	QPEAK (cms) 0.111 0.088	TPEAK (hrs) 6.25 6.25	R.V. (mm) 70.50 79.53
ID =	3 (0450):	1.03	0.199	6.25	74.27

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0450)				
3 + 2 = 1	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 3 (0450):	1.03	0.199	6.25	74.27
+ ID2= 2 (0445):	1.12	0.190	6.25	65.97
=================				
ID = 1 (0450):	2.15	0.389	6.25	69.94

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0520)	OVERFLOW	IS OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	

Page 137

LangstaffRd EA Proposed WestDonWatershd								
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03	
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03	
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03	
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03	
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02	
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02	
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02	
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03	
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03	
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03	
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02	
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02	
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02	
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03	
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03	
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03	
3.083	3.05	6.167	74.17	9.250	3.05	l		
Max.Eff.Inten.(mm/	hr)=	74.17		57.55				
over (m		10.00		20.00				
	in)=		(ii)	16.64 (ii)				
Unit Hyd. Tpeak (m		10.00	(/	20.00				
	ms)=	0.13		0.06				
, p (*T0	TALS*		
PEAK FLOW (c	ms)=	0.46		0.08		.536 (iii)	
	rs)=	6.25		6.42		5.25	,	
	mm)=	80.04		50.13		2.86		
	mm)=	82.04		82.04		2.04		
RUNOFF COEFFICIENT	´=	0.98		0.61		2.89		

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

- CN* = 86.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

l cauro l				
CALIB				
STANDHYD (0135)	Area	(ha)= 1.43	3	
ID= 1 DT= 5.0 min	Total	Imp(%) = 99.06	Dir. Conn.(%)=	99.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	1.42	0.01	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	`(%)=	1.00	2.00	
Length	(m)=	503.00	30.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Proposed_WestDonWatershd 0.0000 0.0000 0.0181 0.0203 0.0552 0.0732 0.0123 0.0192 0.0224 0.1152

(cms) 0.389 0.022 (ha) 2.150 (hrs) INFLOW: ID= 2 (0450) OUTFLOW: ID= 1 (0520) 6.25 8.50 2.150 69.88

PEAK FLOW REDUCTION [Qout/Qin](%)= 5.59TIME SHIFT OF PEAK FLOW (min)=135.00MAXIMUM STORAGE USED (ha.m.)= 0.1021

CAL TB Area (ha)= 3.05 Total Imp(%)= 76.00 Dir. Conn.(%)= 76.00 IMPERVIOUS PERVIOUS (i) Surface Area

(ha)= (mm)= (%)= (m)= 2.32 2.00 1.00 0.73 5.00 Dep. Storage Average Slope Length Mannings n 2.00 531.00 40.00 0.013 0 250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH TIME RAIN | TIME RAIN | TIME RAIN | TIME mm/hr | hrs RAIN mm/hr 0.00 0.00 2.03 2.03 2.03 mm/hr 3.05 3.05 3.05 3.05 3.05 3.05 mm/hr 3.05 3.05 3.05 2.03 2.03 9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92 10.00 10.08 10.17 10.25 10.33 hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 hrs 3.167 mm/hr 74.17 | 15.24 | 15.24 | 15.24 | 14.22 | 14.22 | 3.65 | 6.250 3.65 | 6.333 3.65 | 6.417 3.65 | 6.583 3.65 | 6.667 3.65 | 6.667 3.65 | 6.750 4.66 | 7.083 3.65 | 7.250 3.65 | 7.250 3.65 | 7.250 3.65 | 7.333 3.65 | 7.333 3.65 | 7.583 6.10 | 7.697 5.08 | 7.417 5.08 | 7.583 6.10 | 7.687 6.10 | 7.687 6.10 | 7.833 3.167 3.250 3.333 3.417 3.500 3.583 2.03 1.02 3.667 3.750 14.22 3.05 7.11 7.11 7.11 6.10 6.10 6.10 5.08 1.02 3.05 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.02 2.03 2.03 2.03 1.02 1.02 3.05 2.03 2.03 2.03 2.03 2.03 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 1.250 1.02 5.08 5.08 10.50 10.58 2.03 2.03 1.02 1.417 1.500 1.583 1.667 2.03 2.03 2.03 2.03 2.03 5.08 | 5.08 | 5.08 | 5.08 | 10.67 10.75 10.83 10.92 1.02 1.02 2.03 2.03

Page 138

LangstaffRd FA Proposed WestDonWatershd

L	angstaffRd_E					
			HYETOGR			
	IN TIME	RAIN		RAIN		
	hr hrs		' hrs			
	00 3.167		6.250			3.05
	00 3.250	3.05		15.24		3.05
	00 3.333		6.417	15.24		3.05
	03 3.417	3.05		15.24		2.03
	03 3.500		6.583	14.22		2.03
	03 3.583	3.05		14.22		2.03
	02 3.667		6.750	14.22		3.05
0.667 1.	02 3.750	3.05	6.833	7.11	9.92	3.05
	02 3.833	4.06	6.917	7.11		3.05
0.833 2.	03 3.917	4.06	7.000	7.11	10.08	2.03
0.917 2.	03 4.000	4.06	7.083	6.10	10.17	2.03
1.000 2.	03 4.083	3.05	7.167	6.10	10.25	2.03
1.083 1.	02 4.167	3.05	7.250	6.10	10.33	2.03
1.167 1.	02 4.250	3.05	7.333	5.08	10.42	2.03
1.250 1.	02 4.333	5.08	7.417	5.08	10.50	2.03
1.333 2.	03 4.417	5.08	7.500	5.08	10.58	1.02
1.417 2.	03 4.500	5.08	7.583	5.08	10.67	1.02
1.500 2.	03 4.583	6.10	7.667	5.08	10.75	1.02
1.583 2.	03 4.667	6.10	7.750	5.08	10.83	2.03
1.667 2.	03 4.750	6.10	7.833	5.08	10.92	2.03
1.750 2.	03 4.833	6.10	7.917	5.08	11.00	2.03
1.833 1.	02 4.917	6.10	8.000	5.08	11.08	2.03
1.917 1.	02 5.000	6.10	8.083	4.06	11.17	2.03
2.000 1.	02 5.083	5.08	8.167	4.06	11.25	2.03
2.083 2.	03 5.167	5.08	8.250	4.06	11.33	1.02
2.167 2.	03 5.250	5.08	8.333	4.06	11.42	1.02
2.250 2.	03 5.333	10.16	8.417	4.06	11.50	1.02
2.333 3.	05 5.417	10.16	8.500	4.06	11.58	2.03
2.417 3.	05 5.500	10.16	8.583	3.05	11.67	2.03
2.500 3.	05 5.583	10.16	8.667	3.05	11.75	2.03
2.583 3.	05 5.667	10.16	8.750	3.05	11.83	1.02
2.667 3.	05 5.750	10.16	8.833	3.05	11.92	1.02
	05 5.833		8.917	3.05	12.00	1.02
2.833 4.	06 5.917	73.15	9.000	3.05	12.08	2.03
2.917 4.	06 6.000	73.15	9.083	3.05	12.17	2.03
3.000 4.	06 6.083	74.17	9.167	3.05	12.25	2.03
3.083 3.	05 6.167	74.17	9.250	3.05		
Max.Eff.Inten.(mm/hr)=	74.17	!	54.69			
over (min)	10.00		10.00			
Storage Coeff. (min)=	7.59	(ii)	8.65 (ii)		
Unit Hyd. Tpeak (min)=	10.00		10.00			
Unit Hyd. peak (cms)=	0.13		0.12			
				T0T	ALS	
PEAK FLOW (cms)=	0.28		0.00	0.	285 (iii))
TIME TO PEAK (hrs)=	6.25		6.25		.25	
RUNOFF VOLUME (mm)=	80.04		47.32	79	.71	
TOTAL RAINFALL (mm)=	82.04		82.04	82	2.04	
RUNOFF COEFFICIENT =	0.98		0.58	6	.97	

LangstaffRd_EA_Proposed_WestDonWatershd

| CALIB | STANDHYD (0140)| |ID= 1 DT= 5.0 min | Area (ha)= 1.27 Total Imp(%)= 91.00 Dir. Conn.(%)= 91.00 PERVIOUS (i) Surface Area 1.16 0.11 5.00 (mm)= (%)= (m)= Dep. Storage Average Slope 1.00 2.00 Length Mannings n 25.00 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02

Page 141

```
INFLOW: ID= 2 ( 0420)
OUTFLOW: ID= 1 ( 0530)
                                                         0.531
                                                                     6.25
7.25
                                          2.700
                                                                                       78.31
                         PEAK FLOW REDUCTION [Qout/Qin](%)= 8.96
TIME SHIFT OF PEAK FLOW (min)= 60.00
MAXIMUM STORAGE USED (ha.m.)= 0.144
                                                                 (min)= 60.00
(ha.m.)= 0.1448
ADD HYD ( 0425)|
1 + 2 = 3 |
                                                QPEAK
(cms)
0.536
0.048
                                                                         R.V.
(mm)
72.86
78.31
                                       ΔRFΔ
                                                              TΡΕΔΚ
                                      (ha)
3.05
2.70
                                                              (hrs)
6.25
7.25
      ID1= 1 ( 0145):
+ ID2= 2 ( 0530):
        ID = 3 ( 0425):
                                      5.75 0.565
                                                              6.25
                                                                         75.42
     NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 RESERVOIR( 0512)|
IN= 2---> OUT= 1 |
DT= 5.0 min |
                                 OUTFLOW
                                                STORAGE
                                                                  OUTFLOW
                                  (cms)
0.0000
                                                (ha.m.)
                                                                   (cms)
0.0471
                                                                                  (ha.m.)
0.1003
                                                  0.0000
                                  0.0071
0.0098
                                                  0.0165
                                                                    0.0636
0.0763
                                                                                    0.1284
                                                 0.0331
0.0526
0.0750
                                  0.0119
0.0138
                                                                    0.0870
0.0964
                                                                                    0.1934
0.2308
                                                       QPEAK
                                                                     TPEAK
                                                                                     R.V.
                                           AREA
                                                       (cms)
0.565
0.080
                                                                     (hrs)
6.25
8.50
                                                                                     (mm)
75.42
75.32
                                           (ha)
5.750
   INFLOW: ID= 2 ( 0425)
OUTFLOW: ID= 1 ( 0512)
                                          5.750
                         ......
CALIB
| STANDHYD ( 0215)|
|ID= 1 DT= 5.0 min |
                              Area (ha)= 0.58
Total Imp(%)= 81.00
                                                            Dir. Conn.(%)= 81.00
                                                           PERVIOUS (i)
                                        IMPERVIOUS
      Surface Area
                             (ha)=
                                             0.47
2.00
                                                               0.11
5.00
     Dep. Storage
Average Slope
Length
                             (mm)=
(%)=
(m)=
                                              1 00
                                                                2 00
                                           260.00
                                                              30.00
```

Page 143

```
LangstaffRd EA Proposed WestDonWatershd
3.65 | 5.417 | 10.16 | 8.500 | 4.06 | 1
3.65 | 5.500 | 10.16 | 8.500 | 3.05 | 1
3.65 | 5.533 | 10.16 | 8.657 | 3.05 | 1
3.65 | 5.657 | 10.16 | 8.750 | 3.05 | 1
3.65 | 5.750 | 10.16 | 8.833 | 3.05 | 1
3.05 | 5.750 | 10.16 | 8.833 | 3.05 | 1
3.05 | 5.730 | 73.15 | 8.917 | 3.05 | 3.05 | 1
4.06 | 5.917 | 73.15 | 9.000 | 3.05 | 1
4.06 | 6.000 | 73.15 | 9.083 | 3.05 | 1
4.06 | 6.083 | 74.17 | 9.167 | 3.05 | 1
3.05 | 6.167 | 74.17 | 9.250 | 3.05 |
                                                                                                                                                                   NWatershd
4.06 | 11.58
3.05 | 11.67
3.05 | 11.75
3.05 | 11.83
3.05 | 11.92
3.05 | 12.00
3.05 | 12.08
3.05 | 12.17
                                             2.333
                                             2.417
                                             2.417
2.500
2.583
2.667
2.750
2.833
                                                                                                                                                                                                                   2.03
1.02
1.02
1.02
2.03
                                             2.917
                                                                                                                                                                                                                    2.03
                                             3.000
                                                                                                                                                                                        12.25
                                             3.083
            Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                      53 29
                                                                                               74.17
10.00
7.59 (ii)
10.00
0.13
                                                                                                                                     10.00
9.97 (ii)
                                                                                                                                     10.00
                                                                                                                                                                             *TOTALS*
                                                                                                                                                                                0.246 (iii)
6.25
76.97
82.04
             PEAK FLOW
                                                                                                 0.23
                                                                                                                                        0.01
             TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                               6.25
80.04
82.04
0.98
                                                                                                                                    6.25
45.99
82.04
0.56
                   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
             (1) ON PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0420)|
| 1 + 2 = 3 |
                                                                                   AREA
(ha)
1.43
1.27
                                                                                                      QPEAK
(cms)
0.285
0.246
                                                                                                                                    TPEAK
(hrs)
6.25
6.25
                                                                                                                                                           R.V.
(mm)
79.71
76.97
              ID1= 1 ( 0135):
+ ID2= 2 ( 0140):
                 ID = 3 ( 0420):
                                                                                  2.70 0.531
                                                                                                                                   6.25
                                                                                                                                                           78.42
            NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
   RESERVOIR( 0530)|
IN= 2---> OUT= 1 |
DT= 5.0 min |
                                                                       OUTFLOW
                                                                                                         STORAGE
                                                                                                                                             OUTFLOW
                                                                                                                                                                             (ha.m.)
0.0823
0.1093
0.1598
                                                                          (cms)
0.0000
                                                                                                         (ha.m.)
0.0000
                                                                                                                                                (cms)
0.0122
                                                                                                                                                0.0382
0.0516
0.0000
                                                                           0.0056
0.0084
                                                                                                          0.0072
                                                                                                                      Page 142
```

LangstaffRd_EA_Proposed_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	NOTE.	KATIVI	ALL WAS	INANSFORM	-0 10	J. O PIIN.	I I I I I I I I	.r.	
				TD	NIC EODMI	D HYETOGR	ADLI .		
		TIM	RAIN		RAIN		RAIN		RAIN
		hrs			mm/hr	' hrs			
		0.08		3.167		6.250	74.17		3.05
		0.16		3.250		6.333	15.24		3.05
		0.25		3.333		6.417	15.24		3.05
		0.33		3.417		6.500	15.24		2.03
		0.41		3.500	2.05	6.583	14 22	9.67	2.03
		0.500		3.583		6.667		9.75	2.03
		0.583		3.667		6.750		9.83	3.05
		0.66		3.750		6.833	7.11		3.05
		0.75		3.833		6.917	7.11		3.05
		0.833		3.917		7.000	7.11		2.03
		0.91	7 2.03			7.083	6.10		2.03
		1.000		4.083		7.167		10.17	2.03
		1.08		4.167		7.250	6.10		2.03
		1.16		4.250		7.333		10.42	2.03
		1.256		4.230		7.417	5.08		2.03
		1.33		4.417		7.500		10.58	1.02
		1.41		4.500		7.583	5.08		1.02
		1.500		4.583		7.667		10.75	1.02
		1.583		4.667		7.750	5.08		2.03
		1.66		4.750		7.730	5.08		2.03
		1.75		4.833		7.917	5.08		2.03
		1.83		4.917		8.000	5.08		2.03
		1.91		5.000		8.083	4.06		2.03
		2.000		5.083			4.06		2.03
		2.08		5.167		8.250		11.23	1.02
		2.16		5.250			4.06		1.02
		2.25	2.03	5.333		8.417		11.50	1.02
		2.33		5.417		8.500	4.06		2.03
		2.41		5.500		8.583		11.67	2.03
		2.500		5.583		8.667	3.05		2.03
		2.583	3 05	5.667	10.10	8.750		11.83	1.02
		2.66		5.750		8.833	3.05		1.02
		2.75		5.833		8.917	3.05		1.02
		2.83		5.917		9.000	3.05		2.03
		2.91		6.000		9.083	3.05		2.03
		3.000		6.083		9.167	3.05		2.03
		3.083		6.167		9.250			2.03
		5.00.	, 3.03	0.107	/4.1/	7 3.230	5.05	'	
м	ax.Eff.In	tan (r	m/hr)-	74.17		53.29			
110	ux.L11.11		(min)	5.00		10.00			
Ç.	torage Co		(min)=		(ii)	8.86 (ii)		
	nit Hyd.			5.00		10.00	,		
	nit Hyd.			0.21		0.12			
U	niic nyu.	peak	(- (-	0.21		0.12	****	TALS*	
р	EAK FLOW		(cms)=	0.10		0.01		.111 (iii)
	LAN I LOW		(= 113) =	0.10		5.01			,

Page 144

	Lang	staffRd_EA_P	roposed_WestDor	Watershd
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	80.04	45.99	73.56
TOTAL RAINFALL	(mm)=	82.04	82.04	82.04
RUNOFF COEFFICI	ENT =	0.98	0.56	0.90

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 SIa = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Area (ha)= 0.65 Total Imp(%)= 66.00 Dir. Conn.(%)= 66.00 TMPERVTOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03

Page 145

	Lang	LangstaffRd_EA_Proposed_WestDonWatershd						
	0.00	900 0	.0000	0.0116	0.0367			
	0.00	953 0	.0048	0.0131	0.0474			
	0.00	980 0	.0154	0.0202	0.0639			
	0.01	100 0	.0261	0.0000	0.0000			
		AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)			
INFLOW : ID= 2 (0470)	1.230	0.228	6.25	70.87			
OUTFLOW: ID= 1 (0535)	1.230	0.017	7.42	70.69			

TMPERVTOUS PERVIOUS (i)

(ha)= (mm)= (%)= (m)= 0.50 2.00 1.00 320.00 0.10 5.00 2.00 10.00 Dep. Storage Average Slope Length Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH ME RAIN | TIME F rs mm/hr | hrs mn 67 3.05 | 6.250 74. RAIN | TIME mm/hr | hrs 74.17 | 9.33 RAIN | mm/hr | 0.00 | hrs 0.083 hrs 3.167 mm/hr 3.05 mm/nr | nrs 3.65 | 6.250 3.65 | 6.333 3.65 | 6.417 3.65 | 6.590 3.65 | 6.560 3.65 | 6.667 3.65 | 6.783 3.65 | 6.833 4.66 | 6.917 4.66 | 7.080 4.66 | 7.083 3.65 | 7.333 3.65 | 7.333 3.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 5.65 | 7.333 0.167 0.250 0.00 3.250 15.24 | 15.24 | 9.42 3.05 3.05 0.250 0.333 0.417 0.500 0.583 0.667 0.750 2.03 2.03 2.03 1.02 1.02 3.333 3.417 3.500 3.583 3.667 3.750 3.833 15.24 15.24 14.22 14.22 14.22 7.11 7.11 2.03 2.03 2.03 3.05 3.05 3.05 9.58 9.67 9.75 9.83 9.92 0.833 2.03 3.917 10.08 2.03 2.03 | 3.917 2.03 | 4.000 2.03 | 4.083 1.02 | 4.167 1.02 | 4.250 1.02 | 4.333 2.03 | 4.417 2.03 | 4.503 2.03 | 4.667 2.03 | 4.750 0.917 1.000 1.083 1.167 1.250 1.333 10.17 10.25 10.33 10.42 10.50 10.58 1.02 1.417 10.67 1.02 10.75 1.02 1 583 2 03

Lang	staffRd E	A Propos	sed WestDon	Waters	hd	
1.02	5.000	6.10	8.083	4.06	11.17	2.03
00 1.02	5.083	5.08	8.167	4.06	11.25	2.03
33 2.03	5.167	5.08	8.250	4.06	11.33	1.0
57 2.03	5.250	5.08	8.333	4.06	11.42	1.0
2.03	5.333	10.16	8.417	4.06	11.50	1.0
33 3.05	5.417	10.16	8.500	4.06	11.58	2.0
17 3.05	5.500	10.16	8.583	3.05	11.67	2.0
3.05	5.583	10.16	8.667	3.05	11.75	2.0
33 3.05	5.667	10.16	8.750	3.05	11.83	1.0
3.05	5.750	10.16	8.833	3.05	11.92	1.0
3.05	5.833	73.15	8.917	3.05	12.00	1.0
33 4.06	5.917	73.15	9.000	3.05	12.08	2.0
17 4.06	6.000	73.15	9.083	3.05	12.17	2.0
90 4.06	6.083	74.17	9.167	3.05	12.25	2.0
3.05	6.167	74.17	9.250	3.05	ĺ	
(mm/hr)=	74.17		53.29			
(min)=	5.11	(ii)	9.13 (ii)			
	0.21		0.12			
,				*T0	TALS*	
(cms)=	0.09		0.03	0	.117 (iii	.)
(hrs)=	6.25		6.25		5.25	•
(mm)=	80.04		45.99	68	3.46	
(mm)=	82.04		82.04	83	2.04	
EENT =	0.98		0.56		3.83	
	17 1.02 00 1.02 00 1.02 03 2.03 35 2.03 35 0 2.03 35 0 2.03 35 0 3.05 30 3.05 37 3.05 37 3.05 37 3.05 37 3.05 37 3.05 37 3.05 38 4.06 00 4.06 00 4.06 00 4.06 00 (min) = ((cms) = ((hrs) = (hrs) = (mm) = (tmr	17 1.02 5.006 102 1.02 5.083 33 2.03 5.165 50 2.03 5.250 50 2.03 5.250 50 2.03 5.500 50 3.05 5.500 50 3.05 5.500 50 3.05 5.667 50 3.05 5.833 3.3 3.05 5.583 33 3.05 5.667 50 3.05 5.833 33 3.05 6.677 50 3.05 5.833 33 3.05 6.676 57 3.05 6.060 57 3.05 6.060 50 3.05 5.833 33 3.05 6.167 74 4.06 6.080 60 3.05 5.833 3.05 6.167 75 (min) = 74.17 76 (min) = 5.10 76 (min) = 5.10 77 (min) = 5.10 77 (min) = 5.10 77 (min) = 6.25 77 (min) = 6.25 78 (min) = 80.04 78 (min) = 80	17 1.02 5.000 6.10 20 1.02 5.083 5.08	1.02 S.0.00 C.10 R.083	17 1.02 5.000	08

ADD HYD (0470) 1 + 2 = 3	0.58	QPEAK (cms) 0.111 0.117	TPEAK (hrs) 6.25 6.25	
ID = 3 (0470):	1.23	0.228	6.25	70.87

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0535)	OVERFLOW	IS OFF		
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW (cms)	STORAGE (ha.m.)	OUTFLOW (cms)	STORAGE (ha.m.)

Page 146

	Langs	taffRd_E	A_Propo	sed_WestDor	Waters	hd	
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03
3.083	3.05	6.167	74.17	9.250	3.05		
ax.Eff.Inten.(mm/		74.17		53.29			
over (m		5.00		10.00			
	in)=		(ii)	7.62 (ii)			
nit Hyd. Tpeak (m		5.00		10.00			

Ma Sto *TOTALS* 0.116 (iii) PEAK FLOW TIME TO PEAK 0.10 6.25 0.01 6.25 TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 6.25 74.25 80.04 45.99 82.04 82.04

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0230) | |ID= 1 DT= 5.0 min | Area (ha)= 0.70 Total Imp(%)= 66.00 Dir. Conn.(%)= 66.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.46 2.00 1.00 320.00 0.24 5.00 2.00 Length Mannings n 0.013 0.300

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

LangstaffRd_EA_Proposed_WestDonWatershd

		TR/	ANSFORME	D HYETOGRA	APH	-	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAI
hrs	mm/hr	hrs	mm/hr		mm/hr	hrs	mm/h
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583		6.667	14.22	9.75	2.03
0.583		3.667			14.22		3.05
0.667		3.750		6.833	7.11		3.05
0.750		3.833		6.917	7.11	10.00	3.05
0.833		3.917		7.000	7.11		2.03
0.917	2.03	4.000		7.083	6.10	10.17	2.03
1.000		4.083		7.167	6.10		2.03
1.083		4.167		7.250	6.10		2.03
1.167		4.250		7.333	5.08		2.03
1.250		4.333		7.417	5.08		2.03
1.333	2.03	4.417		7.500	5.08	10.58	1.02
1.417		4.500	5.08		5.08		1.02
1.500		4.583		7.667	5.08		1.02
1.583		4.667		7.750	5.08		2.03
1.667		4.750		7.833	5.08		2.03
1.750		4.833		7.917	5.08		2.03
1.833		4.917		8.000	5.08		2.03
1.917		5.000		8.083	4.06		2.03
2.000		5.083		8.167	4.06		2.03
2.083		5.167	5.08		4.06		1.02
2.167		5.250		8.333	4.06		1.02
2.250		5.333		8.417	4.06		1.02
2.333		5.417		8.500	4.06		2.03
2.417		5.500		8.583	3.05		2.03
2.500	3.05			8.667	3.05		2.03
2.583		5.667		8.750	3.05		1.02
2.667		5.750		8.833	3.05		1.02
2.750		5.833		8.917	3.05		1.02
2.833		5.917		9.000	3.05		2.03
2.917		6.000		9.083	3.05		2.03
3.000		6.083		9.167	3.05		2.03
3.083	3.05	6.167	74.17	9.250	3.05		
Max.Eff.Inten.(mm	n/hr)=	74.17		50.57			
over (5.00		15.00			
Storage Coeff. (min)=	5.79	(ii)	13.59 (ii))		
Unit Hyd. Tpeak (5.00		15.00			
Unit Hyd. peak (cms)=	0.20		0.08			
					T0T	ΓΔI S	

Page 149

0.02 6.33 43.44 82.04 0.53

0.09 6.25 80.04 82.04 0.98

TOTALS
0.119 (iii)
6.25
67.59
82.04
0.82

${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

	CALIB STANDHYD (0155) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.56 93.00	Dir. Conn.(%)=	93.00
-						
			IMPERVIO	US	PERVIOUS (i)	
	Surface Area	(ha)=	0.52	<u>!</u>	0.04	
	Dep. Storage	(mm)=	2.00)	5.00	
	Average Slope	(%)=	1.00)	2.00	
	Length	(m)=	260.00)	25.00	
	Mannings n	=	0.013	3	0.290	

PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				D HYETOGR			
TIME	RAIN	TIME	RAIN	' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667		3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02		4.06		7.11	10.00	3.05
0.833	2.03		4.06		7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10		2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167		4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02		5.08	7.417	5.08	10.50	2.03
1.333	2.03		5.08	7.500	5.08		1.02
1.417	2.03		5.08	7.583	5.08		1.02
1.500	2.03	4.583	6.10	7.667	5.08		1.02
1.583		4.667	6.10	7.750	5.08		2.03
1.667	2.03		6.10	7.833	5.08		2.03
1.750	2.03		6.10			11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083		5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08		4.06	11.42	1.02
2.250	2.03	5.333	10.16		4.06		1.02
2.333	3.05	5.417	10.16	8.500	4.06		2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02
2.833	4.06	5.917	73.15	9.000	3.05	12.08	2.03
2.917	4.06	6.000	73.15	9.083	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.167	3.05	12.25	2.03

Page 151

LangstaffRd_EA_Proposed_WestDonWatershd

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 81.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0475)	AREA	QPEAK	TPEAK	R.V.
1 + 2 = 3	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0225):	0.60	0.116	6.25	74.25
+ ID2= 2 (0230):	0.70	0.119	6.25	67.59
ID = 3 (0475):	1.30	0.234	6.25	70.66

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ESERVOIR(0540)	OVERFLOW	IS OFF			
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW	STORAG	Εĺ	OUTFLOW	STORAGE
	(cms)	(ha.m.) İ	(cms)	(ha.m.)
	0.0000			0.0271	0.0367
	0.0118	0.004	8 j	0.0306	0.0474
	0.0184	0.015	4 j	0.0415	0.0639
	0.0232	0.026	1	0.0000	0.0000
	Al	REA C	PEAK	TPEAK	R.V.
	(1	ha) (cms)	(hrs)	(mm)
INFLOW : ID= 2 (0	475) 1	.300	0.234	6.25	70.66
OUTFLOW: ID= 1 (0	540) 1	.300	0.032	6.92	70.59

MAXIMUM STORAGE USED (min)= 40.00 (ha.m.)= 0.0494

ADD HYD (0480)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0535):	1.23	0.017	7.42	70.69
+ ID2= 2 (0540):	1.30	0.032	6.92	70.59
=======================================				
ID = 3 (0480):	2.53	0.049	7.00	70.63

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page 150

Max.Eff.Inten.(n	nm/hr)=	74.17	59.01	
over	(min)	5.00	10.00	
Storage Coeff.	(min)=	5.11 (ii)	7.44 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.21	0.13	
				TOTALS
PEAK FLOW	(cms)=	0.11	0.01	0.113 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	80.04	51.61	78.04
TOTAL RAINFALL	(mm)=	82.04	82.04	82.04
RUNOFF COEFFICIE	NT =	0.98	0.63	0.95

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 87.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(,							
CALIB							
STANDHYD (0160)	Area	(ha)=	0.43				
ID= 1 DT= 5.0 min	Total	Imp(%)=	95.00	Dir.	Conn.(%)=	95.00	

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.41	0.02
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	260.00	20.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN |

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03

```
LangstaffRd EA_Proposed_MestDonWatershd
1.02 | 4.250 | 3.05 | 7.333 | 5.08 | 14
1.02 | 4.333 | 5.08 | 7.417 | 5.08 | 14
2.03 | 4.417 | 5.08 | 7.590 | 5.08 | 14
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 14
2.03 | 4.500 | 5.08 | 7.583 | 5.08 | 14
2.03 | 4.583 | 6.10 | 7.667 | 5.08 | 14
2.03 | 4.667 | 6.10 | 7.750 | 5.08 | 14
2.03 | 4.4667 | 6.10 | 7.750 | 5.08 | 14
2.03 | 4.433 | 6.10 | 7.750 | 5.08 | 14
2.03 | 4.433 | 6.10 | 7.917 | 5.08 | 12
2.03 | 4.750 | 6.10 | 8.000 | 5.08 | 12
1.02 | 4.917 | 6.10 | 8.000 | 5.08 | 6.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5.88 | 10.42

5.88 | 10.59

5.88 | 10.58

5.88 | 10.58

5.88 | 10.67

5.88 | 10.83

5.88 | 10.95

6.88 | 10.83

6.88 | 10.95

6.88 | 10.95

6.88 | 11.95

6.89 | 11.95

6.89 | 11.95

6.80 | 11.42

6.96 | 11.42

6.96 | 11.58

6.96 | 11.42

6.96 | 11.58

6.96 | 11.42

6.96 | 11.58

6.96 | 11.42

6.96 | 11.58

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.96 | 11.75

6.
                                                                                                                                                                               1.167
                                                                                                                                                                                   1.250
                                                                                                                                                                               1.250
1.333
1.417
1.500
1.583
1.667
1.750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.02
1.02
1.02
2.03
2.03
                                                                                                                                                                                   1.833
                                                                                                                                                                                   1.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.03
1.02
1.02
1.02
2.03
2.03
                                                                                                                                                                               2.000
2.083
2.167
2.250
2.333
                                                                                                                                                                                   2.417
                                                                                                                                                                                   2.500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.03
                                                                                                                                                                               2.667
2.750
2.833
2.917
Max.Eff.Inten.(mm/hr)=

over (min)

Storage Coeff. (min)=

Unit Hyd. Tpeak (min)=

Unit Hyd. peak (cms)=
                                                                                                                                                                                                                                                                                                                                                                                                                                           74.17
5.00
5.11 (ii)
5.00
0.21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    61.96
10.00
6.72 (ii)
10.00
0.14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 *TOTALS*
0.087 (iii)
6.25
78.77
82.04
0.96
        PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                                                                                                                                                                                                                                                                                               0.08
6.25
80.04
82.04
0.98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
6.25
54.74
82.04
0.67
                                  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
        CN* = 89.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

Page 153

TPEAK (hrs) 6.25 6.25

QPEAK

AREA

		Langs	taffRd E	A Propo	sed WestDon	Watersh	ıd	
	2.66					3.05 l		1.02
	2.75	0 3.05	5.833	73.15	8.917	3.05 I	12.00	1.02
	2.83	3 4.06	5.917	73.15	9.000	3.05 I	12.08	2.03
	2.91	7 4.06	6.000	73.15	9.083	3.05	12.17	2.03
	3.00	0 4.06	6.083	74.17	9.167	3.05	12.25	2.03
	3.08	3 3.05	6.167	74.17	9.250	3.05		
	Max.Eff.Inten.(mm/hr)=	74.17		60.48			
	over	(min)	5.00		10.00			
	Storage Coeff.	(min)=	3.67	(ii)	6.12 (ii)			
	Unit Hyd. Tpeak	(min)=	5.00		10.00			
	Unit Hyd. peak	(cms)=	0.25		0.15			
						TOT	ALS	
	PEAK FLOW	(cms)=	0.75		0.03	0.	776 (iii)	
	TIME TO PEAK	(hrs)=	6.25		6.25	6	.25	
	RUNOFF VOLUME	(mm)=	80.04		53.15	78	.70	
	TOTAL RAINFALL	(mm)=	82.04		82.04	82	.04	
	RUNOFF COEFFICI	ENT =	0.98		0.65	0	.96	
**	* WARNING: STORA	GE COEFF. 1	IS SMALLE	R THAN	TIME STEP!			

ADD HYD (0430) | 1 + 2 = 3 |

(iii) PEAK FLOW	DOES NOT IN	CLUDE BASE	FLOW I	F ANY.		
RESERVOIR(0515) IN= 2> OUT= 1	OVERFLO	W IS OFF				
DT= 5.0 min	OUTFLOW	STORAG	iE	OUTFLOW	STORAGE	
	(cms)	(ha.m.) İ	(cms)	(ha.m.)	
	0.0000	0.000	é j	0.0091	0.1797	
	0.0013	0.015	7	0.0095	0.2004	
	0.0033	0.032	0	0.0100	0.2216	
	0.0044	0.048	7	0.0104	0.2433	
	0.0053	0.065	9	0.0109	0.2655	
	0.0061	0.083	7	0.0113	0.2882	
	0.0068	0.101	.9	0.0116	0.3114	
	0.0074	0.120	6	0.1520	0.3592	
	0.0080	0.139	8	0.5654	0.4336	
	0.0086	0.159	15 j	1.1316	0.5100	
				TPEAK		
				(hrs)		
INFLOW : ID= 2 (0150)	3.810	0.776	6.25	78.70	
OUTFLOW: ID= 1 (0515)	3.810	0.011	12.33	77.51	
				/Qin](%)=		
	IME SHIFT OF					
M	AXIMUM STOR	AGE USED)	(ha.m.)=	0.2720	

Page 155

$\label{eq:loss_loss} LangstaffRd_EA_Proposed_WestDonWatershd \\ ID = 3 (0430): 0.99 0.200 6.25 78.36$

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALTR						
CALIB						
STANDHYD (0150)	Area	(ha)=	3.81			
ID= 1 DT= 5.0 min	Total	Imp(%)=	95.00	Dir.	Conn.(%)=	95.00
		IMPERVI	OUS	PERVIOL	IS (i)	
Surface Area	(ha)=	3.6	2	0.19)	
Dep. Storage	(mm)=	2.0	0	5.00)	
Average Slope	(%)=	1.0	0	2.00)	
Length	(m)=	150.0	0	40.00)	
Mannings n	` '=	0.01	3	0.250)	

NOTE: RATNEAU WAS TRANSFORMED TO 5.0 MTN. TIME STEP.

		TRA	ANSFORME) HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05	5.667	10.16	8.750	3.05	11.83	1.02

Page 154

Langstattko_EA_Proposed_WestDonwatersno										
ADD HYD (0440)										
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.						
	(ha)	(cms)	(hrs)	(mm)						
ID1= 1 (0430):	0.99	0.200	6.25	78.36						
+ ID2= 2 (0515):	3.81	0.011	12.33	77.51						
==============										
ID = 3 (0440):	4.80	0.209	6.25	77.69						

NOTE: PEAK FLOW	S DO NOT	INCLUDE	BASEFI	LOWS IF	ANY.		
CALIB	Area Total		0.96 78.00	Dir.	Conn.(%)=	78.00	
Surface Area	(ha)=	IMPERVIO	5	PERVIOL 0.21	L ` ′		
Dep. Storage Average Slope Length	(mm)= (%)= (m)=	2.00 1.00 470.00	0	5.00 2.00 20.00)		
Mannings n	=	0.01	3	0.256)		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANS FORME	HYETOGR	ΔРН		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03

Page 156

```
LangstaffRd_EA_Proposed_WestDonWatershd
1.02 | 5.000 | 6.10 | 8.083 | 4.06 | 12
1.02 | 5.083 | 5.08 | 8.167 | 4.06 | 12
2.03 | 5.167 | 5.08 | 8.250 | 4.06 | 12
2.03 | 5.250 | 5.08 | 8.333 | 4.06 | 12
2.03 | 5.250 | 5.08 | 8.333 | 4.06 | 12
2.03 | 5.333 | 10.16 | 8.474 | 4.06 | 12
3.05 | 5.417 | 10.16 | 8.500 | 4.06 | 12
3.05 | 5.583 | 10.16 | 8.560 | 4.06 | 12
3.05 | 5.583 | 10.16 | 8.567 | 3.05 | 12
3.05 | 5.583 | 10.16 | 8.867 | 3.05 | 12
3.05 | 5.583 | 73.15 | 8.917 | 3.05 | 12
4.06 | 5.917 | 73.15 | 9.000 | 3.05 | 14
4.06 | 6.000 | 73.15 | 9.083 | 3.05 | 14
4.06 | 6.080 | 74.17 | 9.167 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
3.05 | 6.167 | 74.17 | 9.157 | 3.05 | 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             nNatershd
4.06 | 11.17
4.06 | 11.25
4.06 | 11.25
4.06 | 11.33
4.06 | 11.50
4.06 | 11.50
11.50
4.06 | 11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
11.50
1
                                                                                                                                                                                            1.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.03
                                                                                                                                                                                       1.917
2.000
2.083
2.167
2.250
2.333
2.417
2.500
2.583
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.02
1.02
1.02
2.03
2.03
2.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.02
                                                                                                                                                                                                 2.667
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.02
                                                                                                                                                                                       2.750
2.833
2.917
3.000
3.083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.02
2.03
2.03
2.03
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           74.17
5.00
7.29 (ii)
5.00
0.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            53.29
15.00
10.45 (ii)
15.00
0.09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *TOTALS*
0.177 (iii)
6.25
72.54
82.04
         PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.15
6.25
80.04
82.04
0.98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6.33
45.99
82.04
0.56
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0205)	Area	(ha)=	1.11				
ID= 1 DT= 5.0 min	Total	Imp(%)=	77.00	Dir.	Conn.(%)=	77.00	
		IMPERVI	OUS	PERVIO	JS (i)		
Surface Area	(ha)=	0.8	5	0.26	5		
Dep. Storage	(mm)=	2.0	0	5.00	9		
Average Slope	(%)=	1.0	0	2.00	•		
Length	(m)=	470.0	0	20.00	•		
Mannings n	=	0.01	3	0.256	9		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME

Page 157

LangstaffRd_EA_Proposed_WestDonWatershd

CN* = 83.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0460)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0205):	1.11	0.203	6.25	72.20
+ ID2= 2 (0210):	0.96	0.177	6.25	72.54
=======================================				
ID = 3 (0460):	2.07	0.380	6.25	72.36

ID = 3 (0460)	: 2.07	0.380	5.25 /2.36	•	
NOTE: PEAK FLOWS	DO NOT INCLU	DE BASEFLOWS	IF ANY.		
RESERVOIR(0525) IN= 2> OUT= 1	OVERFLOW IS	5 OFF			
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
			0.0733		
			0.0831		
			0.1449		
		0.0149		0.0000	
	AREA	A QPEAK	TPEAK	R.V.	
	(ha)) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (04					
OUTFLOW: ID= 1 (05					
PEAK	FLOW RED	OUCTION [Qou	ut/Qin](%)= 5	52.88	
	SHIFT OF PEA				
	MUM STORAGE				

CALIB STANDHYD (0190) ID= 1 DT= 5.0 min	Area (ha)= Total Imp(%)=	onn.(%)= 57.00

			,
 	-	IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.49	0.37
Dep. Storage	(mm)=	2.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m)=	340.00	50.00
Mannings n	-	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	Langs	taffRd E	A Propos	sed WestDo	nWaters	hd	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/h
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250		6.333	15.24		3.05
0.250		3.333		6.417	15.24		3.05
0.333		3.417		6.500	15.24		2.03
0.417		3.500		6.583	14.22		2.03
0.500	2.03	3.583		6.667	14.22		2.03
0.583		3.667		6.750	14.22		3.05
0.667		3.750		6.833	7.11		3.05
0.750		3.833		6.917		10.00	3.05
0.833		3.917		7.000		10.08	2.03
0.917		4.000		7.083		10.17	2.03
1.000		4.083		7.167		10.25	2.03
1.083		4.167		7.250		10.33	2.03
1.167		4.250		7.333		10.42	2.03
1.250		4.333		7.417		10.50	2.03
1.333		4.417		7.500		10.58	1.02
1.417		4.500		7.583		10.67	1.02
1.500	2 02	i 4 E00	c 10	7.667		10.75	1.02
1.583	2.03	1 4.565	6 10	7.750		10.73	2.03
1.667	2.03	4.667	6 10	7.833		10.03	2.03
1.750		4.833		7.917		11.00	2.03
1.833		4.833		8.000		11.08	2.03
1.917		5.000		8.083		11.00	2.03
2.000		5.083		8.167		11.17	2.03
2.083		5.167		8.250		11.33	1.02
2.167		5.250		8.333		11.42	1.02
2.250		5.333		8.417		11.50	1.02
2.230		5.417		8.500		11.58	2.03
2.333		5.500		8.583		11.56	2.03
2.417		5.583		8.667		11.07	2.03
2.583		5.667		8.750		11.83	1.02
2.667		5.750		8.833		11.92	1.02
2.750 2.833		5.833		8.917		12.00	1.02
		5.917		9.000		12.08	2.03
2.917		6.000		9.083		12.17	2.03
3.000 3.083		6.083		9.167	3.05		2.03
3.003	3.03	0.107	/4.1/	1 3.230	3.03		
Max.Eff.Inten.(mm		74.17		53.29			
over (5.00		15.00			
	(min)=	7.29		10.52 (ii)		
Unit Hyd. Tpeak (5.00		15.00			
Unit Hyd. peak ((cms)=	0.17		0.09	****	ΓALS*	
PEAK FLOW ((cms)=	0.17		0.03		.203 (iii)
	(hrs)=	6.25		6.33		5.25	,
RUNOFF VOLUME	(mm)=	80.04		45.99		2.20	
TOTAL RAINFALL RUNOFF COEFFICIEN	(mm)=	82.04 0.98		82.04 0.56	82	2.04 9.88	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

	Langs			ed_WestDo				
		TRA		D HYETOGR				
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05	
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05	
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05	
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03	
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03	
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03	
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05	
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05	
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05	
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03	
0.917	2.03	4.000	4.06	7.083	6.10		2.03	
1.000	2.03	4.083	3.05	7.167	6.10		2.03	
1.083	1.02	4.167	3.05	7.250	6.10		2.03	
1.167	1.02	4.250	3.05	7.333	5.08		2.03	
1.250	1.02		5.08	7.417	5.08		2.03	
1.333	2.03	4.417	5.08	7.500	5.08		1.02	
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02	
1.500		4.583	6.10	7.667	5.08		1.02	
1.583	2.03	4.667	6.10	7.750	5.08		2.03	
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03	
1.750	2.03	4.833		7.917	5.08		2.03	
1.833	1.02	4.917	6.10	8.000	5.08		2.03	
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03	
2.000	1.02	5.083	5.08	8.167	4.06		2.03	
2.083	2.03	5.167		8.250	4.06		1.02	
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02	
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02	
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03	
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03	
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03	
2.583	3.05	5.667	10.16	8.750	3.05		1.02	
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02	
2.750	3.05	5.833	73.15	8.917	3.05	12.00	1.02	
2.833	4.06	5.917	73.15	9.000	3.05		2.03	
2.917	4.06	6.000	73.15	9.083	3.05		2.03	
3.000	4.06	6.083	74.17	9.167	3.05		2.03	
3.083	3.05	6.167	74.17	9.250	3.05			
/								
Max.Eff.Inten.(mm		74.17		51.79				
over (5.00		20.00	,			
	min)=			16.50 (ii	.)			
Unit Hyd. Tpeak (5.00		20.00				
Unit Hyd. peak (cms)=	0.19		0.06	****			
DEAK FLOW		0.40		0.04		TALS*		
	cms)=	0.10		0.04		.134 (iii	,	
	hrs)= ()	6.25		6.42		5.25		
	(mm)=	80.04		45.99		5.39		
TOTAL RAINFALL RUNOFF COEFFICIEN	(mm)= T =	82.04 0.98		82.04 0.56		2.04 3.80		
NUMBER COEFFICIEN		0.96		0.50	,			

LangstaffRd_EA_Proposed_WestDonWatershd

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0195) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.79 75.00	Dir. Conn.(%)=	75.00
Surface Area Dep. Storage Average Slope	(ha)= (mm)= (%)=	IMPERVIO 0.59 2.00 1.00		PERVIOUS (i) 0.20 5.00 2.00	
Length Mannings n	(m)= =	340.00 0.013		20.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	74.17	9.33	3.05
0.167	0.00	3.250	3.05	6.333	15.24	9.42	3.05
0.250	0.00	3.333	3.05	6.417	15.24	9.50	3.05
0.333	2.03	3.417	3.05	6.500	15.24	9.58	2.03
0.417	2.03	3.500	3.05	6.583	14.22	9.67	2.03
0.500	2.03	3.583	3.05	6.667	14.22	9.75	2.03
0.583	1.02	3.667	3.05	6.750	14.22	9.83	3.05
0.667	1.02	3.750	3.05	6.833	7.11	9.92	3.05
0.750	1.02	3.833	4.06	6.917	7.11	10.00	3.05
0.833	2.03	3.917	4.06	7.000	7.11	10.08	2.03
0.917	2.03	4.000	4.06	7.083	6.10	10.17	2.03
1.000	2.03	4.083	3.05	7.167	6.10	10.25	2.03
1.083	1.02	4.167	3.05	7.250	6.10	10.33	2.03
1.167	1.02	4.250	3.05	7.333	5.08	10.42	2.03
1.250	1.02	4.333	5.08	7.417	5.08	10.50	2.03
1.333	2.03	4.417	5.08	7.500	5.08	10.58	1.02
1.417	2.03	4.500	5.08	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	5.08	10.92	2.03
1.750	2.03	4.833	6.10	7.917	5.08	11.00	2.03
1.833	1.02	4.917	6.10	8.000	5.08	11.08	2.03
1.917	1.02	5.000	6.10	8.083	4.06	11.17	2.03
2.000	1.02	5.083	5.08	8.167	4.06	11.25	2.03
2.083	2.03	5.167	5.08	8.250	4.06	11.33	1.02
2.167	2.03	5.250	5.08	8.333	4.06	11.42	1.02
2.250	2.03	5.333	10.16	8.417	4.06	11.50	1.02

Page 161

```
LangstaffRd_EA_Proposed_WestDonWatershd

AREA QPEAK TPEAK R.

(ha) (cms) (hrs) (ms)

(5) 1.650 0.280 6.25 (6)

(6) 1.650 0.135 6.42 (6)
INFLOW: ID= 2 ( 0455)
OUTFLOW: ID= 1 ( 0555)
                                                                                                                                                68.29
                                     PEAK FLOW REDUCTION [Qout/Qin](%)= 48.14
TIME SHIFT OF PEAK FLOW (min)= 10.00
MAXIMUM STORAGE USED (ha.m.)= 0.042
                                                                                                  (min)= 10.00
(ha.m.)= 0.0428
```

ADD HYD (0465)| 1 + 2 = 3 | QPEAK (cms) 0.201 0.135 R.V. (mm) 72.35 68.29 ΔRFΔ TΡΕΔΚ (ha) 2.07 1.65 (hrs) 6.42 6.42 ID1= 1 (0525): + ID2= 2 (0555): ID = 3 (0465): 3.72 0.336 6.42 70.55

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Filename: C:\Users\ray.zhao\AppD ata\Local\Temp\ e8da∂adc-3ha3-467d-984d-5ab4a7d3492c\571caf6d Comments: 100yr-12hrSCS READ STORM Ptotal= 89.92 mm TIME RAIN TIME
hrs mm/hr hrs
6.75 16.26 10.00
7.00 7.11 10.25
7.25 7.11 10.59
7.50 5.08 10.75
7.75 5.08 11.00
8.00 6.10 11.25
8.25 5.08 111.50
8.50 4.06 11.75
8.75 3.05 12.00
9.00 4.06 12.25
9.25 3.05
9.50 3.05
9.75 3.05 TIME RAIN | TIME RAIN | mm/hr 0.00 2.03 mm/hr | '
4.06 |
3.05 |
4.06 |
3.05 |
7.11 |
6.10 |
6.10 |
11.18 |
11.18 |
80.26 |
81.28 |
16.26 | hrs 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 6.25 6.50 mm/hr 2.03 0.25 0.50 0.75 1.00 1.25 1.50 2.25 2.50 2.75 3.00 3.25 3.05 2.03 1.02 2.03 2.03 2.03 1.02 2.03 | 1.02 | 2.03 | 2.03 | 2.03 | 1.02 | 2.03 | 4.06 | 3.05 | 4.06 | 3.05 | 2.03

Page 163

	1						
				sed_West			
2.333	3.05	5.417	10.16	8.500	4.06	11.58	2.03
2.417	3.05	5.500	10.16	8.583	3.05	11.67	2.03
2.500	3.05	5.583	10.16	8.667	3.05	11.75	2.03
2.583	3.05 İ	5.667	10.16	i 8.750	3.05	11.83	1.02
2.667	3.05	5.750	10.16	8.833	3.05	11.92	1.02
2 750	3 05 1	5 833	73 15	8 917	3 05	12 00	1 02
2 833	1 96	5 917	73.15	1 9 999	3 05	1 12 08	2 03
2.033	4.00	C 000	73.13	1 0 000	3.03	12.00	2.03
2.91/	4.00	6.000	/3.13	9.003	3.05	12.17	2.03
3.000	4.06	6.083	74.17	9.16/	3.05	12.25	2.03
3.083	3.05	6.16/	/4.1/	9.250	3.05	11.58 11.67 11.75 11.83 11.92 12.00 12.08 12.17 12.25	
Max.Eff.Inten.(mm/h	r)=	74.17		53.29			
over (mi	n)	5.00		10.00			
Storage Coeff. (mi	n)=	6.00	(ii)	9.38 (ii)		
Unit Hyd. Tpeak (mi	n)=	5.00		10.00			
over (mi Storage Coeff. (mi Unit Hyd. Tpeak (mi Unit Hyd. peak (cm	s)=	0.19		0.12			
					T	OTALS	
PEAK FLOW (cm:	s)=	0.12		0.03		0.147 (iii)
TIME TO PEAK (hr	s)=	6.25		6.25		6.25	
RUNOFF VOLUME (m	m)=	80.04		45.99		71.52	
TOTAL RATNEAU (mi	m)=	82 04		82 04		82 04	
PEAK FLOW (cm TIME TO PEAK (hr RUNOFF VOLUME (m TOTAL RAINFALL (m RUNOFF COEFFICIENT	,-	02.04		02.04		02.07	
KONOFF COEFFICIENT	-	0.50		0.50		0.07	
(iii) PEAK FLOW DOE:	S NOT I	NCLUDE	BASEFLO	N IF ANY			
ADD HYD (0455) 1 + 2 = 3	AG	EA 01	DEAV	TDEAV	D V		
1 + 2 = 3	Ar /F	.EA (I	cmc \	(hnc)	(mm)		
ID1= 1 (0190): + ID2= 2 (0195):	(1	06 C	124	(111.5)	(IIIII)		
IDT= 1 (0190);	٥.	70 0.	1.47	0.25	00.39		
+ 102= 2 (0195):	0.	/9 0.	14/	6.25	/1.52		
============		======					
ID = 3 (0455):	1.						
NOTE: PEAK FLOWS D	O NOT I	NCLUDE	280 BASEFLOI	6.25 NS IF AN	68.32 Y.		
, ,	O NOT I	NCLUDE	280 BASEFLOI	6.25 NS IF AN	68.32 Y.		
NOTE: PEAK FLOWS DO	O NOT I	NCLUDE	280 BASEFLOI	6.25	68.32 Y.		
NOTE: PEAK FLOWS DO	O NOT I	NCLUDE	280 BASEFLOI	6.25	68.32 Y.		
NOTE: PEAK FLOWS DO	O NOT I	NCLUDE	280 BASEFLOI	6.25	68.32 Y.		
NOTE: PEAK FLOWS DO	O NOT I	NCLUDE	280 BASEFLOI	6.25	68.32 Y.		
NOTE: PEAK FLOWS DO	O NOT I	NCLUDE	280 BASEFLOI	6.25	68.32 Y.		
NOTE: PEAK FLOWS D	O NOT I	NCLUDE	280 BASEFLOI	6.25	68.32 Y.		
NOTE: PEAK FLOWS DO	O NOT 1 OVERFL OUTFLO (cms) 0.000 0.010	00 IS 00 IS	280 BASEFLOI FF DRAGE a.m.) .0000 .0024 .0079	6.25 WS IF AN OUTF (cm 0.0 0.0	68.32 Y. LOW S s) (238 268 825	TORAGE ha.m.) 0.0199 0.0259 0.0346	
NOTE: PEAK FLOWS DO	O NOT 1 OVERFL OUTFLO (cms) 0.000 0.010	00 IS 00 IS	280 BASEFLOI FF DRAGE a.m.) .0000 .0024 .0079	6.25 WS IF AN OUTF (cm 0.0 0.0	68.32 Y.	TORAGE ha.m.) 0.0199 0.0259 0.0346	

Page 162

	Lar	gstaffRd_EA_Pro	oposed_WestDonWater	shd
ID= 1 DT= 5.0 min	Total	Imp(%) = 72.00	Dir. Conn.(%)=	72.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.43	0.17	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	250.00	20.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME	RAIN	TIME	RAIN	I' TIME	RAIN	I TIME	RAIN
hrs	mm/hr	hrs	mm/hr	i' hrs	mm/hr	i hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28 l	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08		2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08		2.03
1.667	2.03		6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10		2.03
1.917	1.02	5.000	6.10	8.083	5.08		2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03
2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05		

```
LangstaffRd_EA_Proposed_WestDonWatershd
)= 81.28 60.55
) 5.00 10.00
Max.Eff.Inten.(mm/hr)=
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                     4.81 (ii)
                                                                             8.28 (ii)
                                                     0.22
                                                                                                    *TOTALS*
0.123 (iii)
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                     0.10
                                                                             0.03
                                                    6.25
87.92
                                                                             6.25
                                                                                                         6.25
                                                                           52.66
                                                                                                        78.04
                                                    89.92
                                                                           89.92
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | CALTB | STANDHYD (0170) | Area (ha)= 0.43 |ID=1 DT= 5.0 min | Total Imp(%)= 98.00 Dir. Conn.(%)= 98.00 PFRVIOUS (i) TMDERVIOUS Surface Area Dep. Storage Average Slope (ha)= (mm)= (%)= (m)= 0.42 2.00 1.00 0.01 5.00 2.00 Length 250.00 20.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

RAIN | TIME mm/hr | hrs 3.05 | 6.250 3.05 | 6.333 TIME mm/hr hrs. 3.65 6.250 3.05 6.250 4.06 6.417 4.06 6.583 3.05 6.667 3.05 6.667 3.05 6.67 7.000 4.06 7.083 3.05 7.250 3.05 7.250 3.05 7.333 hrs 0.083 mm/hr hrs 3.167 mm/hr 3.05 0.00 81.28 | 9.33 0.167 3.250 16.26 İ 3.05 0.250 0.333 0.417 0.500 0.583 0.00 2.03 2.03 2.03 2.03 2.03 3.250 3.333 3.417 3.500 3.583 3.667 3.750 16.26 16.26 16.26 16.26 16.26 7.11 7.11 3.05 3.05 3.05 3.05 2.03 0.667 2.03 0.750 2.03 3.833 2.03 0.833 1.02 3.917 7.11 3.05 7.11 | 7.11 | 7.11 | 7.11 | 5.08 | 1.02 | 1.02 | 2.03 | 2.03 | 4.000 4.083 4.167 4.250 10.17 10.25 10.33 10.42 0.917 1.000 3.05

Page 165

LangstaffRd_EA_Proposed_WestDonWatershd 6)= 1.00 2.00 1)= 65.83 40.00 = 0.013 0.250 (%)= (m)= =

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Average Slope Mannings n

> TRANSFORMED HYETOGRAPH RAIN | mm/hr | 0.00 | 0.00 | RAIN | TIME mm/hr | hrs 81.28 | 9.33 RAIN mm/hr TIME hrs 0.083 hrs 3.167 6.259 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 3.05 3.05 9.42 0.167 3.250 16.26 0.00 2.03 2.03 2.03 2.03 2.03 4.06 4.06 4.06 3.05 3.05 3.05 16.26 16.26 16.26 16.26 16.26 7.11 7.11 3.05 3.05 3.05 3.05 3.05 2.03 0.250 0.333 3.333 9.50 9.58 0.333 0.417 0.500 0.583 4.06 0.750 2.03 3.833 0.833 1.02 3.917 4.06 7.11 7.11 3.05 1.02 1.02 2.03 2.03 2.03 2.03 4.06 4.06 3.05 3.05 3.05 7.11 7.11 3.05 3.05 2.03 2.03 2.03 0.917 1.000 4.000 10.17 7.11 7.11 5.08 5.08 5.08 5.08 5.08 4.083 4.083 4.167 4.250 4.333 4.417 1.083 1.167 1.250 1.333 1.417 2.03 4.500 4.583 7.11 10.67 1.02 6.10 | 6.10 | 6.10 | 6.10 | 6.10 | 6.10 | 6.10 | 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 1.02 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.08 5.08 6.10 6.10 5.08 5.08 2.03 2.03 2.03 2.03 1.02 2.03 2.03 2.03 2.03 1.583 10.83 10.92 11.00 11.08 11.17 1.917 1.02 11.25 2.083 2.03 5.167 6.10 5.08 11.33 2.167 2.03 5,250 6.10 4.06 4.06 4.06 3.05 3.05 3.05 4.06 2.03 4.06 4.06 4.06 11.18 11.18 11.18 11.18 11.18 2.250 5.333 11.50 2.03 5.417 5.500 5.583 5.667 5.750 11.58 11.67 11.75 11.83 2.333 2.417 2.500 2.583 8.750 8.833 8.917 9.000 9.083 9.167 2.03 3.05 2.667 3.05 11.18 2.03 2.750 3.05 5.833 80.26 4.06 12.00 2.03 2.833 4.06 | 4.06 | 4.06 | 5.917 80.26 4.06 12.08 2.03 80.26 | 9.083 81.28 | 9.167 81.28 | 9.250 3.05 3.05 3.05 2.917 6.000 3.05 | 6.167

Max.Eff.Inten.(mm/hr)= 81.28 60.55 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 15.00 2.16 (ii) 10.79 (ii) 5.00 15.00 0.31

```
LangstaffRd_EA_Proposed_WestDot
2.03  | 4.333  | 7.11  | 7.417
2.03  | 4.417  | 7.11  | 7.590
2.03  | 4.590  | 7.11  | 7.693
2.03  | 4.583  | 6.10  | 7.657
2.03  | 4.667  | 6.10  | 7.659
2.03  | 4.667  | 6.10  | 7.833
2.03  | 4.833  | 6.10  | 7.917
2.03  | 4.833  | 6.10  | 7.917
2.04  | 6.10  | 8.000
                                          1.250
                                                                                                                                                       5.08 | 10.50
5.08 | 10.58
                                           1.333
                                          1.333
1.417
1.500
1.583
1.667
1.750
                                                                                                                                                       5.08
5.08
5.08
6.10
6.10
                                                                                                                                                                        10.67
10.75
10.83
10.92
                                                                                                                                                                                                 1.02
1.02
2.03
2.03
                                                                                                        6.10 | 7.917
6.10 | 8.083
6.10 | 8.083
6.10 | 8.167
6.10 | 8.250
6.10 | 8.331
11.18 | 8.431
11.18 | 8.583
11.18 | 8.675
11.18 | 8.833
80.26 | 8.93
80.26 | 9.083
80.26 | 9.083
81.28 | 9.167
81.28 | 9.250
                                                                                                                                                                         11.00
                                                                                                                                                                                                  2.03
                                                                                    4.917
5.000
5.083
5.167
5.250
5.333
5.417
5.500
                                           1.833
                                                                  1.02
                                                                                                                                                       6.10
                                           1.917
                                                                  1.02
                                                                                                                                                       5.08
                                                                                                                                                                        11.17
                                                                                                                                                                                                  2.03
                                           2.000
                                                                  1.02
                                                                                                                                                       5.08
                                                                                                                                                                         11.25
                                          2.083
2.167
2.250
2.333
2.417
                                                                  2.03
2.03
2.03
4.06
4.06
                                                                                                                                                                        11.33
                                                                                                                                                       3.05
                                                                                                                                                                         11.67
                                                                                                                                                                                                  1.02
                                           2.500
                                                                  4.06
                                                                                                                                                       3.05
                                                                                                                                                                                                  1.02
                                                                                    5.583
5.667
5.750
5.833
5.917
6.000
6.083
6.167
                                           2.583
                                                                  3.05
                                                                                                                                                       3.05
                                                                                                                                                                        11.83
                                                                                                                                                                                                  2.03
                                           2.667
                                                                  3.05
                                                                                                                                                                         11.92
                                           2.750
2.833
2.917
                                                                 3.05 |
4.06 |
4.06 |
4.06 |
3.05 |
                                                                                                                                                       4.06 |
4.06 |
3.05 |
3.05 |
3.05 |
                                                                                                                                                                        12.00
12.08
12.17
12.25
                                                                                                                                                                                                 2.03
2.03
2.03
2.03
2.03
                                           3.083
              Max.Eff.Inten.(mm/hr)=
                                                                                       81.28
                                                                                                                          69.46
             over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                                                         5.00
4.81 (ii)
5.00
0.22
                                                                                                                          10.00
5.88 (ii)
10.00
0.15
                                                                                                                                                             *TOTALS*
0.097 (iii)
                                                                                          0.09
                                                        (cms)=
                                                                                                                             0.00
              TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                          6.25
                                                                                                                             6.25
                                                                                                                                                                    6.25
                                                                                        87.92
89.92
                                                                                                                          62.00
89.92
                                                                                          0.98
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
              (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

| CALIB | | STANDHYD (0180)| |ID= 1 DT= 5.0 min | Area (ha)= 0.65 Total Imp(%)= 52.00 Dir. Conn.(%)= 52.00 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage (ha)= (mm)=

Page 166

LangstaffRd_EA_Proposed_WestDonWatershd

				TOTALS
PEAK FLOW	(cms)=	0.08	0.04	0.118 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	87.92	52.66	70.98
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICI	ENT =	0.98	0.59	0.79

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0185)| |ID= 1 DT= 5.0 min | Area (ha)= 0.47 Total Imp(%)= 72.00 Dir. Conn.(%)= 72.00 TMPERVIOUS PERVIOUS (i) (ha)= (mm)= (%)= (m)= 0.34 2.00 1.00 0.13 5.00 2.00 Dep. Storage Average Slope Length Mannings n 0.013 0.350

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03

```
LangstaffRd_EA_Proposed_WestDonWatershd
2.03 | 4.750 | 6.10 | 7.833 | 6.10 | 1
2.03 | 4.833 | 6.10 | 7.917 | 6.10 | 1
1.02 | 4.917 | 6.10 | 8.000 | 6.10 | 1
1.02 | 5.000 | 6.10 | 8.000 | 6.10 | 1
1.02 | 5.000 | 6.10 | 8.003 | 5.08 | 1
1.02 | 5.083 | 6.10 | 8.167 | 5.08 | 1
2.03 | 5.167 | 6.10 | 8.250 | 5.08 | 1
2.03 | 5.250 | 6.10 | 8.250 | 5.08 | 1
2.03 | 5.333 | 11.18 | 8.417 | 4.06 | 1
4.06 | 5.500 | 11.18 | 8.583 | 3.05 | 1
4.06 | 5.500 | 11.18 | 8.583 | 3.05 | 1
4.06 | 5.533 | 81.26 | 8.750 | 3.05 | 1
3.05 | 5.667 | 11.18 | 8.833 | 4.06 | 1
3.05 | 5.667 | 11.18 | 8.833 | 4.06 | 1
4.06 | 5.933 | 80.26 | 8.917 | 4.06 | 1
4.06 | 5.917 | 80.26 | 9.000 | 4.06 | 1
4.06 | 6.000 | 80.26 | 9.000 | 4.06 | 1
4.06 | 6.000 | 80.26 | 9.003 | 3.05 | 1
4.06 | 6.000 | 80.26 | 9.003 | 3.05 | 1
4.06 | 6.000 | 80.26 | 9.083 | 3.05 | 1
4.06 | 6.000 | 80.26 | 9.083 | 3.05 | 1
4.06 | 6.083 | 81.28 | 9.157 | 3.05 | 1
4.06 | 6.083 | 81.28 | 9.157 | 3.05 | 1
                                                                                                                                                                                                                         Natershd
6.10 | 10.92
6.10 | 11.00
6.10 | 11.08
5.08 | 11.17
5.08 | 11.25
5.08 | 11.24
4.06 | 11.50
4.06 | 11.50
4.06 | 11.50
                                                            1.667
                                                             1.750
                                                                                                                                                                                                                                                                                         2.03
                                                            1.833
1.917
2.000
2.083
                                                                                                                                                                                                                                                                                        2.03
2.03
2.03
2.03
2.03
                                                             2.167
                                                                                                                                                                                                                                                                                         2.03
                                                             2.250
                                                             2.333
                                                                                                                                                                                                                                                                                         1.02
                                                             2.417
                                                                                                                                                                                                                                                      11.67
                                                                                                                                                                                                                                                                                         1.02
                                                                                                                                                                                                                                                                                        1.02
2.03
2.03
2.03
                                                             2.500
2.583
                                                                                                                                                                                                                                                      11.75
                                                                                                                                                                                                                                                    11.75
11.83
11.92
12.00
12.08
                                                            2.667
2.750
2.833
                                                                                                                                                                                                                                                                                         2.03
                                                             2.917
                                                                                                                                                                                                                                                     12.17
                                                                                                                                                                                                                                                                                         2.03
                                                                                                                                                                                                                                                    12.25
                                                                                                                                                                                                                                                                                        2.03
                                                             3.083
                Max.Eff.Inten.(mm/hr)=

over (min)

Storage Coeff. (min)=

Unit Hyd. Tpeak (min)=

Unit Hyd. peak (cms)=
                                                                                                                            81.28 54.91
5.00 10.00
4.69 (ii) 8.94 (ii)
5.00 10.00
0.22 0.12
                                                                                                                                                                                                                                    *TOTALS*
                 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                              0.08
6.25
87.92
89.92
0.98
                                                                                                                                                                                                                                         0.094 (iii)
6.25
76.54
89.92
                                                                                                                                                                                    a a2
                                                                                                                                                                               6.25
47.30
89.92
0.53
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 79.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   ADD HYD ( 0445)|
1 + 2 = 3 |
ID1= 1 ( 0180):
+ ID2= 2 ( 0185):
                                                                                                                                         QPEAK
(cms)
0.118
0.094
                                                                                                                                                                               TPEAK
(hrs)
6.25
6.25
                                                                                                                                                                                                               R.V.
(mm)
70.98
76.54
                                                                                                              AREA
                                                                                                              (ha)
0.65
0.47
                     ID = 3 ( 0445):
                                                                                                         1.12
                                                                                                                                     0.212
                                                                                                                                                                             6.25
                                                                                                                                                                                                              73.31
                 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

Page 169

LangstaffRd_EA_Proposed_WestDonWatershd = 0.013 0.250 Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

```
TRANSFORMED HYETOGRAPH -
                                         RAIN |
mm/hr |
0.00 |
0.00 |
                                                          TIME
hrs
3.167
3.250
3.333
                                                                                                               RAIN | TIME
mm/hr | hrs
81.28 | 9.33
16.26 | 9.42
                                                                                          RATN
                       hrs
0.083
0.167
                                                                                                                                                    mm/hr
3.05
3.05
3.05
3.05
                                           0.00
                                                                                                               16.26
                        0.250
                                                                                                                                  9.50
9.58
                        0.333
                                                          3,417
                                                                                                               16.26
                                          2.03
2.03
2.03
2.03
2.03
1.02
                                                                                                                                9.58
9.67
9.75
9.83
9.92
10.00
10.08
                        0.417
                                                          3.500
                                                                                                               16.26
16.26
7.11
7.11
7.11
7.11
7.11
5.08
5.08
5.08
5.08
5.08
6.10
6.10
6.10
5.08
4.06
4.06
                                                                                                                                                    3.05
3.05
2.03
2.03
2.03
3.05
3.05
                        0.417
0.500
0.583
0.667
0.750
0.833
                                                          3.667
3.750
3.833
3.917
                        0.917
                                           1.02
                                                         4.000
4.083
4.167
4.250
4.333
4.417
4.500
4.583
4.667
4.750
4.833
4.917
5.000
5.083
                                                                                                                                10.17
                        1.000
                                           1.02
                                                                                                                                10.25
                                                                                                                                                     3.05
                                          2.03
2.03
2.03
2.03
2.03
2.03
2.03
                                                                                                                                10.25
10.33
10.42
10.50
10.58
10.67
10.75
                                                                                                                                                    2.03
2.03
2.03
1.02
1.02
                        1.083
                        1.083
1.167
1.250
1.333
1.417
1.500
                                                                             6.10 |
6.10 |
6.10 |
6.10 |
6.10 |
6.10 |
6.10 |
                        1.583
                                           2.03
                                                                                                                                10.83
                                                                                                                                                    2.03
                        1.667
                                                                                                                                10.92
                                                                                                                                                    2.03
                                          2.03
1.02
1.02
1.02
2.03
2.03
                                                                                                                                11.00
11.08
11.17
11.25
11.33
                                                                                                                                                   2.03
2.03
2.03
2.03
2.03
                        1.750
                        1.833
1.917
2.000
2.083
                                                          5.167
                        2.167
                                                          5.250
                                                                                                                                11.42
                        2.250
                                           2.03
4.06
                                                          5.333
                                                                            11.18
                                                                                                                                11.50
                                                                                                                                                    2.03
                        2.333
                                                          5.417
                                                                            11.18
                                                                                                                                11.58
                                                                                                                                                    1.02
                                                         5.417
5.500
5.583
5.667
5.750
5.833
5.917
                                                                                                                3.05
3.05
3.05
4.06
4.06
4.06
                                          4.06
4.06
3.05
3.05
                                                                           11.18
11.18
11.18
11.18
                                                                                                                                11.67
11.75
11.83
11.92
12.00
                                                                                                                                                   1.02
1.02
2.03
2.03
                        2.417
                                          3.05 |
4.06 |
4.06 |
                        2.750
                                                                                                                                                    2.03
                                                                            80.26
                        2.833
                                                                            80.26
                                                                                                                                12.08
                                                                                                                                                    2.03
                        2.917
                                                          6.000
                                                                            80.26 |
81.28 |
                                                                                                                 3.05
                                                                                                                                12.17
                                                                                                                                                   2.03
                                                          6.083
                                                                                                                                12.25
                        3.083
                                          3.05 | 6.167
                                                                            81.28 | 9.250
                                                                                                                 3.05
Max.Eff.Inten.(mm/hr)=
                                                                                         64.97
over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                                            10.00 15.00
7.56 (ii) 12.39 (ii)
10.00 15.00
                                                              0.13
                                                                                           0.08
                                                                                                                      *TOTALS*
                                                              0.51
PEAK FLOW
                                 (cms)=
                                                                                           0.10
                                                                                                                          0.611 (iii)
```

Page 171

ADD HYD (0450) 1 + 2 = 3 	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)	
ID1= 1 (0165): + ID2= 2 (0170):	0.43	0.097	6.25	87.39	
ID = 3 (0450):					•
NOTE: PEAK FLOWS DO	NOT INCLU	JDE BASEFL	OWS IF AM	NY.	
ADD HYD (0450) 3 + 2 = 1	AREA	QPEAK	TPEAK	R.V.	
3 + 2 = 1 3 + 2 = 1 ID1= 3 (0450): + ID2= 2 (0445):	(ha) 1.03 1.12	0.219 0.212	(hrs) 6.25 6.25	(mm) 81.94 73.31	1
ID = 1 (0450):					:
NOTE: PEAK FLOWS DO	OVERFLOW 1	S OFF			
DT= 5.0 min	OUTFLOW (cms)	STORAGE	OUTE	LOW ns)	STORAGE (ha m)
	(cms) 0.0000 0.0081 0.0123	0.0000	0.6	9181	0.0552
	0.0081	0.0048	0.6	9203	0.0732
	0.0123	0.0192	0.6	9000	0.0000
	ARE	A QPE	AK TE	PEAK	R.V.
			5) (1	11.2)	77.45
	(ha 9) 2.1 9) 2.1	150 0 150 0	.431 .022	8.50	77.38
INFLOW : ID= 2 (0456 OUTFLOW: ID= 1 (0526 PEAK	FLOW RE	DUCTION [Qout/Qin](%)= 5	.19
INFLOW : ID= 2 (0456 OUTFLOW: ID= 1 (0526 PEAK TIME 5		DUCTION [Qout/Qin (r](%)= 5 nin)=135	i.19 i.00

Page 170

PERVIOUS (i)

0.73 5.00 2.00

40.00

	Lang	staffRd_EA_Pi	roposed_WestDor	Watershd
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	87.92	57.11	80.52
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICI	ENT =	0.98	0.64	0.96

IMPERVIOUS

2.32 2.00 1.00 531.00

(ha)= (mm)= (%)= (m)=

Surface Area Dep. Storage Average Slope Length

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT TNYLIUDE BASFFLOW IT ANYL

	(111)	PEAK	FLOW	DOES	NOI	INCLUDE	BASEFI	LOW IF	ANY.				
CA	LIB												
ST	ANDHYD	(0:	135)	Are	ea	(ha)=	1.43						
ID=	1 DT=	5.0 r	min	Tot	tal	Imp(%)=	99.00	Dir.	Con	n.(%)=	99	.00	
						IMPERVI	OUS	PERVIO	US (i)			
	Surfa	ce Are	ea	(ha))=	1.4	2	0.0	1				
	Dep.	Stora	ge	(mm))=	2.0	0	5.0	0				
	Avera	ge Slo	ope	(%))=	1.0	0	2.0	0				
	Lengt	h		(m))=	503.0	0	30.0	0				
	Manni	ngs n			=	0.01	3	0.25	0				

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME) HYETOGR	APH		
TIME	RAIN	TIME		' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03

```
1.917
                                                                              5.08 | 11.17
5.08 | 11.25
                      2.000
                                                                                                     2.03
                                                                                                     2.03
2.03
2.03
1.02
                      2.083
2.167
                                                                                         11.33
                      2.417
                                                                                         11.67
                                                                                                     1.02
                                                                                         11.75
                                                                                                     1.02
                      2.583
                                                                                        11.83
                                                                                                     2.03
                      2.667
                                                                                         11.92
                                                                                                     2.03
                                 3.05
4.06
4.06
4.06
                                                                                                     2.03
2.03
2.03
2.03
2.03
                      2.750
                                                                                         12.00
                      2.833
2.917
3.000
                                 3.05
                      3.083
      Max.Eff.Inten.(mm/hr)=
                                             81.28
                                                               62.01
      over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                                              5.00
7.32 (ii)
5.00
0.17
                                                               10.00
                                                               8.34 (ii)
10.00
                                                                 0.13
       PEAK FLOW
                            (cms)=
                                              0.31
                                                                 0.00
                                                                                    0.317 (iii)
      PEAK FLOW (Cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                             6.25
87.92
                                                                 6.25
                                                                                     6.25
87.57
                                                               54.10
                                             89 92
                                                               89 92
         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
       CN* = 84.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
PERVIOUS (i)
                                         TMPERVTOUS
                             (ha)=
(mm)=
(%)=
(m)=
                                                              0.11
5.00
2.00
25.00
                                            1.16
2.00
1.00
503.00
      Dep. Storage
Average Slope
       Length
      Mannings n
                                             0.013
                                                               0.250
           NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
                       ---- TRANSFORMED HYETOGRAPH ----
TIME RAIN | TIME RAIN | TIME RAIN | TIME
                                                        Page 173
      LangstaffRd_EA_Proposed_WestDonWatershd
CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COFFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                        (ha)
                                                   (cms)
                                                               (hrs)
                                                                          (mm)
87.57
       ID1= 1 ( 0135):
+ ID2= 2 ( 0140):
                                       1.43
                                                 0.317
                                                               6.25
                                       1.27
                                                  0.274
                                                               6.25
                                                                           84.74
       ID = 3 ( 0420):
                                      2.70
                                               0.590
                                                              6.25
                                                                          86.24
      NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 RESERVOIR( 0530)|
                                 OVERFLOW IS OFF
 IN= 2---> OUT= 1
DT= 5.0 min
                                  OUTFLOW
                                                 STORAGE
                                                                   OUTFLOW
                                                                                   STORAGE
                                   (cms)
0.0000
0.0056
                                                  (ha.m.)
0.0000
0.0072
                                                                     (cms)
0.0122
                                                                     0.0382
                                                                                      0.1093
                                    0.0084
                                                   0.0283
                                                                     0.0516
                                   0.0105
                                                  0.0553
                                                                     0.0000
                                                                                      0.0000
                                           AREA
                                                        QPEAK
                                                                       TPFAK
                                                                                       R.V.
                                           (ha)
2.700
2.700
                                                       (cms)
0.590
0.052
                                                                      (hrs)
6.25
7.25
   INFLOW : ID= 2 ( 0420)
OUTFLOW: ID= 1 ( 0530)
                         PEAK FLOW REDUCTION [Qout/Qin](%)= 8.73
TIME SHIFT OF PEAK FLOW (min)= 60.00
MAXIMUM STORAGE USED (ha.m.)= 0.1597
 ADD HYD ( 0425)|
1 + 2 = 3 |
                                       AREA
                                                               TPEAK
                                                  QPEAK
                                       (ha)
3.05
                                                (cms)
0.611
                                                               (hrs)
                                                                          (mm)
80.52
       ID1= 1 ( 0145):
+ ID2= 2 ( 0530):
                                       2.70
                                                 0.052
                                                               7.25
                                                                           86.12
        ID = 3 ( 0425):
                                       5.75 0.653
      NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR( 0512)|
| IN= 2---> OUT= 1 |
                                 OVERFLOW IS OFF
```

Page 175

LangstaffRd_EA_Proposed_WestDonWatershd mm/hr hrs 3.167 mm/hr hrs mm/hr | 81.28 | 6.250 0.083 0.00 3.05 9.33 3.05 3.05 4.06 4.06 4.06 6.333 6.417 6.500 6.583 16.26 16.26 16.26 16.26 9.42 9.50 9.58 9.67 3.05 3.05 3.05 3.05 0.167 0.250 0.00 3.250 3.333 3.333 3.417 3.500 3.583 0.500 2.03 3.05 6.667 16.26 9.75 3.05 0.583 2.03 3.667 3.05 6.750 16.26 9.83 2.03 0.667 2.03 3.750 3.05 6.833 7.11 9.92 2.03 6.917 7.000 7.083 7.167 7.250 7.333 0.750 2.03 3.833 4.06 7.11 10.00 2.03 3.833 3.917 4.000 4.083 4.167 4.250 0.833 0.917 1.000 1.083 4.06 4.06 3.05 3.05 7.11 7.11 7.11 7.11 7.11 10.08 10.17 10.25 10.33 3.05 3.05 3.05 2.03 1.02 1.02 1.02 1.02 2.03 1.167 5.08 2.03 3.05 7.11 10.42 2.03 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 1.250 2.03 7.417 5.08 10.50 2.03 1.333 2.03 7.11 7.500 5.08 10.58 1.02 7.500 7.583 7.667 7.750 7.833 7.917 8.000 1.417 2.03 7.11 5.08 10.67 1.02 1.500 1.583 1.667 1.750 1.833 2.03 2.03 2.03 2.03 2.03 6.10 6.10 6.10 6.10 5.08 5.08 6.10 6.10 10.75 10.83 10.92 11.00 1.02 2.03 2.03 2.03 6.10 1.02 6.10 11.08 2.03 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.500 5.583 8.083 8.167 8.250 8.333 8.417 8.500 8.583 1.917 1.02 6.10 5.08 11.17 2.03 2.000 1.02 6.10 5.08 11.25 2.03 6.10 6.10 11.18 11.18 2 03 11 33 2.167 2.250 2.333 2.417 2.03 2.03 2.03 4.06 4.06 4.06 4.06 4.06 3.05 11.42 11.50 11.58 2.03 2.03 2.03 1.02 11.67 2.500 4.06 11.18 8.667 8.750 3.05 11.75 1.02 2.583 3.05 5.667 11.18 3.05 11.83 2.03 5.667 5.750 5.833 5.917 6.000 6.083 6.167 8.750 8.833 8.917 9.000 9.083 9.167 9.250 11.92 12.00 12.08 12.17 12.25 2.03 2.03 2.03 2.03 2.03 2.667 2.750 3.05 11.18 4.06 3 05 80.26 | 80.26 | 80.26 | 81.28 | 81.28 | 2.750 2.833 2.917 3.000 3.083 4.06 4.06 4.06 3.05 4.06 | 4.06 | 3.05 | 3.05 | 3.05 | 81.28 Max.Eff.Inten.(mm/hr)= 60.55 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 7.32 (ii) 5.00 0.17 10.00 9.61 (ii) *TOTALS* 0.274 (iii) TIME TO PEAK (hrs)= (mm)= (mm)= 6.25 6.25 6.25 84.74 RUNOFF VOLUME 87.92 52.66 TOTAL RAINFALL 89.92 89.92 89.92 RUNOFF COEFFICIENT 0.98 0.59

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

STORAGE (ha.m.) 0.0000 OUTFLOW (cms) 0.0471 STORAGE (ha.m.) 0.1003 | DT= 5.0 min (cms) 0.0000 0.0071 0.0165 0.0636 0.1284 0.0098 0.0331 0.0763 0.1594 0 0119 0 0526 0 0870 0 1934 0.2308 AREA (ha) 5.750 5.750 (cms) 0.653 0.086 (hrs) (mm) 83.15 INFLOW : ID= 2 (0425) OUTFLOW: ID= 1 (0512) 6.25 8.50 83.05 PEAK FLOW REDUCTION [Qout/Qin](%)= 13.16 TIME SHIFT OF PEAK FLOW (min)=135.00 MAXIMUM STORAGE USED (ha.m.)= 0.1898 CALIB | CALIB | | STANDHYD (0215) | | ID= 1 DT= 5.0 min | Area (ha)= 0.58 Total Imp(%)= 81.00 Dir. Conn.(%)= 81.00 PERVIOUS (i) 0.47 2.00 0.11 5.00 (mm) = (%) = (m) = Dep. Storage Average Slope 1.00 2.00 Length Mannings n 260.00 30.00 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH RAIN | TIME TIME RAIN TIME RAIN | TIME RAIN 3.167 3.250 3.333 3.417 3.500 mm/hr 0.00 0.00 0.00 2.03 hrs 9.33 9.42 9.50 9.58 mm/hr mm/hr İ 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 0.083 3.05 3.05 4.06 4.06 81.28 | 16.26 | 16.26 | 16.26 | 3.05 3.05 3.05 3.05 3.05 0.167 0.250 0.333 0.417 2.03 4.06 16.26 9.67 3.05 3.583 0.500 2.03 3.05 16.26 9.75 3.05 0.583 2.03 3.667 3.05 16.26 9.83 2.03 0.667 2.03 3.750 3.05 7.11 2.03 4.06 4.06 4.06 3.05 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 0.750 0.833 0.917 1.000 1.083 2.03 1.02 1.02 1.02 2.03 3.833 3.917 4.000 4.083 4.167 7.11 7.11 7.11 7.11 7.11 10.00 10.08 10.17 10.25 2.03 3.05 3.05 2.03 3.05 7.11 10.33 2.03 | 4.250 2.03 | 4.333 2.03 | 4.417 2.03 | 4.500 1.167 3.05 5.08 10.42 2.03 1.250 7.11 5.08 10.50 2.03 1 333 7.11 | 7.500 7.11 | 7.583 5 08 10 58 1 02

10.67

1.417

```
5.08 | 10.75
5.08 | 10.83
1.583
                                                          2.03
                                                          2.03
2.03
2.03
2.03
1.667
1.750
                                                 10.92
                                                 11.25
                                                          2.03
2.083
                                                 11.33
                                                          2.03
2.167
                                                 11.42
                                                          2.03
2.250
                                                 11.50
                                                          2.03
2.333
                                                 11.58
                                                          1.02
2.667
                                                 11.92
                                                          2.03
2.750
                                                 12.00
                                                          2.03
2.833
                                                12.08
                                                          2.03
2.917
                                                 12.17
                                                          2.03
                                                 12.25
```

Max.Eff.Inten.(mm/hr)= over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 4.92 (ii) 10.00 8.54 (ii) 5.00 10.00 0.22 0.12 ****** PEAK FLOW TIME TO PEAK RUNOFF VOLUME 0.11 6.25 87.92 0.02 6.25 52.66 89.92 0.122 (iii) 6.25 81.21 (cms)= (hrs)= (mm)= (mm)= TOTAL RAINFALL 89.92 89.92 RUNOFF COEFFICIENT 0.98 0.59 0.90

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 83.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COFFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0220)| |ID= 1 DT= 5.0 min | Area (ha)= 0.65 Total Imp(%)= 66.00 Dir. Conn.(%)= 66.00 IMPERVIOUS PERVIOUS (i) 0.43 2.00 1.00 260.00 0.013 0.22 5.00 2.00 Surface Area (ha)= Dep. Storage Average Slope Length Mannings n (mm)= (%)= (m)= 20.00

Page 177

LangstaffRd_EA_Proposed_WestDonWatershd 1)= 87.92 52.66 75.9 1)= 89.92 89.92 89.9 RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =

0.59

0.84

**** WARNING: STORAGE COFFE. IS SMALLER THAN TIME STEP!

0.98

ADD HYD (0470)| 1 + 2 = 3 | (ha) 0.58 (cms) 0.122 (hrs) 6.25 (mm) 81.21 ID1= 1 (0215): + ID2= 2 (0220): 0.65 0.130 6.25 75.92 ID = 3 (0470): 1.23 0.252 6.25 78.42

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0535) OVERFLOW IS OFF IN= 2---> OUT= 1 DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE (cms) 0.0000 0.0053 (ha.m.) 0.0000 0.0048 0.0154 (cms) 0.0116 0.0131 0.0202 0.0100 0.0261 0.0000 0.0000 R.V. AREA OPEAK TPEAK

(ha) 1.230 1.230 INFLOW: ID= 2 (0470) OUTFLOW: ID= 1 (0535)

> PEAK FLOW REDUCTION [Qout/Qin](%)= 7.89
> TIME SHIFT OF PEAK FLOW (min)= 65.00 TIME SHIFT OF PEAK FLOW (min)= 65.00 MAXIMUM STORAGE USED (ha.m.)= 0.0632

| CALIB | STANDHYD (0225)| |ID= 1 DT= 5.0 min | Area (ha)= 0.60 Total Imp(%)= 83.00 Dir. Conn.(%)= 83.00

IMPERVIOUS PERVIOUS (i) Surface Area 0.50 2.00 0.10 5.00 Dep. Storage

Page 179

LangstaffRd_EA_Proposed_WestDonWatershd

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs 3.167 3.05 | 6.250 81.28 | 9.33 mm/hr mm/hr 0.083 0.00 3.05 0.167 0.00 3.250 3.05 6.333 16.26 9.42 3.05 0.250 0.00 3.333 4.06 16.26 3.05 16.26 16.26 16.26 16.26 7.11 0.333 0.417 0.500 0.583 2.03 2.03 2.03 2.03 3.417 3.500 3.583 3.667 3.750 4.06 4.06 3.05 3.05 6.500 6.583 6.667 6.750 6.833 9.58 9.67 9.75 9.83 3.05 3.05 3.05 2.03 2.03 9.92 0.667 3.05 2.03 0.750 2.03 3.833 4.06 6.917 7.000 7.11 10.00 2.03 0.833 1.02 3.917 4.06 7.11 10.08 3.05 4.000 4.083 4.167 4.250 4.333 4.417 7.000 7.083 7.167 7.250 7.333 7.417 7.500 0.917 1.02 4.06 10.17 3.05 3.05 3.05 3.05 7.11 1.000 1.083 1.167 1.250 1.02 2.03 2.03 2.03 7.11 7.11 7.11 5.08 5.08 10.25 10.33 10.42 10.50 3.05 2.03 2.03 1.333 2.03 7.11 5.08 10.58 1.02 4.500 4.583 4.667 4.750 4.833 4.917 5.000 7.583 1.417 2.03 7.11 5.08 10.67 1.02 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.03 6.10 5.08 10.75 1.02 6.10 6.10 6.10 6.10 6.10 2 03 7.750 7.833 7.917 8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 10 83 2.03 2.03 2.03 1.02 1.02 6.10 6.10 6.10 5.08 10.83 10.92 11.00 11.08 11.17 2.03 2.03 2.03 2.03 2.03 5.083 2.000 2.083 1.02 6.10 5.08 11.25 2.03 2.03 5.167 6.10 5.08 11.33 2.03 6.10 6.10 11.18 11.18 11.18 11.18 11.33 11.42 11.50 11.58 11.67 11.75 11.83 2.167 2.03 5.250 5.333 4.06 2.03 4.06 4.06 4.06 3.05 3.05 3.05 4.06 2.03 2.250 2.333 2.417 2.500 2.583 5.333 5.417 5.500 5.583 5.667 5.750 4.06 4.06 4.06 3.05 3.05 1.02 1.02 1.02 1.02 2.03 2.667 11.18 11.92 2.03 5.833 5.917 6.000 6.083 8.917 9.000 9.083 9.167 9.250 2.750 3.05 80.26 4.06 12.00 2.03 2.833 4.06 80.26 4.06 12.08 2.03 4.06 4.06 3.05 80.26 | 81.28 | 81.28 | 3.05 3.05 3.05 2.917 12.17 2.03 81.28 60.55 Max.Eff.Inten.(mm/hr)= over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 4.92 (ii) 10.00 8.80 (ii) 10.00

Page 178

0.12

6.25

TOTALS

0.130 (iii) 6.25

0.22

LangstaffRd_EA_Proposed_WestDonWatershd () = 1.00 2.00 () = 320.00 10.00

(%)= (m)= = Average Slope Length Mannings n 0.013 0.250

PEAK FLOW TIME TO PEAK

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

mm/hr 0.00 0.00 mm/hr | 81.28 | hrs 3.167 mm/hr hrs 6.250 mm/h 9.33 0.083 3.05 3.05 3.05 0.167 3.250 6.333 16.26 İ 3.05 6.333 6.417 6.500 6.583 6.667 6.750 6.833 16.26 16.26 16.26 16.26 16.26 7.11 7.11 9.42 9.50 9.58 9.67 9.75 9.83 9.92 0.250 0.00 3.333 3.05 0 333 2 03 0.333 0.417 0.500 0.583 2.03 2.03 2.03 2.03 2.03 3.500 3.583 3.667 3.750 3.05 3.05 3.05 2.03 0.667 0.750 2.03 3.833 4.06 6.917 7.000 10.00 2.03 3.917 4.000 4.083 4.167 4.250 4.333 4.417 0.833 1.02 4.06 10.08 3.05 0.833 0.917 1.000 1.083 1.167 1.250 1.333 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.11 7.11 7.11 7.11 5.08 5.08 5.08 3.05 3.05 2.03 2.03 2.03 1.02 4.06 10.17 10.17 10.25 10.33 10.42 10.50 10.58 1.02 2.03 2.03 2.03 2.03 3.05 3.05 3.05 7.11 7.11 1.02 7.11 1.417 2.03 4.500 5.08 10.67 1.02 7.667 7.750 7.833 7.917 8.000 8.083 8.167 1.500 2.03 4.583 6.10 5.08 10.75 1.02 4.583 4.667 4.750 4.833 4.917 5.000 1.583 1.667 1.750 1.833 1.917 2.03 2.03 2.03 2.03 1.02 6.10 6.10 6.10 6.10 5.08 6.10 6.10 6.10 5.08 10.83 10.92 11.00 11.08 2.03 2.03 2.03 2.03 1.02 6.10 11.17 2.03 2.000 1.02 5.083 6.10 5.08 11.25 2.03 2.083 2.03 5.167 6.10 8.250 5.08 11.33 2.03 2.167 2.03 5.250 6.10 | 8.333 11.18 | 8.417 11.18 | 8.500 11.18 | 8.583 11.18 | 8.667 11.18 | 8.8750 11.18 | 8.833 80.26 | 8.917 80.26 | 9.000 80.26 | 9.083 81.28 | 9.167 81.28 | 9.250 6.10 4.06 11.42 2.03 2.03 4.06 4.06 4.06 3.05 3.05 5.333 5.417 5.500 5.583 4.06 4.06 3.05 3.05 2.250 11.50 2.03 2.333 2.417 2.500 2.583 5.667 5.750 3.05 11.83 2.03 2.667 4.06 11.92 2.03 2.750 3.05 5.833 4.06 12.00 2.03 2.833 4.06 5.917 6.000 6.083 4.06 12.08 2.03 4.06 | 4.06 | 3.05 | 3.05 3.05 3.05 2.917 12.17 6.167

Max.Eff.Inten.(mm/hr)= 81.28 60.55 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 5.58 (ii) 10.00 7.35 (ii) 5 00 10 00 0.13

LangstaffRd_EA_Proposed_WestDonWatershd

PEAK FLOW	(cms)=	0.11	0.02	0.128 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	87.92	52.66	81.92
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICE	ENT =	0.98	0.59	0.91

CALIB		(ha)= 0.70		
ID= 1 DT= 5.0 min	Area Total	Imp(%) = 66.00		66.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	0.46	0.24	
Dep. Storage	(mm)=	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	320.00	25.00	
Mannings n	` ′=	0.013	0.300	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03

Page 181

	LangstaffRd			
DT= 5.0 min	OUTFLOW S			
	(cms) (ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.0271 0.0306	0.0367
	0.0118	0.0048	0.0306	0.0474
			0.0415	
	0.0232	0.0261	0.0000	0.0000
	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (047	5) 1.300	0.262	2 6.25	78.18
INFLOW : ID= 2 (0479 OUTFLOW: ID= 1 (0540	1.300	0.036	6.92	78.11
PEAK	FLOW REDU	CTION [Qout	t/Qin](%)= 1	3.69
TIME :	SHIFT OF PEAK	FLOW	(min)= 4	0.00
MAXIM	JM STORAGE	USED	(hà.m.)=	0.0553
ADD HYD (0480)				
ID1= 1 (0535):	AREA	OPEAK TE	PEAK R.V	
	(ha)	(cms) (h	nrs) (mm)
ID1= 1 (0535):	1.23 6	.020 7.	.33 78.24	,
+ ID2= 2 (0540):	1.30 6	.036 6.	.92 78.11	
===========				
ID = 3 (0480):	2.53 6	.055 7.	.00 78.17	
NOTE: PEAK FLOWS DO	NOT THE LUDE	BASEFI OWS	TF ANY.	
CALIB				
STANDHYD (0155) A	rea (ha)=	0.56		
ID= 1 DT= 5.0 min To			ir Conn (%)	= 93.00
110-1 01- 3.0 1111 11	Jear Imp(%)-	JJ.00 D.	Li . Colili.(%)	- 55.00
	IMPERVI	OUS DERV	TOUS (i)	
Surface Area (h	2)- 25	2 12.00	2 04	
Don Stonago (m	")- 0.5	0 0	- 00	
Surface Area (ha Dep. Storage (ma Average Slope (S	")- 2.6 V\- 1.6	0	2.00	
Average Stope (")- 1.6	n 2	2.00	
Length (I	11)= 200.0	2 2	200	
mannings n	= 0.01	. ه	. 290	
NOTE: RAINFALL	HAC TRANSFOR	MED TO 5	O MIN TIME	CTED
NOTE: KAINFALL	WAS IRANSFUR	וובט וט 5.	. MIN. IIME	SIEF.

RAIN | TIME mm/hr | hrs 0.00 | 3.167 0.00 | 3.250 0.00 | 3.333 2.03 | 3.417 2.03 | 3.500 2.03 | 3.583

Page 183

TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500

```
RAIN |
mm/hr |
81.28 |
16.26 |
16.26 |
16.26 |
16.26 |
16.26 |
TRANSFORMED HYETOGRAPH --
                 NSFORMED HYETOGR
RAIN | TIME
mm/hr | hrs
3.05 | 6.250
3.05 | 6.333
4.06 | 6.433
4.06 | 6.500
4.06 | 6.583
3.05 | 6.667
                                                                                                                         TIME
hrs
9.33
9.42
9.50
9.58
9.67
9.75
                                                                                                                                                                RAIN
mm/hr
3.05
3.05
3.05
3.05
3.05
3.05
```

```
Natershd
6.10 | 11.00
6.10 | 11.08
6.10 | 11.08
5.08 | 11.17
5.08 | 11.25
5.08 | 11.33
4.06 | 11.42
4.06 | 11.50
3.05 | 11.75
3.05 | 11.83
4.06 | 11.92
4.06 | 12.00
4.06 | 12.00
4.06 | 12.00
3.05 | 12.37
                                         1.750
1.833
                                         1.833
1.917
2.000
2.083
2.167
2.250
2.333
                                                                                                                                                                                                   2.03
2.03
2.03
2.03
2.03
2.03
                                                                                                                                                                                                     1.02
                                         2.417
                                                                                                                                                                                                    1.02
                                         2.417
2.500
2.583
2.667
2.750
2.833
2.917
                                                                                                                                                                                                     1.02
                                                                 4.06 |
3.05 |
3.05 |
4.06 |
4.06 |
4.06 |
3.05 |
                                                                                                                                                                                                   2.03
2.03
2.03
2.03
2.03
2.03
2.03
                                         3.083
                                                                                                                                                        3.05
           Max.Eff.Inten.(mm/hr)=

over (min)

Storage Coeff. (min)=

Unit Hyd. Tpeak (min)=

Unit Hyd. peak (cms)=
                                                                                      81.28
5.00
5.58 (ii)
5.00
0.20
                                                                                                                          57.69
15.00
10.53 (ii)
15.00
0.09
                                                                                                                                                               *TOTALS*
           PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT =
                                                                                                                                                                  0.134 (iii)
6.25
74.98
89.92
0.83
                                                                                          0.10
                                                                                                                              0.03
                                                                                        6.25
87.92
89.92
0.98
                                                                                                                           6.33
49.90
89.92
0.55
           (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COFFFICENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0475)|
| 1 + 2 = 3 |
                                                                                              QPEAK
(cms)
0.128
0.134
                                                                                                                                               R.V.
(mm)
81.92
74.98
                                                                            ARFA
                                                                                                                           TPFAK
               ID = 3 ( 0475):
                                                                            1.30 0.262
                                                                                                                          6.25
                                                                                                                                                78.18
            NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR( 0540)|
| IN= 2---> OUT= 1 |
                                                                  OVERFLOW IS OFF
                                                                                                              Page 182
```

Langs 0.583	taffRd E	A Propos	sed WestDo	nWaters	hd	
a 583 2 a3 l	3 667	3 05	6 750	16 26	0.83	2 03
0.565 2.65	3 750	3.05	6 833	7 11	9 92	2.03
0.507 2.03	3 833	4 06	6 917	7 11	10 00	2.03
0.730 2.03	3 917	4.00	7 999	7 11	10.00	3 05
0.033 1.02	1 000	4.00	7.000	7 11	10.00	3.05
1 000 1 02	4 083	3 05	7 167	7 11	10.25	3.05
1 083 2 03	4 167	3 05	7 250	7 11	10.23	2 03
1.167 2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250 2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333 2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417 2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500 2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583 2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667 2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750 2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833 1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917 1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000 1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083 2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167 2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250 2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333 4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417 4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500 4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583 3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667 3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750 3.05	5.833	80.26	8.917	4.06	12.00	2.03
2.833 4.06	5.917	80.26	9.000	4.06	12.08	2.03
2.917 4.06	6.000	80.26	9.083	3.05	12.17	2.03
3.000 4.06	6.083	81.28	9.167	3.05	12.25	2.03
2.256 2.03 2.333 4.06 2.417 4.06 2.500 4.06 2.583 3.05 2.667 3.05 2.750 3.05 2.833 4.06 2.917 4.06 3.080 3.083 3.05	6.167	81.28	9.250	3.05		
Max.Eff.Inten.(mm/hr)=	01 70		CC 17			
over (min)	5.00		10.00 7.17 (ii) 10.00			
Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	4.92	(ii)	7.17 (ii)			
Unit Hyd. Tpeak (min)=	5.00		10.00			
Unit Hyd. peak (cms)=	0.22		0.14			
				T01	ALS	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)=	0.12		0.01	0.	124 (iii)
TIME TO PEAK (hrs)=	6.25		6.25	6	.25	
RUNOFF VOLUME (mm)=	87.92		58.69	85	.86	
TOTAL RAINFALL (mm)=	89.92		6.25 58.69 89.92	89	.92	
TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.98		0.65	6	.95	
***** WARNING: STORAGE COEFF. I	S SMALLE	R THAN	TIME STEP!			
(i) CN PROCEDURE SELECTE						
CN* = 87.0 Ia (ii) TIME STEP (DT) SHOUL						
THAN THE STORAGE COE			EQUAL			
(iii) PEAK FLOW DOES NOT I			IF ANY.			

LangstaffRd_EA_Proposed_WestDonWatershd

CALIB STANDHYD (0160) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	0.43 95.00	Dir. Conn.(%)=	95.00
		IMPERVI	oue.	PERVIOUS (i)	
		TIMPERATI	JUS	PEKA1002 (1)	
Surface Area	(ha)=	0.4	1	0.02	
Dep. Storage	(mm)=	2.0	3	5.00	
Average Slope	(%)=	1.0	9	2.00	
Length	(m)=	260.0	9	20.00	
Mannings n	` =	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83 11.92	2.03
2.667	3.05 3.05	5.750	11.18 80.26	8.833 8.917	4.06 4.06	12.00	2.03
2.750	4.06	5.833	80.26	9.000	4.06	12.00	2.03
		6.000					
2.917	4.06	0.000	80.26	9.083	3.05	12.17	2.03

Page 185

	Lange	taffRd F	A Propos	ed WestD	nnWatens	hd	
hrs	mm/hr		mm/hr		mm/hr		mm/hr
0.083	0.00			6.250			3.05
0.167	0.00		3.05		16.26		3.05
0.250	0.00		4.06		16.26		3.05
0.333	2.03		4.06				3.05
0.417	2.03		4.06		16.26		3.05
0.500	2.03		3.05		16.26		3.05
0.583	2.03		3.05		16.26		2.03
0.667		3.750	3.05		7.11		2.03
0.750	2.03		4.06		7.11		2.03
0.833	1.02		4.06		7.11		3.05
0.917		4.000	4.06		7.11		3.05
1.000		4.083	3.05		7.11		3.05
1.083		4.167	3.05		7.11		2.03
1.167	2.03		3.05		5.08		2.03
1.250		4.333	7.11		5.08		2.03
1.333		4.417	7.11	7.500	5.08		1.02
1.417		4.500	7.11			10.67	1.02
1.500		4.583	6.10			10.75	1.02
1.583	2.03		6.10		5.08		2.03
1.667		4.750	6.10		6.10		2.03
1.750		4.833	6.10	7.917	6.10		2.03
1.833		4.917	6.10		6.10		2.03
1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03
2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03
3.000	4.06	6.083	81.28		3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05	l	
Max.Eff.Inten.(mm/		81.28		67.97			
over (m		5.00		10.00			
	in)=	3.54		5.90 (ii	.)		
Unit Hyd. Tpeak (m		5.00		10.00			
Unit Hyd. peak (c	ms)=	0.26		0.15			
						TALS*	
	ms)=	0.82		0.03		.851 (iii))
	rs)=	6.25		6.25		5.25	
	mm)=	87.92		60.31		5.54	
TOTAL RAINFALL (RUNOFF COEFFICIENT	mm)=	89.92		89.92		9.92	
KONOFF COEFFICIENT	=	0.98		0.67		9.96	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

Page 187

LangstaffRd_EA_Proposed_WestDonWatershd 4.06 | 6.083 | 81.28 | 9.167 | 3.05 | 12.25 | 2.03 3.05 | 6.167 | 81.28 | 9.250 | 3.05 | 3.083 81.28 5.00 4.92 (ii) 5.00 0.22 69.46 10.00 6.48 (ii) 10.00 0.14 Max.Eff.Inten.(mm/hr)= over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= *TOTALS* 0.096 (iii) 6.25 86.61 89.92 0.96 PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
RUNOFF VOLUME (mm)=
TOTAL RAINFALL (mm)=
RUNOFF COEFFICIENT = 0.09 0.00 6.25 87.92 89.92 0.98 6.25 62.00 89.92 0.69 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN* PROCEDURE SELECTED FOR FEXTURES GASSONS
(11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. AREA (ha) 0.56 QPEAK (cms) 0.124 0.096 TPEAK (hrs) 6.25 6.25 R.V. (mm) 85.86 86.61 0.43 ID = 3 (0430): 0.99 0.220 6.25 86.19 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Area (ha)= 3.81 Total Imp(%)= 95.00 Dir. Conn.(%)= 95.00 IMPERVIOUS PERVIOUS (i) 3.62 2.00 1.00 150.00 0.013 9.19 5.00 2.00 40.00 0.250 Surface Area Dep. Storage Average Slope Length (ha)= (mm)= (%)= (m)= Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ---TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN

Page 186

LangstaffRd_EA_Proposed_WestDonWatershd

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 88.0 I a= Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0515)	OVERFLOW	TC 0FF		
IN= 2> OUT= 1		15 UFF		
DT= 5.0 min		STORAGE	OUTFLOW	STORAGE
	(cms)	STORAGE (ha.m.)	OUTFLOW (cms)	(ha.m.)
	0.0000	0.0000	0.0091	0.1797
	0.0013	0.0000 0.0157	0.0095	0.2004
	0.0033	0.0320	0.0100	0.2216
	0.0044	0.0487	0.0104	0.2433
	0.0053	0.0659	0.0109	0.2655
	0.0061	0.0837 0.1019	0.0113	0.2882
	0.0068	0.1019	0.0116	0.3114
	0.0074	0.1206 0.1398	0.1520	0.3592
	0.0080	0.1398	0.5654	0.4336
	0.0086	0.1595	1.1316	0.5100
INFLOW : ID= 2 (AR	EA OPEAK	TPEAK	R.V.
	(h	a) (cms)	(hrs)	(mm)
INFLOW : ID= 2 (0150) 3.	810 0.85	51 6.25	86.54
OUTFLOW: ID= 1 (0515) 3.	810 0.03	11 12.33	85.08
1	PEAK FLOW R TIME SHIFT OF P MAXIMUM STORAG	EAK FLOW	(min)=36	55.00
1	TIME SHIFT OF P	EAK FLOW	(min)=36	55.00
1	TIME SHIFT OF P	EAK FLOW	(min)=36	55.00
ADD HYD (0440)	TIME SHIFT OF P	EAK FLOW E USED	(min)=36 (ha.m.)=	55.00 0.3004
ADD HYD (0440)	IME SHIFT OF P	EAK FLOW E USED	(min)=36 (ha.m.)=	55.00 0.3004
ADD HYD (0440)	IME SHIFT OF P	EAK FLOW E USED	(min)=36 (ha.m.)=	55.00 0.3004
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04	TIME SHIFT OF P HAXIMUM STORAG AREA (ha) H30): 0.99	QPEAK 1 (cms) (0.220 (cms)	(min)=36 (ha.m.)= 	55.00 0.3004
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05	AREA (ha) (h2) (h2) (h2) (h2) (h2) (h2) (h2) (h2	QPEAK 1 (cms) (0.220 (0.011 12	(min)=36 (ha.m.)= TPEAK R.V (hrs) (mm 5.25 86.19	55.00 0.3004
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05	TIME SHIFT OF P HAXIMUM STORAG AREA (ha) H30): 0.99	QPEAK (cms) (0.220 (0.011 12	(min)=36 (ha.m.)= TPEAK R.V (hrs) (mr 5.25 86.15 2.33 85.08	75.00 0.3004 7. 1) 0. 3.
ADD HYD (0449) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05) ID = 3 (04	AREA (ha): 4.80	QPEAK (Cms) (.cms) 0.229 (0.229 ((min)=36 (ha.m.)= TPEAK R.V (hrs) (mms) 6.25 86.25 2.33 85.08	75.00 0.3004 7. 1) 0. 3.
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05	AREA (ha) 130): 0.99 1515): 3.81 140): 4.80	QPEAK (Cms) (.cms) 0.229 (0.229 ((min)=36 (ha.m.)= TPEAK R.V (hrs) (mms) 6.25 86.25 2.33 85.08	75.00 0.3004 7. 1) 0. 3.
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05 ID = 3 (04 NOTE: PEAK FLC	AREA (ha) 130): 0.99 1515): 3.81 140): 4.80	QPEAK (Cms) (.cms) 0.229 (0.229 ((min)=36 (ha.m.)= TPEAK R.V (hrs) (mms) 6.25 86.25 2.33 85.08	75.00 0.3004 7. 1) 0. 3.
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (0440) 1 + 102= 2 (06 00) 1	AREA (ha) 4.80 NOT INCL Area (ha) 4.80 NOT INCL Area (ha)	QPEAK ((cms) ((cms) 0.220 (0.011 1.200) (UDE BASEFLOWS)) = 0.96	(min)=36 (ha.m.)= TPEAK R.V. (hrs) (mm 5.25 86.15 2.33 85.06 	55.00 0.3004
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05	AREA (ha): 4.80 Area (ha) Area (ha) Area (ha) Area (ha) Area (ha)	QPEAK (cms) (cms) (0.220 (0.011 12.229 (0.0129 (0.229 (0.0129	(min)=36 (ha.m.)= IPEAK R.N. (hrs) (mm 6.25 86.19 2.33 85.06 5.25 85.31 S.IF ANY.	55.00 0.3004
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (04 + ID2= 2 (05 	AREA (ha) 330): 0.99 315): 3.31 3.31 3.32 3.	QPEAK (cms) (cms) (0.220 (0.011 1:	(min)=36 (ha.m.)= TPEAK R.V. (hrs) (mr) 5.25 86.15 2.33 85.61 5.25 85.31 S IF ANY.	55.00 0.3004
ADD HYD (0440) 1 + 2 = 3 ID1= 1 (0440) 1 + 102= 2 (06 00) 1	AREA (ha) Area (ha)	QPEAK (cms) (cms) (0.220 (0.011 1:	(min)=36 (ha.m.)= IPEAK R.V. (hrs) (mm 6.25 86.15 2.23 85.08 5.25 85.31 5.IF ANY.	55.00 0.3004

Page 188

```
LangstaffRd_EA_Proposed_WestDonWatershd
```

Average Slope	(%)=	1.00	2.00
Length	(m)=	470.00	20.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833		6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03		7.11	7.583	5.08		1.02
1.500	2.03	4.583	6.10		5.08	10.75	1.02
1.583	2.03	4.667	6.10		5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03
1.750	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
1.917	1.02	5.000	6.10		5.08	11.17	2.03
2.000	1.02	5.083	6.10		5.08	11.25	2.03
2.083	2.03	5.167	6.10		5.08	11.33	2.03
2.167	2.03	5.250	6.10		4.06	11.42	2.03
2.250	2.03	5.333	11.18		4.06	11.50	2.03
2.333	4.06	5.417	11.18		4.06		1.02
2.417	4.06	5.500	11.18		3.05		1.02
2.500	4.06	5.583	11.18		3.05	11.75	1.02
2.583	3.05	5.667		8.750	3.05	11.83	2.03
2.667	3.05	5.750		8.833	4.06	11.92	2.03
2.750	3.05	5.833	80.26				2.03
2.833		5.917	80.26		4.06		2.03
2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03
3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
3.083	3.05	6.167	81.28	9.250	3.05		

over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 5.00 15.00 7.02 (ii) 10.07 (ii) 5.00 15.00 0.17 0.10

Max.Eff.Inten.(mm/hr)=

Page 189

60.55

		Langs	taffRd E	A Propo	sed_WestDo	nWaters	hd	
	1.750	2.03		6.10	7.917	6.10	11.00	2.03
	1.833	1.02	4.917	6.10	8.000	6.10	11.08	2.03
	1.917	1.02	5.000	6.10	8.083	5.08	11.17	2.03
	2.000	1.02	5.083	6.10	8.167	5.08	11.25	2.03
	2.083	2.03	5.167	6.10	8.250	5.08	11.33	2.03
	2.167	2.03	5.250	6.10	8.333	4.06	11.42	2.03
	2.250	2.03	5.333	11.18	8.417	4.06	11.50	2.03
	2.333	4.06	5.417	11.18	8.500	4.06	11.58	1.02
	2.417	4.06	5.500	11.18	8.583	3.05	11.67	1.02
	2.500	4.06	5.583	11.18	8.667	3.05	11.75	1.02
	2.583	3.05	5.667	11.18	8.750	3.05	11.83	2.03
	2.667	3.05	5.750	11.18	8.833	4.06	11.92	2.03
	2.750	3.05	5.833	80.26	8.917	4.06	12.00	2.03
	2.833	4.06	5.917	80.26	9.000	4.06	12.08	2.03
	2.917	4.06	6.000	80.26	9.083	3.05	12.17	2.03
	3.000	4.06	6.083	81.28	9.167	3.05	12.25	2.03
	3.083	3.05	6.167	81.28	9.250	3.05		
.In	iten.(mm/h	r)=	81.28		60.55			
	over (mi	n)	5.00		15.00			

Max. Ell. Illeen. (, , –	01.20	00.55	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	7.02 (ii)	10.14 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.17	0.10	
				TOTALS
PEAK FLOW	(cms)=	0.19	0.03	0.225 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	87.92	52.66	79.80
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICIE	NT =	0.98	0.59	0.89

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 83.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COFFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0460)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0205):	1.11	0.225	6.25	79.80	
+ ID2= 2 (0210):	0.96	0.196	6.25	80.15	
===============					
ID = 3 (0460):	2.07	0.421	6.25	79.96	

| RESERVOIR(0525)| | IN= 2---> OUT= 1 | OVERFLOW IS OFF

Page 191

LangstaffRd_EA_Proposed_WestDonWatershd

				TOTALS
PEAK FLOW	(cms)=	0.17	0.03	0.196 (iii)
TIME TO PEAK	(hrs)=	6.25	6.25	6.25
RUNOFF VOLUME	(mm)=	87.92	52.66	80.15
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COFFETCT	FNT =	0.98	0.59	0.89

CALIB							
STANDHYD (0205)	Area	(ha)=	1.11				
ID= 1 DT= 5.0 min	Total	Imp(%)=	77.00	Dir. C	onn.(%)=	77.00	
		IMPERVI	OUS	PERVIOUS	(i)		
Surface Area	(ha)=	0.8	5	0.26			
Dep. Storage	(mm)=	2.0	0	5.00			
Average Slope	(%)=	1.0	0	2.00			
Length	(m)=	470.0	0	20.00			
Mannings n	` ' _	0 01	2	0 250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.583	2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.667	2.03	4.750	6.10	7.833	6.10	10.92	2.03

Page 190

	Langstaf	fRd EA Propos	ed WestDonWat	tershd
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
ii	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.0733	0.0214
	0.0274	0.0026	0.0831	0.0278
	0.0478	0.0084	0.1449	0.0374
	0.0619	0.0149	0.0000	0.0000
	A	REA OPEAK	TPEAK	R.V.
	(ha) (cms)	(hrs)	(mm)
INFLOW : ID= 2 (0-	160) 2	.070 0.4	21 6.25	79.96
OUTFLOW: ID= 1 (0:	525) 2	.070 0.2	28 6.42	79.96

PEAK FLOW REDUCTION [Qout/Qin](%)= 54.27 TIME SHIFT OF PEAK FLOW (min)= 10.00 MAXIMUM STORAGE USED (ha.m.)= 0.0508

CALIB	Area Total	(ha)= 0.86 Imp(%)= 57.00		57.00
Surface Area Dep. Storage Average Slope Length	(ha)= (mm)= (%)= (m)=	IMPERVIOUS 0.49 2.00 1.00 340.00	PERVIOUS (i) 0.37 5.00 2.00 50.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO $\,$ 5.0 MIN. TIME STEP.

		TR	ANSFORME	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.05	6.250	81.28	9.33	3.05
0.167	0.00	3.250	3.05	6.333	16.26	9.42	3.05
0.250	0.00	3.333	4.06	6.417	16.26	9.50	3.05
0.333	2.03	3.417	4.06	6.500	16.26	9.58	3.05
0.417	2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.500	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.583	2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.667	2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.750	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.833	1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.917	1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.000	1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.083	2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.167	2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.250	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.333	2.03	4.417	7.11	7.500	5.08	10.58	1.02
1.417	2.03	4.500	7.11	7.583	5.08	10.67	1.02
1.500	2.03	4.583	6.10	7.667	5.08	10.75	1.02

Page 192

```
LangstaffRd_EA_Proposed_WestDonWatershd
2.03 | 4.667 | 6.10 | 7.759 | 5.08 | 14
2.03 | 4.750 | 6.10 | 7.833 | 6.10 | 12
2.03 | 4.833 | 6.10 | 7.917 | 6.10 | 12
1.02 | 5.000 | 6.10 | 8.000 | 6.10 | 13
1.02 | 5.000 | 6.10 | 8.000 | 6.10 | 13
1.02 | 5.083 | 6.10 | 8.167 | 6.08 | 13
2.03 | 5.250 | 6.10 | 8.250 | 5.08 | 13
2.03 | 5.250 | 6.10 | 8.250 | 5.08 | 13
2.03 | 5.250 | 6.10 | 8.333 | 4.06 | 12
2.03 | 5.350 | 11.18 | 8.417 | 4.06 | 13
4.06 | 5.500 | 11.18 | 8.500 | 4.06 | 13
4.06 | 5.531 | 11.18 | 8.667 | 3.05 | 13
3.05 | 5.667 | 11.18 | 8.867 | 3.05 | 13
3.05 | 5.833 | 80.26 | 8.917 | 4.06 | 13
4.06 | 5.917 | 80.26 | 9.000 | 4.06 | 13
4.06 | 6.00 | 80.26 | 9.083 | 3.05 | 14
4.06 | 6.00 | 80.26 | 9.083 | 3.05 | 14
4.06 | 6.00 | 80.26 | 9.083 | 3.05 | 14
4.06 | 6.00 | 80.26 | 9.083 | 3.05 | 13
4.06 | 6.083 | 81.28 | 9.167 | 3.05 | 12
3.05 | 6.167 | 81.28 | 9.250 | 3.05 | 12
4.06 | 6.083 | 81.28 | 9.167 | 3.05 | 12
3.05 | 6.167 | 81.28 | 9.250 | 3.05 | 12
4.06 | 6.083 | 81.28 | 9.167 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 3.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 9.083 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.06 | 6.06 | 80.26 | 6.05 | 12
4.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Naterish  
5.88 | 10.83  
6.10 | 10.92  
6.10 | 11.00  
6.10 | 11.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
7
1.583
       1.667
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
1.750
1.833
1.917
2.000
2.083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.03
2.03
2.03
2.03
2.03
2.03
       2.167
       2.250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
       2.333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.02
2.533
2.417
2.500
2.583
2.667
2.750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.02
1.02
2.03
2.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
       2.833
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
       2.917
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  12.17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  12.25
```

Max.Eff.Inten.(r	nm/nr)=	81.28	60.55	
over	(min)	5.00	20.00	
Storage Coeff.	(min)=	5.78 (ii)	15.65 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	20.00	
Unit Hyd. peak	(cms)=	0.20	0.07	
				TOTALS
PEAK FLOW	(cms)=	0.11	0.04	0.150 (iii)
TIME TO PEAK	(hrs)=	6.25	6.33	6.25
RUNOFF VOLUME	(mm)=	87.92	52.66	72.74
TOTAL RAINFALL	(mm)=	89.92	89.92	89.92
RUNOFF COEFFICI	ENT =	0.98	0.59	0.81

CALIB | CALIB | STANDHYD (0195)| |ID= 1 DT= 5.0 min | Area (ha)= 0.79 Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 IMPERVIOUS PERVIOUS (i) Surface Area 0.20 5.00 2.00 0.59 2.00 (mm)= (%)= (m)= Dep. Storage Average Slope Length Mannings n 1.00 20.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

Page 193

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

(1) CN* = 83.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0455)| 1 + 2 = 3 | QPEAK (cms) 0.150 0.162 R.V. (mm) 72.74 79.10 ΔRFΔ TΡΕΔΚ (hrs) 6.25 6.25 ID1= 1 (0190): + ID2= 2 (0195): ID = 3 (0455): 75.78 1.65 0.312 6.25

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0555)| IN= 2---> OUT= 1 | DT= 5.0 min | OUTFLOW STORAGE (cms) 0.0000 (ha.m.) 0.0000 (cms) 0.0238 (ha.m.) 0.0199 0.0104 0.0024 0.0268 0.0825 0.0259 AREA QPEAK (cms) 0.312 0.158 (hrs) 6.25 6.42 (mm) 75.78 75.75 (ha) 1.650 INFLOW: ID= 2 (0455) OUTFLOW: ID= 1 (0555) 1.650

| ADD HYD (0465)| | 1 + 2 = 3 | QPEAK (cms) 0.228 TPEAK (hrs) 6.42 6.42 R.V. (mm) 79.96 75.75 AREA (ha) 2.07 1.65 ID1= 1 (0525): + ID2= 2 (0555): 0.158 ID = 3 (0465): 3.72 0.386 6.42 78.09

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

LangstaffRd_EA_Proposed_WestDonWatershd

		TRA	NSFORME	ED HYETOGR	ΔРН		
TIM	E RAIN		RAIN		RAIN		RAI
hr		hrs					mm/h
0.08			3.05				3.05
0.16		3.250	3.05				3.05
0.25		3.333		6.417			3.05
0.33		3.417		6.500			3.05
0.41	7 2.03	3.500	4.06	6.583	16.26	9.67	3.05
0.50	2.03	3.583	3.05	6.667	16.26	9.75	3.05
0.58	3 2.03	3.667	3.05	6.750	16.26	9.83	2.03
0.66	7 2.03	3.750	3.05	6.833	7.11	9.92	2.03
0.75	2.03	3.833	4.06	6.917	7.11	10.00	2.03
0.83	3 1.02	3.917	4.06	7.000	7.11	10.08	3.05
0.91	7 1.02	4.000	4.06	7.083	7.11	10.17	3.05
1.00	0 1.02	4.083	3.05	7.167	7.11	10.25	3.05
1.08	3 2.03	4.167	3.05	7.250	7.11	10.33	2.03
1.16	7 2.03	4.250	3.05	7.333	5.08	10.42	2.03
1.25	2.03	4.333	7.11	7.417	5.08	10.50	2.03
1.33		4.417			5.08	10.58	1.02
1.41		4.500	7.11		5.08		1.02
1.50	2.03	4.583	6.10	7.667	5.08	10.75	1.02
1.58	3 2.03	4.667	6.10	7.750	5.08	10.83	2.03
1.66	7 2.03	4.750		7.833	6.10	10.92	2.03
1.75	2.03	4.833	6.10	7.917	6.10	11.00	2.03
1.83		4.917			6.10		2.03
1.91	7 1.02	5.000	6.10	8.083	5.08	11.17	2.03
2.00	0 1.02	5.083	6.10	8.167	5.08	11.25	2.03
2.08	3 2.03	5.167	6.10	8.250	5.08	11.33	2.03
2.16	7 2.03	5.250	6.10	8.333	4.06	11.42	2.03
2.25					4.06		2.03
2.33		5.417		8.500	4.06		1.02
2.41				8.583	3.05		1.02
2.50		5.583		8.667	3.05		1.02
2.58				8.750	3.05		2.03
2.66				8.833		11.92	2.03
2.75		5.833		8.917		12.00	2.03
2.83	3 4.06	5.917	80.26	9.000		12.08	2.03
2.91				9.083		12.17	2.03
3.00				9.167		12.25	2.03
3.08	3 3.05	6.167	81.28	9.250	3.05		
Max.Eff.Inten.(mm/hr)=	81.28		60.55			
over	(min)	5.00		10.00			
Storage Coeff.	(min)=	5.78	(ii)	9.04 (ii)		
Unit Hyd. Tpeak	(min)=	5.00		10.00			
Unit Hyd. peak	(cms)=	0.20		0.12			
						TALS*	
PEAK FLOW	(cms)=	0.13		0.03		162 (iii))
TIME TO PEAK	(hrs)=	6.25		6.25		5.25	
RUNOFF VOLUME	(mm)=	87.92		52.66		9.10	
TOTAL RAINFALL	(mm)=	89.92		89.92	89	9.92	

Page 194

 ${\tt LangstaffRd_EA_Proposed_WestDonWatershd}$

PCSWMM Report

Langstaff_LC1
Model LC1_UpdatedCtchments_Final.inp

WSP Canada Inc. July 1, 2021

Table of Contents

M	aps		
	Figure 1:	LC1	3
Ta	ıbles		
	Table 1:	Culvert LC1_AES_12hr_2yr	4
	Table 2:	Catchments_AES_12hr_2yr	5

Figure 1: LC1

Table 1: Culvert LC1_AES_12hr_2yr

Name		Max. Total Inflow (m³/s)	Avg. Flow (m³/s)	Max. Flow (m³/s)	Flow	Contributing Area (ha)	Contributing I mp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	1.326	1.326	0.292	1.326	15.943	49.14	46.458	0.027

Table 2: Catchments_AES_12hr_2yr

Name	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)		Imperv. (%)	N Imperv	N Perv	Dstore Imperv (mm)	Perv	Peak Runoff (m³/s)	Runoff Coefficient
325	618589.028	4852952.824	AES_12hr_2yr	300	26.54	2654	100	4.7	95	0.013	0.25	2	5	0.73	0.785
300	618906.664	4852860.121	AES_12hr_2yr	LC1	21.7	1808.333	120	7	95	0.013	0.25	2	5	1.32	0.894
350	619192.465	4852300.707	AES_12hr_2yr	LC1	0.9	180	50	2	70	0.013	0.25	2	5	0.01	0.27

Table 1: Culvert LC1_AES_12hr_5yr

Name	Lat. Inflow	Max. Total Inflow (m³/s)	Avg. Flow (m³/s)	Flow	Flow	Contributing Area (ha)	Contributing I mp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	1.782	1.782	0.403	1.782	22.088	49.14	46.458	0.036

Table 2: Catchments_AES_12hr_5yr

Name	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)		Imperv. (%)	N Imperv	N Perv	Dstore Imperv (mm)	Perv		Runoff Coefficient
325	618589.028	4852952.824	AES_12hr_5yr	300	26.54	2654	100	4.7	95	0.013	0.25	2	5	0.97	0.832
300	618906.664	4852860.121	AES_12hr_5yr	LC1	21.7	1808.333	120	7	95	0.013	0.25	2	5	1.77	0.919
350	619192.465	4852300.707	AES_12hr_5yr	LC1	0.9	180	50	2	70	0.013	0.25	2	5	0.02	0.353

Table 1: Culvert LC1_AES_12hr_10yr

Name	Max. Lat. Inflow (m³/s)		Avg. Flow (m³/s)	Max. Flow (m³/s)	Flow	Contributing Area (ha)	Contributing Imp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	2.086	2.086	0.477	2.086	26.194	49.14	46.458	0.042

Table 2A: Catchments_AES_12hr_10yr

Nai	me	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	N Imperv
3	325	618589.028	4852952.824	AES_12hr_10yr	300	26.54	2654	100	4.7	95	0.013
3	300	618906.664	4852860.121	AES_12hr_10yr	LC1	21.7	1808.333	120	7	95	0.013
3	350	619192.465	4852300.707	AES_12hr_10yr	LC1	0.9	180	50	2	70	0.013

Table 2B: Catchments_AES_12hr_10yr

Name		Imperv		Runoff	Runoff Coefficient
325	0.25	2	5	1.14	0.853
300	0.25	2	5	2.06	0.93
350	0.25	2	5	0.02	0.419

Table 1: Culvert LC1_AES_12hr_25yr

Name	Max. Lat. Inflow (m³/s)	Max. Total Inflow (m³/s)	Avg. Flow (m³/s)	Max. Flow (m³/s)	Flow	Contributing Area (ha)	Contributing I mp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	2.464	2.464	0.568	2.464	31.342	49.14	46.458	0.05

Table 2A: Catchments_AES_12hr_25yr

Name	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	N Imperv
325	618589.028	4852952.824	AES_12hr_25yr	300	26.54	2654	100	4.7	95	0.013
300	618906.664	4852860.121	AES_12hr_25yr	LC1	21.7	1808.333	120	7	95	0.013
350	619192.465	4852300.707	AES_12hr_25yr	LC1	0.9	180	50	2	70	0.013

Table 2B: Catchments_AES_12hr_25yr

Name				Runoff	Runoff Coefficient
325	0.25	2	5	1.34	0.873
300	0.25	2	5	2.43	0.94
350	0.25	2	5	0.03	0.483

Table 1: Culvert LC1_AES_12hr_50yr

Name	Max. Lat. Inflow (m³/s)		Avg. Flow (m³/s)	Max. Flow (m³/s)	Flow	Contributing Area (ha)	Contributing I mp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	2.817	2.817	0.654	2.817	36.171	49.14	46.458	0.057

Table 2A: Catchments_AES_12hr_50yr

Name	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	N Imperv
325	618589.028	4852952.824	AES_12hr_50yr	300	26.54	2654	100	4.7	95	0.013
300	618906.664	4852860.121	AES_12hr_50yr	LC1	21.7	1808.333	120	7	95	0.013
350	619192.465	4852300.707	AES_12hr_50yr	LC1	0.9	180	50	2	70	0.013

Table 2B: Catchments_AES_12hr_50yr

Name				Runoff	Runoff Coefficient
325	0.25	2	5	1.53	0.887
300	0.25	2	5	2.78	0.947
350	0.25	2	5	0.04	0.531

Table 1: Culvert LC1_AES_12hr_100yr

Name	Max. Lat. Inflow (m³/s)	Max. Total Inflow (m³/s)	Avg. Flow (m³/s)	Max. Flow (m³/s)	Flow	Contributing Area (ha)	Contributing I mp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	3.128	3.128	0.729	3.128	40.445	49.14	46.458	0.064

Table 2A: Catchments_AES_12hr_100yr

Name	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)		Imperv. (%)	N Imperv
325	618589.028	4852952.824	AES_12hr_100yr	300	26.54	2654	100	4.7	95	0.013
300	618906.664	4852860.121	AES_12hr_100yr	LC1	21.7	1808.333	120	7	95	0.013
350	619192.465	4852300.707	AES_12hr_100yr	LC1	0.9	180	50	2	70	0.013

Table 2B: Catchments_AES_12hr_100yr

Name			Perv		Runoff Coefficient
325	0.25	2	5	1.7	0.898
300	0.25	2	5	3.08	0.952
350	0.25	2	5	0.04	0.567

Table 1: Culvert LC1_AES_12hr_Region

Name	Max. Lat. Inflow (m³/s)	Max. Total Inflow (m³/s)	Avg. Flow (m³/s)	Max. Flow (m³/s)	Flow	Contributing Area (ha)	Contributing I mp. Area (ha)	Max. Unit Flow (m³/s/ha)
LC1	3.128	3.128	0.729	3.128	40.445	49.14	46.458	0.064

Table 2A: Catchments_AES_12hr_Region

Name	X-Coordinate	Y-Coordinate	Rain Gage	Outlet	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	N Imperv
325	618589.028	4852952.824	Design_RG_15min	300	26.54	2654	100	4.7	95	0.013
300	618906.664	4852860.121	Design_RG_15min	LC1	21.7	1808.333	120	7	95	0.013
350	619192.465	4852300.707	Design_RG_15min	LC1	0.9	180	50	2	70	0.013

Table 2B: Catchments_AES_12hr_Region

Name			Perv		Runoff Coefficient
325	0.25	2	5	1.7	0.898
300	0.25	2	5	3.08	0.952
350	0.25	2	5	0.04	0.567

APPENDIX

Hydraulic Assessments

York Region Langstaff Road EA

West Don River

Existing Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_ExRev2_Apr2020.prj"

Plan: Plan Ex Updated

Geometry: Basin 5-Updated at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
	Ì										
Reach-1	5.53	2 Year	5.89	198.60	200.21		200.23	0.54	14.20	38.57	0.17
Reach-1	5.53	5 Year	7.83	198.60	200.58		200.58	0.44	32.77	60.62	0.12
Reach-1	5.53	10 Year	9.04	198.60	200.73		200.73	0.43	42.34	66.19	0.11
Reach-1	5.53	25 Year	10.55	198.60	200.87		200.88	0.42	52.29	71.52	0.10
Reach-1	5.53	50 Year	12.69	198.60	201.02		201.02	0.44	63.18	76.67	0.10
Reach-1	5.53	100 Year	15.60	198.60	201.20		201.20	0.45	76.88	77.70	0.10
Reach-1	5.53	Regional	198.16	198.60	204.14		204.18	1.41	334.59	107.81	0.20
Reach-1	5.52	2 Year	5.89	198.20	200.15		200.17	0.69	14.16	14.32	0.18
Reach-1	5.52	5 Year	7.83	198.20	200.53		200.55	0.68	19.78	15.17	0.16
Reach-1	5.52	10 Year	9.04	198.20	200.69		200.70	0.71	22.11	15.51	0.16
Reach-1	5.52	25 Year	10.55	198.20	200.83		200.85	0.76	24.34	15.82	0.17
Reach-1	5.52	50 Year	12.69	198.20	200.97		200.99	0.85	26.59	16.13	0.18
Reach-1	5.52	100 Year	15.60	198.20	201.14		201.17	0.95	29.44	18.46	0.19
Reach-1	5.52	Regional	198.16	198.20	202.91	202.34	203.81	5.79	104.94	85.61	0.90
Reach-1	5.51	2 Year	5.89	198.20	199.85	199.46	200.10	2.23	2.70	18.68	0.61
Reach-1	5.51	5 Year	7.83	198.20	200.18	199.67	200.47	2.38	3.37	18.85	0.58
Reach-1	5.51	10 Year	9.04	198.20	200.69	199.78	200.70	0.58	32.48	19.11	0.13
Reach-1	5.51	25 Year	10.55	198.20	200.83	199.93	200.84	0.63	35.22	19.19	0.13
Reach-1	5.51	50 Year	12.69	198.20	200.97	200.11	200.99	0.70	37.95	19.26	0.14
Reach-1	5.51	100 Year	15.60	198.20	201.15	200.36	201.16	0.80	41.24	19.35	0.16
Reach-1	5.51	Regional	198.16	198.20	203.00	201.77	203.65	5.59	84.56	77.30	0.85
		-									
Reach-1	5.505		Culvert								
Reach-1	5.50	2 Year	5.89	198.00	199.18	199.00	199.22	0.98	10.77	23.58	0.34
Reach-1	5.50	5 Year	7.83	198.00	199.30	199.00	199.34	1.06	13.64	23.88	0.34
Reach-1	5.50	10 Year	9.04	198.00	199.36	199.03	199.40	1.12	15.08	24.03	0.35
Reach-1	5.50	25 Year	10.55	198.00	199.43	199.08	199.48	1.18	16.72	24.19	0.36
Reach-1	5.50	50 Year	12.69	198.00	199.51	199.13	199.57	1.28	18.76	24.40	0.37
Reach-1	5.50	100 Year	15.60	198.00	199.61	199.20	199.67	1.40	21.09	24.63	0.40
Reach-1	5.50	Regional	198.16	198.00	201.50	201.16	202.33	5.54	72.12	29.18	0.99
		-									
Reach-1	5.49	2 Year	5.89	197.91	199.14		199.20	1.15	8.18	24.54	0.41
Reach-1	5.49	5 Year	7.83	197.91	199.26		199.32	1.22	11.46	28.89	0.40
Reach-1	5.49	10 Year	9.04	197.91	199.33		199.39	1.25	13.31	29.64	0.40
Reach-1	5.49	25 Year	10.55	197.91	199.40		199.46	1.30	15.44	30.47	0.40
Reach-1	5.49	50 Year	12.69	197.91	199.49		199.55	1.37	18.16	31.50	0.41
Reach-1	5.49	100 Year	15.60	197.91	199.58		199.66	1.46	21.33	32.67	0.42
Reach-1	5.49	Regional	198.16	197.91	201.69		202.08	4.16	133.74	89.43	0.72
		-									
Reach-1	5.48	2 Year	5.89	197.53	198.81		198.86	0.91	6.63	11.48	0.35

Existing Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_ExRev2_Apr2020.prj"

Plan: Plan Ex Updated

Geometry: Basin 5-Updated at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.48	5 Year	7.83	197.53	198.94		198.99	1.01	8.41	19.27	0.36
Reach-1	5.48	10 Year	9.04	197.53	199.01		199.07	1.06	9.96	26.82	0.36
Reach-1	5.48	25 Year	10.55	197.53	199.09		199.15	1.11	12.46	35.79	0.36
Reach-1	5.48	50 Year	12.69	197.53	199.18		199.24	1.18	15.97	45.50	0.37
Reach-1	5.48	100 Year	15.60	197.53	199.27		199.35	1.26	20.93	52.88	0.38
Reach-1	5.48	Regional	198.16	197.53	201.20		201.45	3.11	138.54	69.18	0.57
Reach-1	5.47	2 Year	5.89	197.29	198.23		198.34	1.52	3.90	8.31	0.67
Reach-1	5.47	5 Year	7.83	197.29	198.33		198.47	1.66	4.91	10.76	0.68
Reach-1	5.47	10 Year	9.04	197.29	198.38		198.54	1.75	5.47	11.92	0.70
Reach-1	5.47	25 Year	10.55	197.29	198.42	198.31	198.60	1.93	5.89	13.53	0.76
Reach-1	5.47	50 Year	12.69	197.29	198.50	198.40	198.70	2.03	7.32	22.27	0.75
Reach-1	5.47	100 Year	15.60	197.29	198.58	198.53	198.80	2.16	9.58	29.76	0.76
Reach-1	5.47	Regional	198.16	197.29	201.06		201.14	1.94	206.37	100.47	0.34
Reach-1	5.46	2 Year	5.89	196.43	197.64		197.71	1.15	5.59	18.43	0.45
Reach-1	5.46	5 Year	7.83	196.43	197.76		197.83	1.24	8.16	24.74	0.46
Reach-1	5.46	10 Year	9.04	196.43	197.82	197.47	197.90	1.28	9.79	27.48	0.46
Reach-1	5.46	25 Year	10.55	196.43	197.93	197.54	198.00	1.25	12.93	31.47	0.42
Reach-1	5.46	50 Year	12.69	196.43	197.98	197.70	198.06	1.38	14.75	33.56	0.45
Reach-1	5.46	100 Year	15.60	196.43	198.07	197.80	198.16	1.49	17.71	36.70	0.47
Reach-1	5.46	Regional	198.16	196.43	200.90		201.02	2.31	181.55	67.16	0.37
Reach-1	5.45	2 Year	5.89	196.01	196.92		197.04	1.58	3.73	7.42	0.71
Reach-1	5.45	5 Year	7.83	196.01	197.04		197.18	1.66	4.72	8.34	0.70
Reach-1	5.45	10 Year	9.04	196.01	197.10		197.25	1.73	5.22	8.76	0.72
Reach-1	5.45	25 Year	10.55	196.01	197.18	197.02	197.33	1.72	6.12	15.92	0.89
Reach-1	5.45	50 Year	12.69	196.01	197.27		197.41	1.70	7.49	16.50	0.80
Reach-1	5.45	100 Year	15.60	196.01	197.34		197.50	1.79	8.74	17.02	0.80
Reach-1	5.45	Regional	198.16	196.01	200.73		200.88	1.67	118.36	48.05	0.34
Reach-1	5.44	2 Year	10.32	195.43	196.90		196.91	0.46	29.42	36.53	0.14
Reach-1	5.44	5 Year	13.25	195.43	197.03		197.04	0.53	34.06	38.95	0.15
Reach-1	5.44	10 Year	14.82	195.43	197.09		197.10	0.56	36.39	40.10	0.16
Reach-1	5.44	25 Year	16.70	195.43	197.15		197.17	0.59	39.13	41.42	0.16
Reach-1	5.44	50 Year	18.87	195.43	197.23		197.24	0.62	42.34	42.92	0.17
Reach-1	5.44	100 Year	21.08	195.43	197.30		197.32	0.65	45.82	52.52	0.17
Reach-1	5.44	Regional	252.81	195.43	200.70		200.75	1.44	400.25	178.44	0.21
Reach-1	5.435	2 Year	10.32	195.27	196.81		196.85	0.87	11.81	18.09	0.35
Reach-1	5.435	5 Year	13.25	195.27	196.92		196.97	0.95	13.92	19.78	0.36
Reach-1	5.435	10 Year	14.82	195.27	196.98		197.03	0.99	14.99	20.59	0.37
Reach-1	5.435	25 Year	16.70	195.27	197.04		197.09	1.03	16.36	23.59	0.37
Reach-1	5.435	50 Year	18.87	195.27	197.11		197.17	1.06	18.23	27.73	0.36
	255		_0.07				,,				5.55

Existing Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_ExRev2_Apr2020.prj"

Plan: Plan Ex Updated

Geometry: Basin 5-Updated at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.435	100 Year	21.08	195.27	197.18		197.24	1.09	20.35	31.80	0.36
Reach-1	5.435	Regional	252.81	195.27	200.65		200.71	1.47	365.31	181.39	0.22
Reach-1	5.43	2 Year	11.20	195.31	196.70		196.72	0.62	17.92	36.02	0.28
Reach-1	5.43	5 Year	14.39	195.31	196.83		196.85	0.64	22.72	41.53	0.26
Reach-1	5.43	10 Year	16.21	195.31	196.89		196.91	0.65	25.23	44.68	0.26
Reach-1	5.43	25 Year	18.42	195.31	196.96		196.98	0.67	28.52	47.93	0.25
Reach-1	5.43	50 Year	20.93	195.31	197.04		197.06	0.68	32.63	51.05	0.24
Reach-1	5.43	100 Year	23.42	195.31	197.12		197.14	0.69	36.80	53.37	0.23
Reach-1	5.43	Regional	259.19	195.31	200.64		200.68	1.05	421.01	208.33	0.16
Reach-1	5.425	2 Year	11.20	195.27	196.51		196.56	0.99	11.30	16.07	0.38
Reach-1	5.425	5 Year	14.39	195.27	196.64		196.70	1.06	13.65	20.12	0.38
Reach-1	5.425	10 Year	16.21	195.27	196.70		196.76	1.11	14.89	21.99	0.38
Reach-1	5.425	25 Year	18.42	195.27	196.78		196.84	1.15	16.64	24.38	0.38
Reach-1	5.425	50 Year	20.93	195.27	196.87		196.94	1.18	19.02	27.40	0.37
Reach-1	5.425	100 Year	23.42	195.27	196.96		197.03	1.20	21.58	30.52	0.36
Reach-1	5.425	Regional	259.19	195.27	200.60		200.66	1.45	328.05	137.33	0.21
Reach-1	5.42	2 Year	11.20	194.93	196.33		196.50	1.83	6.34	12.23	0.71
Reach-1	5.42	5 Year	14.39	194.93	196.47	196.29	196.64	1.86	8.99	24.05	0.66
Reach-1	5.42	10 Year	16.21	194.93	196.55	196.37	196.71	1.85	11.13	30.32	0.62
Reach-1	5.42	25 Year	18.42	194.93	196.70		196.81	1.63	16.27	37.55	0.51
Reach-1	5.42	50 Year	20.93	194.93	196.83		196.92	1.48	21.49	39.55	0.43
Reach-1	5.42	100 Year	23.42	194.93	196.94		197.02	1.40	25.90	41.17	0.39
Reach-1	5.42	Regional	259.19	194.93	200.60		200.65	1.50	352.01	169.47	0.21
Reach-1	5.41	2 Year	11.20	194.93	196.32	196.06	196.46	1.66	7.43	17.46	0.57
Reach-1	5.41	5 Year	14.39	194.93	196.46	196.21	196.61	1.77	9.19	17.71	0.56
Reach-1	5.41	10 Year	16.21	194.93			196.69	1.83	10.06	18.09	0.56
Reach-1	5.41	25 Year	18.42	194.93		196.35	196.78	1.91	11.03	18.54	0.57
Reach-1	5.41	50 Year	20.93		196.69	196.41	196.88	1.99	12.06	22.12	0.57
Reach-1	5.41	100 Year	23.42	194.93	196.77	196.47	196.97	2.07	13.03	22.84	0.58
Reach-1	5.41	Regional	259.19	194.93	200.55	199.41	200.63	2.09	341.53	264.89	0.30
Reach-1	5.405		Bridge								
			44.00	10100	10010	405	10001			10.04	
Reach-1	5.40	2 Year	11.20	194.93	196.18	195.75	196.24	1.15	11.03	18.84	0.37
Reach-1	5.40	5 Year	14.39	194.93	196.34	195.84	196.41	1.25	13.08	19.42	0.37
Reach-1	5.40	10 Year	16.21	194.93	196.42	195.88	196.49	1.32	13.95	19.57	0.38
Reach-1	5.40	25 Year	18.42	194.93	196.49	195.93	196.57	1.41	14.82	19.72	0.40
Reach-1	5.40	50 Year	20.93	194.93	196.55	195.99	196.65	1.52	15.64	19.86	0.42
Reach-1	5.40	100 Year	23.42	194.93	196.61	196.04	196.73	1.62	16.39	19.96	0.43
Reach-1	5.40	Regional	259.19	194.93	199.89	199.01	200.09	2.85	224.23	196.02	0.42

Existing Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_ExRev2_Apr2020.prj"

Plan: Plan Ex Updated

Geometry: Basin 5-Updated at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.38	2 Year	11.20	194.70	195.99		196.08	1.32	8.53	11.75	0.46
Reach-1	5.38	5 Year	14.39	194.70	196.18		196.27	1.34	11.67	20.63	0.43
Reach-1	5.38	10 Year	16.21	194.70	196.26		196.35	1.37	13.45	25.13	0.43
Reach-1	5.38	25 Year	18.42	194.70	196.33		196.43	1.43	15.42	29.34	0.43
Reach-1	5.38	50 Year	20.93	194.70	196.40		196.51	1.50	17.56	33.29	0.44
Reach-1	5.38	100 Year	23.42	194.70	196.46		196.57	1.55	19.70	36.31	0.44
Reach-1	5.38	Regional	259.19	194.70	199.93		199.98	1.51	376.74	229.24	0.22
Reach-1	5.37	2 Year	11.20	194.30	195.55		195.62	1.12	9.96	11.07	0.38
Reach-1	5.37	5 Year	14.39	194.30	195.75		195.82	1.15	12.55	15.30	0.40
Reach-1	5.37	10 Year	16.21	194.30	195.82		195.90	1.18	13.74	16.99	0.42
Reach-1	5.37	25 Year	18.42	194.30	195.89		195.97	1.24	14.92	20.48	0.43
Reach-1	5.37	50 Year	20.93	194.30	195.95		196.03	1.32	16.21	25.25	0.45
Reach-1	5.37	100 Year	23.42	194.30	195.99		196.09	1.39	17.55	29.38	0.46
Reach-1	5.37	Regional	259.19	194.30	199.85		199.93	1.56	340.12	175.71	0.23
Reach-1	5.36	2 Year	11.20	193.95	195.35		195.40	0.98	11.48	11.24	0.30
Reach-1	5.36	5 Year	14.39	193.95	195.54		195.59	1.05	15.26	50.07	0.31
Reach-1	5.36	10 Year	16.21	193.95	195.60		195.66	1.09	19.11	64.99	0.31
Reach-1	5.36	25 Year	18.42	193.95	195.66		195.72	1.13	23.75	88.27	0.32
Reach-1	5.36	50 Year	20.93	193.95	195.73		195.78	1.15	29.97	109.14	0.31
Reach-1	5.36	100 Year	23.42	193.95	195.79		195.84	1.14	36.87	110.89	0.31
Reach-1	5.36	Regional	259.19	193.95	199.86		199.88	0.78	547.97	134.95	0.11
Reach-1	5.35	2 Year	11.20	193.75	195.02		195.12	1.42	8.50	12.85	0.47
Reach-1	5.35	5 Year	14.39	193.75	195.21		195.31	1.44	11.52	25.84	0.49
Reach-1	5.35	10 Year	16.21	193.75	195.30		195.40	1.43	14.95	45.52	0.46
Reach-1	5.35	25 Year	18.42	193.75	195.40		195.48	1.38	19.42	47.95	0.43
Reach-1	5.35	50 Year	20.93				195.57	1.34		50.45	0.40
Reach-1	5.35	100 Year	23.42	193.75			195.65	1.30	28.91	52.74	0.37
Reach-1	5.35	Regional	259.19	193.75	199.82		199.86	1.24	378.84	110.69	0.17
Reach-1	5.34	2 Year	11.20				194.91	0.78	14.32	12.46	0.23
Reach-1	5.34	5 Year	14.39	193.30			195.09	0.87	16.50	13.25	0.25
Reach-1	5.34	10 Year	16.21	193.30			195.18	0.92	17.62	13.72	0.26
Reach-1	5.34	25 Year	18.42				195.28	0.97	18.92	14.24	0.27
Reach-1	5.34	50 Year	20.93				195.38	1.03	20.32	14.84	0.28
Reach-1	5.34	100 Year	23.42	193.3	195.41		195.47	1.08	21.65	15.49	0.29
Reach-1	5.34	Regional	259.19	193.3	199.76		199.82	1.31	323.62	130.21	0.19
							40.5				
Reach-1	5.33	2 Year	11.2	193.3			194.89	1.36	8.24	8.7	0.45
Reach-1	5.33	5 Year	14.39	193.3		194.44	195.06	1.5	9.62	9.31	0.47
Reach-1	5.33	10 Year	16.21	193.3	195.02	194.51	195.15	1.57	10.32	9.6	0.48

Existing Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_ExRev2_Apr2020.prj"

Plan: Plan Ex Updated

Geometry: Basin 5-Updated at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.33	25 Year	18.42	193.3	195.1	194.59	195.24	1.66	11.1	9.93	0.5
Reach-1	5.33	50 Year	20.93	193.3	195.19	194.67	195.34	1.75	11.93	10.25	0.52
Reach-1	5.33	100 Year	23.42	193.3	195.26	194.75	195.43	1.85	12.69	10.55	0.54
Reach-1	5.33	Regional	259.19	193.3	199.23	197.79	199.7	3.01	86.12	26.41	0.53
Reach-1	5.325		Bridge								
Reach-1	5.32	2 Year	11.2	193.29	194.69	194.29	194.81	1.51	7.42	8.31	0.51
Reach-1	5.32	5 Year	14.39	193.29	194.84	194.43	194.98	1.66	8.64	8.88	0.54
Reach-1	5.32	10 Year	16.21	193.29	194.9	194.49	195.06	1.76	9.21	9.13	0.56
Reach-1	5.32	25 Year	18.42	193.29	194.96	194.57	195.14	1.88	9.82	9.39	0.59
Reach-1	5.32	50 Year	20.93	193.29	195.03	194.66	195.23	2.01	10.4	9.64	0.62
Reach-1	5.32	100 Year	23.42	193.29	195.07	194.74	195.31	2.16	10.86	9.82	0.66
Reach-1	5.32	Regional	259.19	193.29	197.78	197.78	199.04	4.97	52.18	20.65	1
Reach-1	5.30	2 Year	11.2	193.2	194.46		194.55	1.35	8.3	15.52	0.46
Reach-1	5.30	5 Year	14.39	193.2	194.62		194.71	1.39	12.68	29.98	0.44
Reach-1	5.30	10 Year	16.21	193.2	194.69		194.78	1.41	14.83	32.44	0.43
Reach-1	5.30	25 Year	18.42	193.2	194.76		194.86	1.44	17.27	39.7	0.43
Reach-1	5.30	50 Year	20.93	193.2	194.83		194.92	1.48	20.51	55.39	0.43
Reach-1	5.30	100 Year	23.42	193.2	194.88		194.98	1.51	23.62	57.5	0.43
Reach-1	5.30	Regional	259.19	193.2	196.4		196.63	3.09	149.26	97.89	0.59

Proposed Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_Pr_Opt4_Apr2020.prj"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.53	2 Year	5.89	198.60	200.21		200.23	0.54	14.20	38.57	0.17
Reach-1	5.53	5 Year	7.83	198.60	200.58		200.58	0.44	32.77	60.62	0.12
Reach-1	5.53	10 Year	9.04	198.60	200.73		200.73	0.43	42.34	66.19	0.11
Reach-1	5.53	25 Year	10.55	198.60	200.87		200.88	0.42	52.29	71.52	0.10
Reach-1	5.53	50 Year	12.69	198.60	201.02		201.02	0.44	63.18	76.67	0.10
Reach-1	5.53	100 Year	15.60	198.60	201.20		201.20	0.45	76.88	77.70	0.10
Reach-1	5.53	Regional	198.16	198.60	204.14		204.18	1.41	334.59	107.81	0.20
Reach-1	5.52	2 Year	5.89	198.20	200.15		200.17	0.69	14.16	14.32	0.18
Reach-1	5.52	5 Year	7.83	198.20	200.53		200.55	0.68	19.78	15.17	0.16
Reach-1	5.52	10 Year	9.04	198.20	200.69		200.70	0.71	22.11	15.51	0.16
Reach-1	5.52	25 Year	10.55	198.20	200.83		200.85	0.76	24.34	15.82	0.17
Reach-1	5.52	50 Year	12.69	198.20	200.97		200.99	0.85	26.59	16.13	0.18
Reach-1	5.52	100 Year	15.60	198.20	201.14		201.17	0.95	29.44	18.46	0.19
Reach-1	5.52	Regional	198.16	198.20	202.91	202.34	203.81	5.79	104.94	85.61	0.90
Reach-1	5.51	2 Year	5.89	198.20	199.85	199.46	200.10	2.23	2.70	18.68	0.61
Reach-1	5.51	5 Year	7.83	198.20	200.18	199.67	200.47	2.38	3.37	18.85	0.58
Reach-1	5.51	10 Year	9.04	198.20	200.69	199.78	200.70	0.58	32.48	19.11	0.13
Reach-1	5.51	25 Year	10.55	198.20	200.83	199.93	200.84	0.63	35.22	19.19	0.13
Reach-1	5.51	50 Year	12.69	198.20	200.97	200.11	200.99	0.70	37.95	19.26	0.14
Reach-1	5.51	100 Year	15.60	198.20	201.15	200.36	201.16	0.80	41.24	19.35	0.16
Reach-1	5.51	Regional	198.16	198.20	203.00	201.77	203.65	5.59	84.56	77.30	0.85
Reach-1	5.505		Culvert								
Reach-1	5.50	2 Year	5.89	198.00	199.18	199.00	199.22	0.98	10.77	23.58	0.34
Reach-1	5.50	5 Year	7.83	198.00	199.30	199.00	199.34	1.06	13.64	23.88	0.34
Reach-1	5.50	10 Year	9.04	198.00	199.36	199.03	199.40	1.12	15.09	24.03	0.35
Reach-1	5.50	25 Year	10.55	198.00	199.43	199.08	199.48	1.18	16.71	24.19	0.36
Reach-1	5.50	50 Year	12.69	198.00	199.51	199.13	199.57	1.28	18.77	24.40	0.37
Reach-1	5.50	100 Year	15.60	198.00	199.61	199.20	199.67	1.40	21.09	24.64	0.40
Reach-1	5.50	Regional	198.16	198.00	201.50	201.16	202.33	5.54	72.04	29.17	0.99
Reach-1	5.49	2 Year	5.89	197.91	199.14		199.20	1.14	8.19	24.55	0.41
Reach-1	5.49	5 Year	7.83	197.91	199.26		199.32	1.22	11.47	28.90	0.40
Reach-1	5.49	10 Year	9.04	197.91	199.33		199.39	1.25	13.32	29.64	0.40
Reach-1	5.49	25 Year	10.55	197.91	199.40		199.46	1.30	15.44	30.47	0.40
Reach-1	5.49	50 Year	12.69	197.91	199.49		199.55	1.37	18.17	31.51	0.41

Proposed Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_Pr_Opt4_Apr2020.prj"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.49	100 Year	15.60	197.91	199.58		199.66	1.46	21.33	32.67	0.42
Reach-1	5.49	Regional	198.16	197.91	201.69		202.07	4.17	133.48	89.41	0.73
Reach-1	5.48	2 Year	5.89	197.53	198.82		198.86	0.91	6.64	11.50	0.35
Reach-1	5.48	5 Year	7.83	197.53	198.94		198.99	1.01	8.42	19.35	0.36
Reach-1	5.48	10 Year	9.04	197.53	199.01		199.07	1.07	9.95	26.78	0.36
Reach-1	5.48	25 Year	10.55	197.53	199.09		199.15	1.11	12.43	35.70	0.36
Reach-1	5.48	50 Year	12.69	197.53	199.18		199.24	1.18	16.08	45.78	0.37
Reach-1	5.48	100 Year	15.60	197.53	199.28		199.35	1.25	21.03	52.90	0.37
Reach-1	5.48	Regional	198.16	197.53	201.19		201.45	3.12	138.00	69.12	0.57
Reach-1	5.47	2 Year	5.89	197.29	198.22		198.34	1.53	3.87	8.25	0.67
Reach-1	5.47	5 Year	7.83	197.29	198.33		198.47	1.67	4.87	10.69	0.69
Reach-1	5.47	10 Year	9.04	197.29	198.38		198.54	1.76	5.44	11.85	0.71
Reach-1	5.47	25 Year	10.55	197.29	198.42	198.31	198.60	1.92	5.94	13.95	0.75
Reach-1	5.47	50 Year	12.69	197.29	198.49	198.40	198.70	2.06	7.13	21.31	0.77
Reach-1	5.47	100 Year	15.60	197.29	198.57	198.53	198.80	2.19	9.30	28.45	0.77
Reach-1	5.47	Regional	198.16	197.29	201.05		201.13	1.95	205.35	100.40	0.34
Reach-1	5.46	2 Year	5.89	196.43	197.65	197.30	197.71	1.13	5.70	19.18	0.44
Reach-1	5.46	5 Year	7.83	196.43	197.76		197.84	1.23	8.32	24.98	0.45
Reach-1	5.46	10 Year	9.04	196.43	197.82	197.47	197.90	1.27	9.94	27.68	0.45
Reach-1	5.46	25 Year	10.55	196.43	197.92	197.54	197.99	1.27	12.68	31.16	0.43
Reach-1	5.46	50 Year	12.69	196.43	198.00	197.69	198.08	1.34	15.41	34.29	0.43
Reach-1	5.46	100 Year	15.60	196.43	198.09	197.80	198.18	1.45	18.55	37.56	0.45
Reach-1	5.46	Regional	198.16	196.43	200.88		201.01	2.32	180.74	67.09	0.38
Reach-1	5.45	2 Year	5.89	196.01	196.90		197.04	1.63	3.60	7.30	0.74
Reach-1	5.45	5 Year	7.83	196.01			197.17	1.72	4.55	8.19	0.74
Reach-1	5.45	10 Year	9.04	196.01	197.08		197.24	1.80	5.02	8.60	0.75
Reach-1	5.45	25 Year	10.55	196.01		197.02	197.33	1.86	5.66	11.86	0.86
Reach-1	5.45	50 Year	12.69	196.01		197.09	197.40	1.84	6.89	16.25	0.90
Reach-1	5.45	100 Year	15.60	196.01	197.29	197.26	197.49	1.96	7.97	16.71	0.90
Reach-1	5.45	Regional	198.16	196.01	200.72		200.86	1.68	117.64	47.99	0.34
Reach-1	5.44	2 Year	10.32	195.43	196.89		196.90	0.47	28.80	36.20	0.14
Reach-1	5.44	5 Year	13.25	195.43	197.01		197.02	0.54	33.26	38.54	0.16
Reach-1	5.44	10 Year	14.82	195.43	197.06		197.08	0.57	35.46	39.65	0.16
Reach-1	5.44	25 Year	16.70	195.43			197.14	0.60	38.04	40.90	0.17
Reach-1	5.44	50 Year	18.87	195.43	197.19		197.21	0.64	40.82	42.21	0.17

Proposed Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_Pr_Opt4_Apr2020.prj"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

	New 2019	1.000		Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.44	100 Year	21.08	195.43	197.26		197.28	0.68	43.56	45.90	0.18
Reach-1	5.44	Regional	252.81	195.43	200.68		200.73	1.44	397.46	177.06	0.21
		- Ŭ									
Reach-1	5.435	2 Year	10.32	195.27	196.79		196.83	0.91	11.38	17.72	0.36
Reach-1	5.435	5 Year	13.25	195.27	196.89		196.94	0.99	13.32	19.32	0.38
Reach-1	5.435	10 Year	14.82	195.27	196.94		197.00	1.04	14.29	20.07	0.39
Reach-1	5.435	25 Year	16.70	195.27	197.00		197.06	1.08	15.46	21.31	0.40
Reach-1	5.435	50 Year	18.87	195.27	197.06		197.12	1.13	16.82	24.66	0.40
Reach-1	5.435	100 Year	21.08	195.27	197.11		197.19	1.18	18.29	27.86	0.41
Reach-1	5.435	Regional	252.81	195.27	200.63		200.70	1.48	362.22	181.27	0.23
Reach-1	5.43	2 Year	11.20	195.31	196.65		196.68	0.70	16.09	34.38	0.32
Reach-1	5.43	5 Year	14.39	195.31	196.76		196.79	0.71	20.18	38.07	0.31
Reach-1	5.43	10 Year	16.21	195.31	196.82		196.85	0.73	22.40	41.12	0.30
Reach-1	5.43	25 Year	18.42	195.31	196.89		196.91	0.74	25.21	44.66	0.29
Reach-1	5.43	50 Year	20.93	195.31	196.95		196.98	0.76	28.33	47.75	0.29
Reach-1	5.43	100 Year	23.42	195.31	197.02		197.05	0.78	31.43	50.36	0.28
Reach-1	5.43	Regional	259.19	195.31	200.63		200.67	1.06	417.45	206.76	0.16
Reach-1	5.425	2 Year	11.20	195.27	196.26	196.06	196.37	1.47	7.63	13.30	0.62
Reach-1	5.425	5 Year	14.39	195.27	196.41	196.16	196.52	1.46	9.83	15.02	0.58
Reach-1	5.425	10 Year	16.21	195.27	196.48	196.21	196.60	1.48	10.93	15.81	0.57
Reach-1	5.425	25 Year	18.42	195.27	196.56	196.26	196.68	1.52	12.16	16.64	0.57
Reach-1	5.425	50 Year	20.93	195.27	196.63	196.33	196.76	1.56	13.48	19.85	0.56
Reach-1	5.425	100 Year	23.42	195.27	196.70	196.38	196.83	1.61	14.81	21.87	0.56
Reach-1	5.425	Regional	259.19	195.27	200.29	198.39	200.56	2.54	127.03	115.04	0.39
Reach-1	5.405		Bridge								
Reach-1	5.40	2 Year	11.20	194.93	196.18	195.76		1.02	14.15	18.84	0.33
Reach-1	5.40	5 Year	14.39	194.93	196.35	195.84		1.08	17.45	19.43	0.32
Reach-1	5.40	10 Year	16.21	194.93	196.43	195.87	196.48	1.12	18.91	19.59	0.32
Reach-1	5.40	25 Year	18.42	194.93	196.50	195.92		1.18	20.39	19.75	0.33
Reach-1	5.40	50 Year	20.93	194.93	196.57	195.97	196.64	1.26	21.82	19.90	0.34
Reach-1	5.40	100 Year	23.42	194.93	196.64	196.01	196.71	1.33	23.08	19.99	0.35
Reach-1	5.40	Regional	259.19	194.93	199.89	198.51	200.09	2.81	223.60	196.58	0.41
Reach-1	5.38	2 Year	11.20	194.70	195.99		196.08	1.32	8.53	11.75	0.46
Reach-1	5.38	5 Year	14.39	194.70	196.18		196.27	1.34	11.67	20.63	0.43
Reach-1	5.38	10 Year	16.21	194.70	196.26		196.35	1.37	13.45	25.13	0.43

Proposed Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_Pr_Opt4_Apr2020.prj"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

Dasca on	New 201	7 1 10 W 3		Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.38	25 Year	18.42	194.70	196.33	(,	196.43	1.43	15.42	29.34	0.43
Reach-1	5.38	50 Year	20.93	194.70			196.51	1.50	17.56	33.29	0.44
Reach-1	5.38	100 Year	23.42	194.70			196.57	1.55	19.70	36.31	0.44
Reach-1	5.38	Regional	259.19	194.70	199.93		199.98	1.51	376.74	229.24	0.44
Neach-1	5.56	Regional	233.13	134.70	133.33		155.56	1.51	370.74	223.24	0.22
Reach-1	5.37	2 Year	11.20	194.30	195.55		195.62	1.12	9.96	11.07	0.38
Reach-1	5.37	5 Year	14.39	194.30			195.82	1.15	12.55	15.30	0.40
Reach-1	5.37	10 Year	16.21	194.30	195.82		195.90	1.18	13.74	16.99	0.42
Reach-1	5.37	25 Year	18.42	194.30	195.89		195.97	1.24	14.92	20.48	0.43
Reach-1	5.37	50 Year	20.93	194.30	195.95		196.03	1.32	16.21	25.25	0.45
Reach-1	5.37	100 Year	23.42	194.30	195.99		196.09	1.39	17.55	29.38	0.45
Reach-1	5.37	Regional	259.19	194.30			199.93	1.56	340.12	175.71	0.40
reacii-1	3.37	Regional	239.19	194.30	199.63		155.55	1.30	340.12	1/3./1	0.23
Reach-1	5.36	2 Year	11.20	193.95	195.35		195.40	0.98	11.48	11.24	0.30
Reach-1	5.36	5 Year	14.39	193.95	195.54		195.59	1.05	15.26	50.07	0.31
Reach-1	5.36	10 Year	16.21	193.95	195.60		195.66	1.09	19.11	64.99	0.31
Reach-1	5.36	25 Year	18.42	193.95	195.66		195.72	1.13	23.75	88.27	0.31
	5.36	50 Year	20.93	193.95	195.00		195.72			109.14	0.32
Reach-1								1.15	29.97		
Reach-1	5.36	100 Year	23.42	193.95	195.79		195.84	1.14	36.87	110.89	0.31
Reach-1	5.36	Regional	259.19	193.95	199.86		199.88	0.78	547.97	134.95	0.11
Reach-1	5.35	2 Year	11.20	193.75	195.02		195.12	1.42	8.50	12.85	0.47
Reach-1	5.35	5 Year	14.39	193.75	195.21		195.31	1.44	11.52	25.84	0.49
Reach-1	5.35	10 Year	16.21	193.75	195.30		195.40	1.43	14.95	45.52	0.45
Reach-1	5.35	25 Year	18.42	193.75	195.40		195.48	1.43	19.42	47.95	0.43
Reach-1	5.35	50 Year	20.93	193.75	195.49		195.57	1.34	24.25	50.45	0.43
		100 Year									
Reach-1	5.35		23.42	193.75	195.58 199.82		195.65 199.86	1.30	28.91 378.84	52.74	0.37
Reach-1	5.35	Regional	259.19	193.75	199.82		199.80	1.24	3/8.84	110.69	0.17
Poach 1	E 24	2 Voor	11 20	193.30	104 00		194.91	0.70	14.32	12.46	0.23
Reach-1	5.34	2 Year	11.20					0.78		12.46	
Reach-1	5.34	5 Year	14.39	193.30			195.09	0.87	16.50	13.25	0.25
Reach-1	5.34	10 Year	16.21	193.30			195.18	0.92	17.62	13.72	0.26
Reach-1	5.34	25 Year	18.42	193.30			195.28	0.97	18.92	14.24	0.27
Reach-1	5.34	50 Year	20.93				195.38	1.03	20.32	14.84	0.28
Reach-1	5.34	100 Year	23.42	193.30			195.47	1.08	21.65	15.49	0.29
Reach-1	5.34	Regional	259.19	193.30	199.76		199.82	1.31	323.62	130.21	0.19
		2.7	44.00	402.22	404.00	404.22	404.00	4.00		0.70	
Reach-1	5.33	2 Year	11.20				194.89	1.36	8.24	8.70	0.45
Reach-1	5.33	5 Year	14.39	193.30		194.44	195.06	1.50	9.62	9.31	0.47
Reach-1	5.33	10 Year	16.21	193.30	195.02	194.51	195.15	1.57	10.32	9.60	0.48

Proposed Conditions Hydraulic Analysis Summary

April 2020 Update

Model: "Basin5_Pr_Opt4_Apr2020.prj"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	5.33	25 Year	18.42	193.30	195.10	194.59	195.24	1.66	11.10	9.93	0.50
Reach-1	5.33	50 Year	20.93	193.30	195.19	194.67	195.34	1.75	11.93	10.25	0.52
Reach-1	5.33	100 Year	23.42	193.30	195.26	194.75	195.43	1.85	12.69	10.55	0.54
Reach-1	5.33	Regional	259.19	193.30	199.23	197.79	199.70	3.01	86.12	26.41	0.53
Reach-1	5.325		Bridge								
Reach-1	5.32	2 Year	11.20	193.29	194.69	194.29	194.81	1.51	7.42	8.31	0.51
Reach-1	5.32	5 Year	14.39	193.29	194.84	194.43	194.98	1.66	8.64	8.88	0.54
Reach-1	5.32	10 Year	16.21	193.29	194.90	194.49	195.06	1.76	9.21	9.13	0.56
Reach-1	5.32	25 Year	18.42	193.29	194.96	194.57	195.14	1.88	9.82	9.39	0.59
Reach-1	5.32	50 Year	20.93	193.29	195.03	194.66	195.23	2.01	10.40	9.64	0.62
Reach-1	5.32	100 Year	23.42	193.29	195.07	194.74	195.31	2.16	10.86	9.82	0.66
Reach-1	5.32	Regional	259.19	193.29	197.78	197.78	199.04	4.97	52.18	20.65	1.00
Reach-1	5.30	2 Year	11.20	193.20	194.46		194.55	1.35	8.30	15.52	0.46
Reach-1	5.30	5 Year	14.39	193.20	194.62		194.71	1.39	12.68	29.98	0.44
Reach-1	5.30	10 Year	16.21	193.2	194.69		194.78	1.41	14.83	32.44	0.43
Reach-1	5.30	25 Year	18.42	193.2	194.76		194.86	1.44	17.27	39.7	0.43
Reach-1	5.30	50 Year	20.93	193.2	194.83		194.92	1.48	20.51	55.39	0.43
Reach-1	5.30	100 Year	23.42	193.2	194.88		194.98	1.51	23.62	57.5	0.43
Reach-1	5.30	Regional	259.19	193.2	196.4		196.63	3.09	149.26	97.89	0.59
Reach-1	5.29	2 Year	11.2	192.79	194		194.11	1.44	7.76	8.17	0.47
Reach-1	5.29	5 Year	14.39	192.79	194.16		194.29	1.57	9.63	24.73	0.49
Reach-1	5.29	10 Year	16.21	192.79	194.22	193.76	194.36	1.65	11.24	30.64	0.5
Reach-1	5.29	25 Year	18.42	192.79	194.27	193.83	194.42	1.75	13.1	36.28	0.51
Reach-1	5.29	50 Year	20.93	192.79	194.33	193.91	194.49	1.84	15.25	41.88	0.53
Reach-1	5.29	100 Year	23.42	192.79	194.38	193.99	194.55	1.91	17.5	47	0.54
Reach-1	5.29	Regional	259.19	192.79	196.25		196.36	2.32	214.26	135.01	0.42

York Region Langstaff Road EA

Black Creek

Langstaff Road Improvements EA

Existing Hydraulic Modelling Summary - Black Creek

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	Vel Chnl	Flow Area	Top Width	Froude #
			(m^3/s)	(m)	(m)	(m)	(m)	(m/s)	(m^2)	(m)	
Reach-1	46.45	2-year	3.73	206.50	207.00	207.00	207.14	1.68	2.23	7.96	1.01
Reach-1	46.45	5-year	4.83	206.50	207.06	207.06	207.22	1.74	2.77	8.86	1.00
Reach-1	46.45	10-year	5.61	206.50	207.10	207.10	207.26	1.80	3.12	9.39	1.00
Reach-1	46.45	25-year	6.57	206.50	207.14	207.14	207.32	1.86	3.53		1.00
Reach-1	46.45	50-year	7.34	206.50	207.17	207.17	207.36	1.92	3.82	10.39	1.01
Reach-1	46.45	100-year	7.79	206.50		207.19	207.38	1.94	4.02	10.65	1.01
Reach-1	46.45	Regional	42.7	206.50	207.95	207.95	208.17	2.33	31.53	90.67	0.75
Reach-1		2-year	3.73	203.70	204.99		204.99	0.40	12.94	17.82	0.12
Reach-1		5-year	4.83	203.70			205.04	0.49	13.78		0.14
Reach-1		10-year	5.61	203.70	205.06		205.07	0.55	14.30		0.16
Reach-1		25-year	6.57	203.70			205.12	0.62	15.16		0.17
Reach-1		50-year	7.34	203.70	205.19		205.20	0.63	16.84		0.17
Reach-1		100-year	7.79	203.70	205.28		205.29	0.61	18.81	22.02	0.16
Reach-1	46.44	Regional	42.7	203.70	207.45		207.46	0.58	171.57	129.43	0.10
Pooch 1	16 10	2 1/22"	2 70	202.50	204.98		204.00	0.24	2F 40	E0 04	0.07
Reach-1		2-year 5-year	3.73	203.50			204.98 205.02	0.24	35.42		0.07
Reach-1 Reach-1		5-year 10-year	4.83 5.61	203.50 203.50	205.02 205.05		205.02	0.30 0.33	38.09 39.67	61.15 61.32	0.08
Reach-1		25-year	6.57	203.50	205.05		205.05	0.33	42.32	61.61	0.09
Reach-1		25-year 50-year	7.34	203.50			205.09	0.36	42.32	62.17	0.10
Reach-1		100-year	7.34	203.50			205.16	0.36	53.53	62.17	0.09
Reach-1		Regional	42.7	203.50	207.45		207.45	0.34	213.92	99.66	0.09
ACCOUNT I	70.43	regional	74.1	203.30	207.43		207.40	0.47	210.32	33.00	0.00
Reach-1	46.42	2-year	3.73	203.30	204.97		204.98	0.23	23.15	27.52	0.06
Reach-1		5-year	4.83	203.30	205.01		205.02	0.28	24.31	28.36	0.07
Reach-1		10-year	5.61	203.30			205.04	0.32	24.99	28.96	0.08
Reach-1		25-year	6.57	203.30	205.08		205.09	0.37	26.19	29.98	0.09
Reach-1		50-year	7.34	203.30	205.16		205.17	0.38	28.82	32.10	0.10
Reach-1	46.42	100-year	7.79	203.30	205.26		205.27	0.38	32.02	34.50	0.09
Reach-1	46.42	Regional	42.7	203.30	207.44		207.45	0.58	174.05	130.97	0.09
Reach-1	46.413	2-year	1.61	203.05	204.97	203.15	204.97	0.06	28.84	50.40	0.01
Reach-1	46.413		2.01	203.05		203.17		0.07	29.46		
Reach-1		10-year	2.24			203.18		0.08	29.81	50.83	
Reach-1		25-year	2.66	203.05		203.20	205.08	0.09	30.42	51.10	0.02
Reach-1		50-year	3.59	203.05	205.16	203.23	205.16	0.11	31.68	51.65	0.02
Reach-1	46.413	100-year	4.75	203.05	205.26	203.27	205.26	0.14	33.11	52.28	0.03
Reach-1	46.413	Regional	42.7	203.05	207.43	203.98	207.44	0.35	219.81	99.68	0.05
Reach-1	46.4125		Inl Struct								
				_							
Reach-1	46.412		1.61	203.05		203.15	203.33	0.39	4.12		0.24
Reach-1	46.412	_	2.01	203.05		203.17	203.44	0.35	5.79		0.18
Reach-1		10-year	2.24	203.05		203.18	203.53	0.31	7.13		0.15
Reach-1		25-year	2.66	203.05		203.20	203.66	0.29	9.09	26.11	0.12
Reach-1		50-year	3.59	203.05		203.23	203.78	0.33	10.86		0.12
Reach-1		100-year	4.75	203.05		203.27	203.91	0.37	12.81	39.03	0.13
Reach-1	46.412	Regional	42.7	203.05	207.37	203.98	207.38	0.42	161.02	94.47	0.07
Reach-1	46.4115		Culvert	@ Credit	View Road						
Reach-1	46.411	2-year	1.61	202.96	203.31	203.07	203.31	0.31	5.20	16.93	0.17
Reach-1	46.411		2.01	202.96		203.08	203.43	0.29	6.96		
Reach-1		10-year	2.24	202.96		203.09	203.52	0.27	8.34		
Reach-1		25-year	2.66	202.96		203.11	203.65	0.26	10.33		0.10
Reach-1		50-year	3.59	202.96		203.14	203.77	0.30	12.07	31.76	0.11
Reach-1		100-year	4.75	202.96		203.18		0.34	13.99		0.11
Reach-1		Regional	42.7	202.96		203.90		0.41	179.93		0.07
		- 3									

Existing Hydraulic Modelling Summary - Black Creek

Reach	River Sta	Profile	Q Total	Min Ch Fl	W.S. Elev	Crit W.S.	E.G. Elev	Vel Chnl	Flow Area	Top Width	Froude #
rtodon	Triver Ota	1 101110	(m ³ /s)	(m)	(m)	(m)	(m)	(m/s)	(m ²)	(m)	110000 11
			(11175)	(111)	(111)	(111)	(111)	(111/5)	(111)	(111)	
Reach-1	46 41	2-year	3.07	202.50	203.24		203.25	0.56	6.35	19.32	0.24
Reach-1		5-year	4.07	202.50	203.27		203.39	0.57	9.33	25.52	0.22
Reach-1		10-year	4.85	202.50	203.47		203.49	0.57	12.15	30.26	0.21
Reach-1		25-year	5.93	202.50	203.62		203.63	0.53	19.20	76.27	0.18
Reach-1		50-year	6.83	202.50	203.75		203.75	0.45	29.51	82.90	0.14
Reach-1		100-year	7.62	202.50	203.88		203.89	0.37	41.32	89.89	0.11
Reach-1		Regional	47.8		206.91		206.91	0.20	393.09	131.61	0.03
11000111	10111	rtogionai	11.10	202.00	200.01		200.01	0.20	000.00	101101	0.00
Reach-1	46.402	2-vear	3.07	202.40	203.16	202.64	203.17	0.47	6.47	13.29	0.17
Reach-1	46.402		4.07	202.40	203.30	202.68	203.31	0.53	7.65	14.40	0.18
Reach-1		10-year	4.85	202.40	203.41	202.72	203.42	0.57	8.54	15.24	0.18
Reach-1		25-year	5.93	202.40	203.56	202.77	203.57	0.60	9.82	16.45	0.18
Reach-1		50-year	6.83	202.40	203.69	202.81	203.71	0.62	10.99	17.54	0.17
Reach-1		100-year	7.62	202.40	203.84	202.84	203.86	0.62	12.23	18.71	0.17
Reach-1		Regional	47.8	202.40	206.90	203.88	206.90	0.36	329.94	241.16	0.05
Reach-1	46.4015		Culvert	@ Highwa	y 400, 3 Ce	ll - 2.4 m W	x 2.4 m H	x 80 m L C	oncrete Box	c Culverts	
Reach-1	46.401	2-year	3.07	202.40	203.13	202.64	203.14	0.49	6.23	13.06	0.18
Reach-1	46.401		4.07	202.40	203.27	202.68	203.28	0.55	7.36	14.13	0.19
Reach-1	46.401	10-year	4.85	202.40	203.37	202.72	203.39	0.59	8.23	14.95	0.19
Reach-1		25-year	5.93	202.40	203.52	202.77	203.54	0.62	9.49	16.13	0.19
Reach-1	46.401	50-year	6.83	202.40	203.65	202.81	203.67	0.64	10.65	17.22	0.18
Reach-1	46.401	100-year	7.62	202.40	203.80	202.84	203.82	0.64	11.90	18.40	0.17
Reach-1	46.401	Regional	47.8	202.40	206.55	203.88	206.56	0.57	233.89	250.91	0.09
Reach-1	46.392		3.07	202.50	203.06	202.74	203.08	0.64	4.80	12.32	0.27
Reach-1	46.392	5-V02r	4.07	202.50	203.20	202.78	203.22	0.68	5.98	13.08	0.26
Reach-1	46.392	10-year	4.85	202.50	203.30	202.82	203.33	0.70	6.90	13.67	0.25
Reach-1 Reach-1	46.392 46.392	10-year 25-year	4.85 5.93	202.50 202.50	203.30 203.46	202.82 202.87	203.33 203.49	0.70 0.72	6.90 8.24	13.67 14.52	0.25 0.23
Reach-1 Reach-1 Reach-1	46.392 46.392 46.392	10-year 25-year 50-year	4.85 5.93 6.83	202.50 202.50 202.50	203.30 203.46 203.60	202.82 202.87 202.90	203.33 203.49 203.63	0.70 0.72 0.72	6.90 8.24 9.48	13.67 14.52 15.32	0.25 0.23 0.22
Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392	10-year 25-year 50-year 100-year	4.85 5.93 6.83 7.62	202.50 202.50 202.50 202.50	203.30 203.46 203.60 203.76	202.82 202.87 202.90 202.93	203.33 203.49 203.63 203.78	0.70 0.72 0.72 0.70	6.90 8.24 9.48 10.82	13.67 14.52 15.32 16.17	0.25 0.23 0.22 0.20
Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392	10-year 25-year 50-year	4.85 5.93 6.83 7.62	202.50 202.50 202.50 202.50	203.30 203.46 203.60 203.76	202.82 202.87 202.90	203.33 203.49 203.63 203.78	0.70 0.72 0.72 0.70	6.90 8.24 9.48 10.82	13.67 14.52 15.32	0.25 0.23 0.22 0.20 0.10
Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392	10-year 25-year 50-year 100-year Regional	4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50	203.30 203.46 203.60 203.76 206.54	202.82 202.87 202.90 202.93 203.96	203.33 203.49 203.63 203.78 206.55	0.70 0.72 0.72 0.70 0.64	6.90 8.24 9.48 10.82 140.52	13.67 14.52 15.32 16.17 166.93	0.25 0.23 0.22 0.20 0.10
Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392	10-year 25-year 50-year 100-year Regional	4.85 5.93 6.83 7.62	202.50 202.50 202.50 202.50 202.50	203.30 203.46 203.60 203.76 206.54	202.82 202.87 202.90 202.93 203.96	203.33 203.49 203.63 203.78 206.55	0.70 0.72 0.72 0.70 0.64	6.90 8.24 9.48 10.82 140.52	13.67 14.52 15.32 16.17 166.93	0.25 0.23 0.22 0.20 0.10
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391	10-year 25-year 50-year 100-year Regional	4.85 5.93 6.83 7.62 47.8 Mult Open	202.50 202.50 202.50 202.50 202.50 ing @Lang	203.30 203.46 203.60 203.76 206.54 gstaff Road	202.82 202.87 202.90 202.93 203.96	203.33 203.49 203.63 203.78 206.55	0.70 0.72 0.72 0.70 0.64	6.90 8.24 9.48 10.82 140.52	13.67 14.52 15.32 16.17 166.93	0.25 0.23 0.22 0.20 0.10
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07	202.50 202.50 202.50 202.50 202.50 202.40	203.30 203.46 203.60 203.76 206.54 205.54	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6	6.90 8.24 9.48 10.82 140.52 0 m L Con	13.67 14.52 15.32 16.17 166.93 crete Box (0.25 0.23 0.22 0.20 0.10 Culverts
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07	202.50 202.50 202.50 202.50 202.50 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.01	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80	0.25 0.23 0.22 0.20 0.10 Culverts
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.01 203.15 203.25	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66	6.90 8.24 9.48 10.82 140.52 0 m L Cono 5.26 6.41 7.33	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93	202.50 202.50 202.50 202.50 202.50 ing @Lang 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 gstaff Road 203.01 203.15 203.25 203.41	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68	6.90 8.24 9.48 10.82 140.52 0 m L Con 5.26 6.41 7.33 8.67	13.67 14.52 15.32 16.17 166.93 crete Box (12.80 13.39 14.25	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 50-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68	6.90 8.24 9.48 10.82 140.52 0 m L Con 5.26 6.41 7.33 8.67 9.93	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05 15.93	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20 0.19
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 50-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68	6.90 8.24 9.48 10.82 140.52 0 m L Con 5.26 6.41 7.33 8.67 9.93	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45	202.82 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45	6.90 8.24 9.48 10.82 140.52 0 m L Con 5.26 6.41 7.33 8.67 9.93 11.30 130.23	13.67 14.52 15.32 16.17 166.93 2 rete Box (12.06 12.80 13.39 14.25 15.05 15.93 166.34	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.23 0.29 0.10 0.10
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 50-year 100-year Regional 2-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45	6.90 8.24 9.48 10.82 140.52 0 m L Con 5.26 6.41 7.33 8.67 9.93 11.30 130.23	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20 0.19 0.07
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional Regional 2-year 5-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87 202.62 202.62	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 5-year 100-year 100-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10 203.22	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87 202.62 202.62	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19
Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 50-year 100-year 100-year 25-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10 203.22 203.39	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87 202.62 202.67 202.70 202.74	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.68 0.69 0.67 0.45 0.51 0.51 0.50	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 100-year 100-year 100-year 25-year 10-year 5-year 10-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10 203.22 203.39 203.54	202.82 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.80 202.80 202.80 202.80 202.72 202.74 202.77	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.69 0.67 0.45 0.51 0.51 0.50 0.49	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.29 0.19 0.07 0.24 0.21 0.19 0.17 0.15
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.393 46.39 46.39	10-year 25-year 100-year Regional 2-year 50-year 10-year 25-year 100-year Regional 2-year 100-year 100-year 2-year 5-year 10-year 25-year 10-year 10-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 203.22 203.39 203.54 203.70	202.82 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87 202.62 202.67 202.70 202.74 202.77 202.80	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.50 0.49 0.46	6.90 8.24 9.48 10.82 140.52 0 m L Conc 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.393 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 100-year 100-year 100-year 25-year 10-year 5-year 10-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 203.22 203.39 203.54 203.70	202.82 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.80 202.80 202.80 202.80 202.72 202.74 202.77	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.69 0.67 0.45 0.51 0.51 0.50 0.49	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 5-year 100-year 25-year 10-year 10-year 25-year 10-year 25-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 203.22 203.39 203.54 203.70 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87 202.62 202.67 202.70 202.74 202.77 202.80 203.62	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.50 0.49 0.46 0.38	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13 0.06
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 5-year 100-year 5-year 10-year 5-year 10-year 25-year 10-year 25-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07	202.50 202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 206.45 202.96 203.10 203.22 203.39 203.54 203.70 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.83 203.87 202.62 202.67 202.70 202.74 202.77 202.80 203.62	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.51 0.51 0.50 0.49 0.46	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.19 0.17 0.15 0.13 0.06
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 5-year 10-year 25-year 10-year 10-year 25-year 10-year 25-year 50-year 100-year 50-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 203.22 203.39 203.54 203.70 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.87 202.67 202.70 202.74 202.77 202.80 203.62 202.63 202.63 202.63	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.49 0.46 0.38	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40 18.20 20.75	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13 0.06 0.32 0.28
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39	10-year 25-year 100-year Regional 2-year 50-year 10-year 25-year 10-year Regional 2-year 100-year Regional 2-year 50-year 10-year 25-year 10-year 25-year 10-year 25-year 100-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.50 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 203.22 203.39 203.54 203.70 206.45	202.82 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.67 202.77 202.77 202.80 203.62 202.63 202.63 202.63 202.63 202.68	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.69 0.67 0.45 0.51 0.51 0.51 0.50 0.49 0.46 0.38	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56 4.31 5.70 6.73	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40 18.20 20.75 22.20	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13 0.06 0.32 0.28 0.26
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39	10-year 25-year 100-year Regional 2-year 50-year 10-year 25-year 10-year 25-year 100-year Regional 2-year 5-year 10-year 25-year 10-year 25-year 100-year 100-year 50-year 100-year 25-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.50 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 203.22 203.39 203.54 203.70 206.45	202.82 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.67 202.77 202.77 202.80 203.62 202.68 202.72 202.76 202.77 202.80 203.62	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45 202.93 203.09 203.21 203.38	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.50 0.49 0.46 0.38 0.71 0.72 0.72 0.72	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56 4.31 5.70 6.73 8.20	13.67 14.52 15.32 16.17 166.93 crete Box (12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40 18.20 20.75 22.20 24.24	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13 0.06 0.32 0.28 0.26 0.24
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.38 46.38 46.38 46.382 46.382 46.382	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 50-year 100-year 25-year 10-year 25-year 10-year 25-year 10-year 100-year 100-year 100-year 100-year 100-year 100-year 100-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.50 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10 203.22 203.39 203.54 203.70 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.76 202.80 202.83 203.87 202.62 202.67 202.70 202.74 202.77 202.80 203.62 202.63 202.63 202.63 202.68 202.72 202.76 202.76 202.76 202.70	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.51 0.51 0.72 0.72 0.72 0.72 0.72	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56 4.31 5.70 6.73 8.20 9.54	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40 18.20 20.75 22.20 24.24 26.12	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13 0.06 0.32 0.28 0.26 0.24 0.21
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 5-year 10-year 25-year 10-year 25-year 100-year Regional 2-year 50-year 100-year Regional 2-year 50-year 100-year 100-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.50 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10 203.22 203.39 203.54 203.54 203.70 206.45 203.70 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.68 202.72 202.76 202.80 202.67 202.70 202.74 202.77 202.80 203.62 202.63 202.63 202.63 202.63 202.68 202.72 202.76 202.76 202.80 202.80 202.80	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45 202.93 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.51 0.51 0.51 0.72 0.72 0.72 0.72 0.72 0.72 0.69	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56 4.31 5.70 6.73 8.20 9.54 10.99	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40 18.20 20.75 22.20 24.24 26.12 28.14	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.17 0.15 0.13 0.06 0.32 0.28 0.26 0.24 0.21 0.29 0.20
Reach-1 Reach-1	46.392 46.392 46.392 46.392 46.391 46.391 46.391 46.391 46.391 46.391 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39	10-year 25-year 50-year 100-year Regional 2-year 5-year 10-year 25-year 100-year Regional 2-year 50-year 100-year 25-year 10-year 25-year 10-year 25-year 10-year 100-year 100-year 100-year 100-year 100-year 100-year 100-year	4.85 5.93 6.83 7.62 47.8 Mult Open 3.07 4.07 4.85 5.93 6.83 7.62 47.8 3.07 4.07 4.85 5.93 6.83 7.62 47.8	202.50 202.50 202.50 202.50 202.50 202.50 202.40	203.30 203.46 203.60 203.76 206.54 206.54 203.01 203.15 203.25 203.41 203.55 203.71 206.45 202.96 203.10 203.22 203.39 203.54 203.70 206.45	202.82 202.87 202.90 202.93 203.96 I - 3 Cell - 2 202.63 202.76 202.80 202.83 203.87 202.62 202.67 202.70 202.74 202.77 202.80 203.62 202.63 202.63 202.63 202.68 202.72 202.76 202.76 202.76 202.70	203.33 203.49 203.63 203.78 206.55 2.4 m W x 2 203.03 203.17 203.27 203.43 203.58 203.74 206.46 202.97 203.12 203.23 203.40 203.55 203.71 206.45	0.70 0.72 0.72 0.70 0.64 2.4 m H x 6 0.58 0.64 0.66 0.68 0.69 0.67 0.45 0.51 0.51 0.51 0.51 0.51 0.72 0.72 0.72 0.72 0.72	6.90 8.24 9.48 10.82 140.52 0 m L Cond 5.26 6.41 7.33 8.67 9.93 11.30 130.23 6.03 8.04 9.80 12.66 15.63 19.21 239.56 4.31 5.70 6.73 8.20 9.54	13.67 14.52 15.32 16.17 166.93 12.06 12.80 13.39 14.25 15.05 15.93 166.34 12.71 14.47 16.09 18.40 20.54 22.85 219.40 18.20 20.75 22.20 24.24 26.12	0.25 0.23 0.22 0.20 0.10 Culverts 0.24 0.23 0.22 0.20 0.19 0.07 0.24 0.21 0.19 0.15 0.13 0.06 0.32 0.28 0.26 0.24 0.21

Existing Hydraulic Modelling Summary - Black Creek

Reach-1	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	Vel Chnl	Flow Area	Top Width	Froude #
Reach-1				(m ³ /s)	(m)	(m)	(m)	(m)	(m/s)	(m^2)	(m)	
Reach-1	Reach-1	46.3815		Culvert	@ Langsta	ff Road Ra	mp 3 Cell -	2.4 m W x	2.4 m H x 6	0 m L Cond	crete Box C	ulverts
Reach-1												
Reach-1												0.29
Reach-1												0.25
Reach-1												0.24
Reach-1												0.22
Reach-1												0.20
Reach-1 46.36 2-year 6.21 201.60 202.56 202.59 0.77 9.01 13.27 Reach-1 46.36 5-year 8.54 201.60 202.77 202.80 0.84 11.96 14.88 Reach-1 46.36 10-year 10.17 201.60 202.92 202.95 0.86 14.29 16.04 Reach-1 46.36 5-year 12.32 201.60 203.13 203.16 0.88 17.78 17.63 Reach-1 46.36 50-year 14.3 201.60 203.31 203.34 0.89 21.11 19.02 Reach-1 46.36 100-year 16.31 201.60 203.50 203.54 0.89 24.97 20.51 Reach-1 46.36 Regional 66.49 201.60 206.02 206.05 1.05 128.82 96.09 Reach-1 46.35 5-year 6.21 201.40 202.44 202.46 0.71 9.52 14.43 Reach-1 46.35 5-year 8.54 201.40 202.67 202.69 0.76 13.10 16.76 Reach-1 46.35 5-year 10.17 201.40 202.87 202.69 0.76 13.10 16.76 Reach-1 46.35 5-year 12.32 201.40 203.05 203.08 0.77 20.40 20.72 Reach-1 46.35 5-year 10.17 201.40 202.83 202.86 0.77 16.01 18.44 Reach-1 46.35 5-year 12.32 201.40 203.05 203.08 0.77 20.40 20.72 Reach-1 46.35 10-year 10.17 201.40 203.05 203.08 0.77 24.55 22.68 Reach-1 46.35 10-year 11.3 201.40 203.25 203.28 0.77 24.55 22.68 Reach-1 46.35 5-year 12.32 201.40 203.05 203.08 0.77 24.55 22.68 Reach-1 46.35 10-year 14.3 201.40 203.45 203.28 0.77 24.55 22.68 Reach-1 46.35 10-year 14.3 201.40 203.45 203.28 0.77 24.55 22.68 Reach-1 46.35 2-year 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20												0.18
Reach-1	Reach-1	46.381	Regional	47.8	202.30	206.08	203.76	206.08	0.29	334.18	237.29	0.05
Reach-1	Doodb 1	46.26	2	6.04	204.60	202.56		202.50	0.77	0.01	12.27	0.26
Reach-1												0.26 0.26
Reach-1												0.26
Reach-1												0.23
Reach-1												0.23
Reach-1												0.22
Reach-1 46.35 2-year 6.21 201.40 202.44 202.46 0.71 9.52 14.43 Reach-1 46.35 5-year 8.54 201.40 202.67 202.69 0.76 13.10 16.76 Reach-1 46.35 10-year 10.17 201.40 202.83 202.86 0.77 16.01 18.44 Reach-1 46.35 25-year 12.32 201.40 203.05 203.08 0.77 20.40 207.2 Reach-1 46.35 50-year 14.3 201.40 203.25 203.28 0.77 24.58 22.68 Reach-1 46.35 100-year 16.31 201.40 203.45 203.48 0.77 29.45 22.77 Reach-1 46.35 Regional 66.49 201.40 206.00 206.03 0.96 137.63 64.98 Reach-1 46.34 2-year 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 5-year 8.54 201.20 202.60 202.60 202.60 13.90 15.52 Reach-1 46.34 5-year 12.32 201.20 202.60 202.60 20.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 10-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 100-year 16.31 201.20 203.21 203.24 203.24 203.44 0.68 24.42 19.07 Reach-1 46.34 50-year 14.3 201.20 203.21 203.42 203.44 0.68 24.42 19.07 Reach-1 46.33 10-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.33 10-year 14.45 201.00 202.63 202.69 203.44 0.68 28.56 20.29 Reach-1 46.33 2-year 8.66 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.69 0.95 16.25 15.02 Reach-1 46.33 10-year 14.45 201.00 202.89 202.99 0.96 20.33 16.6												0.16
Reach-1 46.35 5-year 8.54 201.40 202.67 202.69 0.76 13.10 16.76 Reach-1 46.35 10-year 10.17 201.40 202.83 202.86 0.77 10.01 18.44 Reach-1 46.35 52-year 12.32 201.40 203.05 203.08 0.77 20.40 20.72 Reach-1 46.35 50-year 14.3 201.40 203.25 203.28 0.77 24.58 22.68 Reach-1 46.35 100-year 16.31 201.40 203.45 203.48 0.77 29.45 24.77 Reach-1 46.35 Regional 66.49 201.40 206.00 206.03 0.96 137.63 64.98 Reach-1 46.34 Loyear 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 10-year 10.17 201.20 202.60 202.62 0.66 15.51 Reach-1 46.34 10-year 14.3 201.20 203.01 203.01	1100011	10.00	rtogionai	00110	201100	200.02		200.00	1.00	120.02	00.00	0.10
Reach-1 46.35 5-year 8.54 201.40 202.67 202.69 0.76 13.10 16.76 Reach-1 46.35 10-year 10.17 201.40 202.83 202.86 0.77 10.01 18.44 Reach-1 46.35 52-year 12.32 201.40 203.05 203.08 0.77 20.40 20.72 Reach-1 46.35 50-year 14.3 201.40 203.25 203.28 0.77 24.58 22.68 Reach-1 46.35 100-year 16.31 201.40 203.45 203.48 0.77 29.45 24.77 Reach-1 46.35 Regional 66.49 201.40 206.00 206.03 0.96 137.63 64.98 Reach-1 46.34 Loyear 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 10-year 10.17 201.20 202.60 202.62 0.66 15.51 Reach-1 46.34 10-year 14.3 201.20 203.01 203.01	Reach-1	46.35	2-year	6.21	201.40	202.44		202.46	0.71	9.52	14.43	0.25
Reach-1 46.35 10 year 10.17 201.40 202.83 202.86 0.77 16.01 18.44 Reach-1 46.35 25-year 12.32 201.40 203.05 203.08 0.77 20.40 20.72 20.40 20.72 Reach-1 46.35 50-year 14.3 201.40 203.25 203.28 0.77 24.58 22.68 Reach-1 46.35 100-year 16.31 201.40 203.45 203.48 0.77 29.45 24.77 Reach-1 46.35 Regional 66.49 201.40 206.00 206.00 206.03 0.96 137.63 64.98 Reach-1 46.34 2-year 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 5-year 8.54 201.20 202.60 202.60 202.62 0.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 203.04 0.67 16.71 16.54 Reach-1 46.34 25-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 100-year 11.33 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.21 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 10-year 14.45 201.00 202.63 202.69 0.95 16.25 15.02 Reach-1 46.33 10-year 14.45 201.00 202.63 202.69 0.95 16.25 15.02 Reach-1 46.33 10-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 10-year 17.55 201.00 202.89 202.94 0.96 20.33 16.55 Reach-1 46.33 100-year 20.24 201.00 203.30 203.30 203.37 0.97 28.14 19.39 Reach-1 46.33 25-year 17.55 201.00 203.33 203.												0.23
Reach-1 46.35 bream 12.32 bream 201.40 bream 203.05 bream 203.08 bream 0.77 bream 20.40 bream 20.72 bream Reach-1 46.35 bream 16.31 bream 201.40 bream 203.25 bream 203.28 bream 0.77 bream 24.58 bream 22.68 bream Reach-1 46.35 Regional 66.49 bream 201.40 bream 206.00 bream 206.03 bream 0.96 bream 137.63 bream 64.98 bream Reach-1 46.34 bream 2.9ear 6.21 bream 201.20 bream 202.36 bream 202.38 bream 0.63 bream 10.24 bream 14.07 bream Reach-1 46.34 bream 2.9ear 8.54 bream 201.20 bream 202.60 bream 202.62 bream 0.66 bream 13.90 bream 15.52 bream Reach-1 46.34 bream 10-year 10.17 bream 202.20 bream 202.80 bream 0.67 bream 16.71 bream 16.54 bream 202.80 bream 0.67 bream 16.71 bream 16.54 bream 202.80 bream 0.67 bream 16.71 bream 16.52 bream 16.52 bream 202.20 bream 202.80 bream 202.80 b												0.22
Reach-1 46.35 50-year 14.3 201.40 203.25 203.28 0.77 24.58 22.68 Reach-1 46.35 100-year 16.31 201.40 203.45 203.48 0.77 29.45 24.77 Reach-1 46.35 Regional 66.49 201.40 206.00 206.03 0.96 137.63 64.98 Reach-1 46.35 Pegar 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 5-year 8.54 201.20 202.60 202.62 0.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 10-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 5-year 12.32 201.20 203.01 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 14.3 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.33 2-year 8.66 201.20												0.20
Reach-1 46.35 Regional 66.49 201.40 206.00 206.03 0.96 137.63 64.98 Reach-1 46.34 2-year 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 5-year 8.54 201.20 202.60 202.62 0.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 10-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 50-year 14.3 201.20 203.41 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.33 5-year 12.09 201.00 202.14 202.19 0.90 9.66 11.92									0.77	24.58	22.68	0.19
Reach-1 46.34 2-year 6.21 201.20 202.36 202.38 0.63 10.24 14.07 Reach-1 46.34 5-year 8.54 201.20 202.60 202.62 0.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 25-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 50-year 14.3 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 5-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92	Reach-1	46.35	100-year	16.31	201.40	203.45		203.48	0.77	29.45	24.77	0.18
Reach-1 46.34 5-year 8.54 201.20 202.60 202.62 0.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 25-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 50-year 14.3 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.63 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.32 Peyear 8.66 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.32 2-year 8.66 201.00 202.59 201.38 202.08 0.65 13.25 14.45 Reach-1 46.32 2-year 8.66 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 5-year 17.55 201.00 202.58 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 10-year 14.45 201.00	Reach-1	46.35	Regional	66.49	201.40	206.00		206.03	0.96	137.63	64.98	0.15
Reach-1 46.34 5-year 8.54 201.20 202.60 202.62 0.66 13.90 15.52 Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 25-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 50-year 14.3 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.63 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.32 Peyear 8.66 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.32 2-year 8.66 201.00 202.59 201.38 202.08 0.65 13.25 14.45 Reach-1 46.32 2-year 8.66 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 5-year 17.55 201.00 202.58 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 10-year 14.45 201.00												
Reach-1 46.34 10-year 10.17 201.20 202.78 202.80 0.67 16.71 16.54 Reach-1 46.34 25-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 50-year 14.3 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 10-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 10-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 20.24 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 100-year 20.24 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 100-year 20.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 100-year 20.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.322 2-year 8.66 201.00 202.59 202.59 205.98 0.89 179.01 115.00 Reach-1 <	Reach-1								0.63			0.22
Reach-1 46.34 25-year 12.32 201.20 203.01 203.04 0.67 20.76 17.91 Reach-1 46.34 50-year 14.3 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 Pear 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 Fear 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 20-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65												0.20
Reach-1 46.34 50-year 14.3 201.20 203.21 203.23 0.68 24.42 19.07 Reach-1 46.34 100-year 16.31 201.20 203.42 203.44 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 20.24 201.00 203.33 203.7 0.97 28.14 19.39 Reach-1 46.33 100-year 22.97 201.00 203.33 203.7 0.97 28.14 19.39 Reach-1 46.32 100-year 20.29 201.00 202.55 201.38 202.08 0.65 13.25 14.45 Reach-1 46.32 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 10-year 12.09 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 5-year 17.55 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 10-year 17.55 201.00 202.58 201.60 202.87 0.75 23.54 18.95 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.19</td>			_									0.19
Reach-1 46.34 100-year 16.31 201.20 203.42 203.42 203.44 206.01 0.68 28.56 20.29 Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 Pyear 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 S-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 20.29 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 5-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 10-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 8-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 8-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 8-year 20.24 201.00 202.85												0.18
Reach-1 46.34 Regional 66.49 201.20 205.98 206.01 0.92 126.31 107.94 Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05												0.17
Reach-1 46.33 2-year 8.66 201.00 202.14 202.19 0.90 9.66 11.92 Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 100-year 22.97 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14												0.16
Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 <t< td=""><td>Reach-1</td><td>46.34</td><td>Regional</td><td>66.49</td><td>201.20</td><td>205.98</td><td></td><td>206.01</td><td>0.92</td><td>126.31</td><td>107.94</td><td>0.14</td></t<>	Reach-1	46.34	Regional	66.49	201.20	205.98		206.01	0.92	126.31	107.94	0.14
Reach-1 46.33 5-year 12.09 201.00 202.44 202.48 0.94 13.43 13.78 Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 <t< td=""><td></td><td>40.00</td><td></td><td>0.00</td><td>224.22</td><td>222.44</td><td></td><td>222.42</td><td></td><td></td><td>44.00</td><td></td></t<>		40.00		0.00	224.22	222.44		222.42			44.00	
Reach-1 46.33 10-year 14.45 201.00 202.63 202.68 0.95 16.25 15.02 Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 50-year <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.31</td>												0.31
Reach-1 46.33 25-year 17.55 201.00 202.89 202.94 0.96 20.33 16.65 Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60												0.28
Reach-1 46.33 50-year 20.24 201.00 203.10 203.15 0.97 23.98 17.98 Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.26
Reach-1 46.33 100-year 22.97 201.00 203.33 203.37 0.97 28.14 19.39 Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00												0.24
Reach-1 46.33 Regional 74.78 201.00 205.95 205.98 0.89 179.01 115.00 Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78												0.23
Reach-1 46.322 2-year 8.66 201.00 202.05 201.38 202.08 0.65 13.25 14.45 Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.22 0.13
Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00	incacii-i	40.33	rvegional	14.10	201.00	200.90		200.90	0.09	178.01	113.00	0.13
Reach-1 46.322 5-year 12.09 201.00 202.37 201.47 202.40 0.70 17.39 16.26 Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00	Reach-1	46 322	2-vear	2 66	201.00	202.05	201 38	202.08	0.65	13 25	14 45	0.21
Reach-1 46.322 10-year 14.45 201.00 202.58 201.53 202.61 0.72 20.07 17.43 Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.21
Reach-1 46.322 25-year 17.55 201.00 202.85 201.60 202.87 0.75 23.54 18.95 Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.19
Reach-1 46.322 50-year 20.24 201.00 203.06 201.66 203.09 0.77 26.35 20.18 Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.19
Reach-1 46.322 100-year 22.97 201.00 203.29 201.72 203.32 0.78 29.31 21.47 Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.17
Reach-1 46.322 Regional 74.78 201.00 205.92 202.53 205.96 0.98 117.80 57.00												0.17
												0.14
Reach-1 46.3215 Culvert Applewood Crescent												
	Reach-1	46.3215		Culvert	Applewood	Crescent						
Reach-1 46.321 2-year 8.66 200.60 202.02 200.98 202.03 0.49 17.81 14.27	Reach-1	46.321	2-year	8.66	200.60	202.02	200.98	202.03	0.49	17.81	14.27	0.13
Reach-1 46.321 5-year 12.09 200.60 202.33 201.07 202.35 0.55 21.84 16.03			•									0.14
Reach-1 46.321 10-year 14.45 200.60 202.53 201.13 202.55 0.59 24.46 17.18												0.14
Reach-1 46.321 25-year 17.55 200.60 202.80 201.21 202.82 0.63 27.86 18.66												0.14
Reach-1 46.321 50-year 20.24 200.60 203.01 201.26 203.03 0.66 30.61 19.87												0.14
Reach-1 46.321 100-year 22.97 200.60 203.22 201.32 203.24 0.69 33.37 21.07	Reach-1			22.97	200.60	203.22	201.32	203.24	0.69	33.37	21.07	0.14
Reach-1 46.321 Regional 74.78 200.60 205.31 202.15 205.36 1.09 95.59 32.96	Reach-1			74.78	200.60	205.31	202.15	205.36	1.09	95.59	32.96	

York Region Langstaff Road EA

Westminster Creek

Langstaff Road EA

Westminster Creek

Existing Conditions Hydraulic Analysis Summary

May 2019 Update

Model: "Basin 5_May2019_Rev Opt 4"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

Daseu on	NCW 201	3110443								_	
			El	Min Ch	W.S.	Cook MAC	E.G.	Velocity	Flow	Top	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
			2.00	04040	04000	21521	245.27	0.74		47.05	0.50
Reach-1	50.44	2 Year	0.89	216.18			216.37	0.51	1.73	17.85	0.53
Reach-1	50.44	5 Year	1.18	216.18		216.33	216.39	0.58	2.03	19.31	0.57
Reach-1	50.44	10 Year	1.37	216.18			216.40	0.62	2.20	20.11	0.60
Reach-1	50.44	25 Year	1.61	216.18		216.35	216.41	0.68	2.35	20.78	0.65
Reach-1	50.44	50 Year	1.84	216.18	216.39	216.36	216.42	0.75	2.46	21.23	0.70
Reach-1	50.44	100 Year	2.34				216.44	0.89	2.62	21.92	0.82
Reach-1	50.44	Regional	27.60	216.18	216.75	216.75	216.92	1.84	15.03	44.78	1.01
Reach-1	50.29	2 Year	1.67	205.81	205.80	205.41	205.80		21.65	50.36	0.00
Reach-1	50.29	5 Year	2.27	205.81	205.89	205.42	205.89	0.03	27.16	63.18	0.04
Reach-1	50.29	10 Year	2.66	205.81	205.94	205.43	205.94	0.05	30.36	63.58	0.04
Reach-1	50.29	25 Year	3.16	205.81	205.99	205.44	205.99	0.06	34.03	64.04	0.05
Reach-1	50.29	50 Year	3.69	205.81	206.05	205.44	206.05	0.07	37.64	64.72	0.05
Reach-1	50.29	100 Year	4.42	205.81	206.12	205.45	206.12	0.09	42.14	65.59	0.05
Reach-1	50.29	Regional	36.24	205.81	207.63	205.74	207.63	0.31	155.51	84.64	0.07
Reach-1	50.285		Inl Struct								
Reach-1	50.28	2 Year	1.67	205.75	205.79		205.79	0.02	19.64	57.73	0.04
Reach-1	50.28	5 Year	2.27	205.75	205.88		205.88	0.05	24.94	58.82	0.05
Reach-1	50.28	10 Year	2.66	205.75	205.93		205.93	0.07	27.90	59.42	0.05
Reach-1	50.28	25 Year	3.16	205.75	205.99		205.99	0.08	31.34	60.10	0.05
Reach-1	50.28	50 Year	3.69	205.75	206.05		206.05	0.09	34.74	61.09	0.05
Reach-1	50.28	100 Year	4.42	205.75	206.12		206.12	0.11	39.01	62.37	0.06
Reach-1	50.28	Regional	36.24	205.75	207.63		207.63	0.33	153.57	87.87	0.08
		-0 -									
Reach-1	50.27	2 Year	1.67	205.30	205.77		205.78	0.28	5.94	15.60	0.15
Reach-1	50.27	5 Year	2.27				205.87	0.31	7.39	16.13	0.15
Reach-1	50.27	10 Year	2.66				205.92	0.32	8.20	16.42	0.15
Reach-1	50.27	25 Year	3.16				205.98	0.35	9.14	16.75	0.15
Reach-1	50.27	50 Year	3.69				206.03	0.37	10.08	17.08	0.15
Reach-1	50.27	100 Year	4.42				206.10	0.39	11.25	17.47	0.16
Reach-1	50.27	Regional	36.24				207.61	0.84	43.39	25.70	0.10
cacii I	30.27	regional	30.24	200.00	207.50		207.01	0.04	+3.33	23.70	0.21
Reach-1	50.26	2 Year	1.67	205.08	205.72		205.73	0.36	4.70	10.58	0.17
Reach-1	50.26	5 Year	2.27	205.08			205.82	0.40	5.69	11.42	0.17
Reach-1	50.26	10 Year	2.66				205.82	0.40	6.25	11.42	0.18
Reach-1	50.26	25 Year	3.16				205.87	0.45	6.23	12.37	0.19
			3.69				205.92	0.46	7.58		0.20
Reach-1	50.26	50 Year								12.86	
Reach-1	50.26	100 Year	4.42				206.04	0.52	8.42	13.46	0.21
Reach-1	50.26	Regional	36.24	205.08	207.48		207.54	1.11	36.01	23.65	0.25
Decel 4	F0 3F	2 V	4.67	20454	205.72	204.70	205 72	0.30	F 04	C 35	0.00
Reach-1	50.25	2 Year	1.67	204.54	205.72	204.76	205.73	0.28	5.91	6.25	0.08

Langstaff Road EA

Westminster Creek

Existing Conditions Hydraulic Analysis Summary

May 2019 Update

Model: "Basin 5_May2019_Rev Opt 4"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

Based on New 2019 Flows

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow (m³/s)	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile		(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	50.25	5 Year	2.27	204.54	205.81	204.82	205.82	0.36	6.35	6.32	0.10
Reach-1	50.25	10 Year	2.66	204.54	205.86	204.85	205.87	0.40	6.59	6.35	0.11
Reach-1	50.25	25 Year	3.16	204.54	205.91	204.88	205.92	0.46	6.86	6.38	0.13
Reach-1	50.25	50 Year	3.69	204.54	205.96	204.92	205.98	0.52	7.11	6.40	0.14
Reach-1	50.25		4.42	204.54	206.02	204.97	206.04	0.60	7.42	6.43	0.16
Reach-1	50.25	Regional	36.24	204.54	207.09	206.29	207.50	2.84	12.75	7.72	0.57
Reach-1	50.245		Culvert								
Reach-1	50.24	2 Year	1.67	204.44	205.72	204.67	205.72	0.26	6.40	7.44	0.07
Reach-1	50.24	5 Year	2.27	204.44	205.81	204.72	205.81	0.33	6.84	7.61	0.09
Reach-1	50.24	10 Year	2.66	204.44	205.85	204.75	205.86	0.38	7.07	7.69	0.10
Reach-1	50.24	25 Year	3.16	204.44	205.91	204.78	205.92	0.43	7.34	7.79	0.11
Reach-1	50.24	50 Year	3.69	204.44	205.96	204.82	205.97	0.49	7.59	7.89	0.13
Reach-1	50.24	100 Year	4.42	204.44	206.02	204.87	206.03	0.56	7.88	8.00	0.14
Reach-1	50.24	Regional	36.24	204.44	206.70	206.19	207.22	3.21	11.28	9.17	0.68
Reach-1	50.23	2 Year	1.67	205.05	205.64	205.55	205.72	1.20	1.40	4.50	0.68
Reach-1	50.23	5 Year	2.27	205.05	205.72	205.62	205.80	1.27	1.79	5.33	0.70
Reach-1	50.23	10 Year	2.66	205.05	205.76	205.66	205.85	1.32	2.02	5.76	0.71
Reach-1	50.23	25 Year	3.16	205.05	205.81	205.71	205.91	1.38	2.29	6.23	0.73
Reach-1	50.23	50 Year	3.69	205.05	205.85	205.76	205.96	1.43	2.58	6.70	0.74
Reach-1	50.23		4.42	205.05	205.90	205.81	206.02	1.51	2.93	7.24	0.76
Reach-1	50.23	Regional	36.24	205.05	206.75	206.75	207.16	2.86	12.67	15.50	1.01
Reach-1	50.22	2 Year	1.67	203.31	203.66	203.66	203.76	1.42	1.17	5.69	1.00
Reach-1	50.22	5 Year	2.27	203.31	203.72	203.72	203.83	1.44	1.58	7.63	1.01
Reach-1	50.22	10 Year		203.31	203.75	203.75	203.86	1.46	1.82	8.59	1.01
Reach-1	50.22		3.16		203.78				2.13	9.67	1.01
Reach-1	50.22		3.69	203.31	203.81	203.81	203.93	1.53	2.41	10.50	1.02
Reach-1	50.22		4.42	203.31	203.84	203.84	203.97	1.61	2.74	10.76	1.02
Reach-1	50.22	Regional	36.24	203.31	204.85		205.11	2.24	16.19	15.29	0.69
Reach-1	50.21	2 Year	1.67	201.65	202.29		202.31	0.61	2.73	7.50	0.32
Reach-1	50.21	5 Year	2.27	201.65	202.35		202.37	0.70	3.23	8.10	0.36
Reach-1	50.21	10 Year	2.66	201.65	202.39		202.42	0.75	3.53	8.41	0.37
Reach-1	50.21	25 Year	3.16	201.65	202.43		202.46	0.81	3.92	8.72	0.38
Reach-1	50.21	50 Year	3.69	201.65	202.49		202.52	0.83	4.43	9.02	0.38
Reach-1	50.21	100 Year	4.42	201.65	202.54		202.59	0.90	4.93	9.31	0.39
Reach-1	50.21	Regional	36.24	201.65	204.84		204.88	0.87	41.85	24.02	0.21
Reach-1	50.20	2 Year	2.63	201.20	201.79		201.85	1.08	2.43	6.81	0.58
Reach-1	50.20		3.07	201.20	201.83		201.89	1.14	2.68	7.04	0.59
Reach-1	50.20			201.20			201.92	1.18	2.83	7.17	0.60
Reach-1	50.20			201.20	201.88		201.96		3.08	7.39	0.61

Langstaff Road EA

Westminster Creek

Existing Conditions Hydraulic Analysis Summary

May 2019 Update

Model: "Basin 5_May2019_Rev Opt 4"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

Based on New 2019 Flows

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	River		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Reach	Station	Profile	(m³/s)	(m)	(m)	(m)	(m)	(m/s)	(m2)	(m)	
Reach-1	50.20	50 Year	4.56	201.20	201.94		202.02	1.31	3.48	7.72	0.62
Reach-1	50.20	100 Year	5.22	201.20	201.98		202.07	1.37	3.82	8.00	0.63
Reach-1	50.20	Regional	62.64	201.20	204.70		204.78	1.24	51.47	42.13	0.29
Reach-1	50.19	2 Year	2.63	199.73	200.31	200.31	200.49	1.85	1.42	4.16	1.01
Reach-1	50.19	5 Year	3.07	199.73	200.37	200.37	200.54	1.87	1.64	5.09	0.99
Reach-1	50.19	10 Year	3.34	199.73	200.39	200.39	200.57	1.90	1.79	5.67	0.98
Reach-1	50.19	25 Year	3.80	199.73	200.43	200.43	200.62	1.96	2.00	5.78	0.97
Reach-1	50.19	50 Year	4.56	199.73	200.48	200.48	200.69	2.06	2.31	5.96	0.96
Reach-1	50.19	100 Year	5.22	199.73	200.52	200.52	200.75	2.14	2.57	6.09	0.96
Reach-1	50.19	Regional	62.64	199.73	204.59		204.69	1.69	77.31	65.28	0.25
Reach-1	50.18	2 Year	2.63	199.56	200.22	199.95	200.25	0.82	3.20	6.38	0.37
Reach-1	50.18	5 Year	3.07	199.56	200.28	199.98	200.31	0.86	3.56	6.53	0.37
Reach-1	50.18	10 Year	3.34	199.56	200.31	200.00	200.35	0.88	3.78	6.61	0.37
Reach-1	50.18	25 Year	3.80	199.56	200.36	200.03	200.40	0.92	4.12	6.75	0.38
Reach-1	50.18	50 Year	4.56	199.56	200.44	200.08	200.49	0.98	4.65	6.95	0.38
Reach-1	50.18	100 Year	5.22	199.56	200.50	200.11	200.56	1.02	5.10	7.12	0.39
Reach-1	50.18	Regional	62.64	199.56	204.60	201.72	204.66	1.17	84.85	48.28	0.17
Danah 1	E0 47E		Colorant a	+ \4/+		-					
Reach-1	50.175		Cuivert a	t westmir	nster Creel	(
Danah 1	FO 47	2.٧	2.62	100.40	200.24	100.00	200.25	0.04	2.42	0.27	0.42
Reach-1	50.17	2 Year	2.63	199.49	200.21	199.99	200.25	0.84	3.12	9.27	0.42
Reach-1	50.17	5 Year	3.07	199.49	200.27	200.02	200.30	0.86	3.57	10.06	0.41
Reach-1	50.17	10 Year	3.34	199.49	200.30	200.04	200.34	0.87	3.85	10.43	0.41
Reach-1	50.17	25 Year	3.8	199.49	200.35	200.07	200.39	0.88	4.30	10.89	0.40
Reach-1	50.17	50 Year	4.56	199.49	200.43	200.12	200.47	0.92	4.98	11.23	0.39
Reach-1	50.17	100 Year	5.22	199.49		200.16	200.54	0.94	5.54	11.50	0.38
Reach-1	50.17	Regional	62.64	199.49	202.77	201.37	202.90	1.58	42.05	22.30	0.32
Reach-1	50.16	2 Year	2.63	199.48	200.20		200.23	0.76	3.48	7.24	0.34
Reach-1	50.16	5 Year	3.07	199.48	200.26		200.29	0.80	3.90	7.62	0.34
Reach-1	50.16	10 Year		199.48	200.29		200.33	0.82	4.15	7.73	0.34
Reach-1	50.16	25 Year	3.8	199.48			200.38	0.85	4.56	7.91	0.34
Reach-1	50.16	50 Year	4.56	199.48	200.42		200.46	0.91	5.23	9.67	0.34
Reach-1	50.16		5.22	199.48			200.53	0.95	5.86	9.99	0.34
Reach-1	50.16		62.64	199.48	202.72		202.89	2.10	43.61	24.83	0.39
	00120										
Reach-1	50.15	2 Year	2.63	199.20	200.05		200.08	0.85	3.11	5.85	0.37
Reach-1	50.15	5 Year	3.07	199.20	200.10		200.14	0.89	3.43	6.13	0.38
Reach-1	50.15	10 Year	3.34	199.20			200.17	0.92	3.62	6.28	0.39
Reach-1	50.15	25 Year	3.8	199.20	200.18		200.23	0.96	3.94	6.54	0.40
Reach-1	50.15	50 Year	4.56	199.20	200.26		200.31	1.02	4.45	6.93	0.41
Reach-1	50.15		5.22	199.20	200.32		200.38	1.07	4.90	7.35	0.42
Reach-1	50.15	Regional	62.64	199.20	202.65		202.78	1.76	51.34	45.61	0.36

Langstaff Road EA

Westminster Creek

Existing Conditions Hydraulic Analysis Summary

May 2019 Update

Model: "Basin 5_May2019_Rev Opt 4"

Plan: Proposed at Langstaff

Geometry: Basin 5 Proposed at Langstaff Steady Flow: 2019 Don River Flow Update

Based on New 2019 Flows

				Min Ch	W.S.		E.G.	Velocity	Flow	Тор	Froude
	5 .		Flow	Elevation	Elevation	Crit W.S.	Elevation	Channel	Area	Width	#
Danah	River	Duckila	(m³/s)		(m)		(m)	(m/s)	(m2)	(m)	"
Reach	Station	Profile	(111 / 3)	(m)	(111)	(m)	(111)	(111/5)	(1112)	(111)	
D = = = 1	FO 1.4	2 //	2.62	100.64	100.24	100.20	100.20	1.00	4.57	4.24	0.00
Reach-1	50.14	2 Year	2.63	198.64	199.24	199.20	199.38	1.68	1.57	4.24	0.88
Reach-1	50.14	5 Year	3.07	198.64	199.30		199.44	1.68	1.83	4.57	0.85
Reach-1	50.14	10 Year	3.34	198.64	199.33		199.48	1.68	1.99	4.75	0.83
Reach-1	50.14	25 Year	3.8	198.64	199.38		199.53	1.69	2.24	5.04	0.81
Reach-1	50.14	50 Year	4.56	198.64	199.46		199.61	1.72	2.65	5.46	0.79
Reach-1	50.14	100 Year	5.22	198.64	199.52		199.68	1.75	2.98	5.79	0.78
Reach-1	50.14	Regional	62.64	198.64	202.66		202.68	0.70	162.65	182.32	0.15
Reach-1	50.13	2 Year	2.63		199.32	198.76	199.33	0.49	5.36	7.63	0.17
Reach-1	50.13	5 Year	3.07	198.50	199.38	198.78	199.39	0.53	5.74	7.71	0.18
Reach-1	50.13	10 Year	3.34	198.50	199.41	198.80	199.43	0.56	5.95	7.76	0.19
Reach-1	50.13	25 Year	3.8	198.50	199.46	198.83	199.48	0.60	6.29	7.83	0.20
Reach-1	50.13	50 Year	4.56	198.50	199.54	198.87	199.56	0.67	6.80	7.94	0.21
Reach-1	50.13	100 Year	5.22	198.50	199.60	198.90	199.62	0.73	7.18	8.02	0.22
Reach-1	50.13	Regional	62.64	198.50	202.66	200.61	202.68	0.74	185.73	212.04	0.13
Reach-1	50.125		Culvert								
Reach-1	50.12	2 Year	2.63	198.38	199.31	198.64	199.32	0.43	6.09	8.21	0.14
Reach-1	50.12	5 Year	3.07	198.38	199.37	198.66	199.38	0.48	6.45	8.27	0.15
Reach-1	50.12	10 Year	3.34	198.38	199.40	198.68	199.41	0.50	6.66	8.31	0.16
Reach-1	50.12	25 Year	3.8	198.38	199.45	198.71	199.46	0.54	6.99	8.36	0.17
Reach-1	50.12	50 Year	4.56	198.38	199.52	198.75	199.54	0.61	7.47	8.44	0.18
Reach-1	50.12	100 Year	5.22	198.38	199.58	198.78	199.60	0.67	7.83	8.51	0.19
Reach-1	50.12	Regional	62.64	198.38	201.41	200.30	201.69	2.35	27.58	16.95	0.47
		<u> </u>									
Reach-1	50.11	2 Year	2.63	198.50	199.11	199.11	199.30	1.89	1.39	3.92	1.01
Reach-1	50.11	5 Year							1.58	4.17	1.01
Reach-1	50.11	10 Year	3.34				199.39	1.97	1.70	4.38	1.01
Reach-1	50.11	25 Year	3.8				199.44	1.99	1.91	4.73	1.00
Reach-1	50.11	50 Year	4.56				199.51	2.06	2.21	5.22	1.01
Reach-1	50.11	100 Year	5.22			199.35	199.57	2.09	2.50	5.63	1.00
Reach-1	50.11	Regional				133.33	201.65	2.08	30.13	20.69	0.55
incacii 1	30.11	ricgional	02.04	130.30	201.43		201.03	2.00	30.13	20.03	0.55
Reach-1	50.10	2 Year	2.72	197.86	198.73		198.76	0.78	3.47	6.80	0.35
Reach-1	50.10	5 Year	3.19				198.83	0.78	3.89	7.19	0.36
Reach-1	50.10	10 Year	3.46				198.86	0.82	4.11	7.19	0.36
Reach-1	50.10	25 Year					198.91		4.50	7.72	0.37
Reach-1	50.10	50 Year	4.71	197.86			198.99	0.92	5.09	8.20	0.37
Reach-1	50.10		5.42				199.06	0.96	5.63	8.61	0.38
Reach-1	50.10	Regional	63.27	197.86	201.35		201.47	1.49	42.43	23.20	0.35

York Region Langstaff Road EA

Culvert Hydraulics

Culvert Designer/Analyzer Report Culvert LC1

Peak Discharge Method: User-Specified				
Design Discharge	2.8970 m³/s	Check Discha	arge	3.2140 m³/s
Grades Model: Inverts				
Invert Upstream	205.35 m	Invert Downs	tream	205.10 m
Length	68.00 m	Slope		0.003676 m/m
Drop	0.25 m			
Headwater Model: Unspecified				
Tailwater Conditions: Constant Tailwater				
Tailwater Elevation	205.50 m			
Name	Description	Discharge	HW Elev.	Velocity

Culvert Designer/Analyzer Report Culvert LC1

Design: Trial-4 (50-Year)

Solve For: Headwater Elevation

Culvert Summary			
Allowable HW Elevation	N/A m	Storm Event	Design
Computed Headwater Elevation	206.24 m	Discharge	2.8970 m ³ /s
Headwater Depth/Height	0.58	Tailwater Elevation	205.50 m
Inlet Control HW Elev.	206.24 m	Control Type	Inlet
0 4 4 0 4 1 1 1 1 1 1 1 1	000.40		Control
Outlet Control HW Elev.	206.19 m		
Grades			
Upstream Invert	205.35 m	Downstream Invert	205.10 m
Length	68.00 m	Constructed Slope	0.003676 m/m
Hydraulic Profile			
Profile	S2	Depth, Downstream	0.51 m
Slope Type	Steep	Normal Depth	0.51 m
Flow Regime	Supercritical	Critical Depth	0.52 m
Velocity Downstream	2.35 m	/s Critical Slope	0.003311 m/m
Section			
Section Shape	Box	Manning's Coefficient	0.013
Section Material	Concrete	Span	2.44 m
Section Size	2440 x 1520 mm	Rise	1.52 m
Number Sections	1		
Outlet Control Properties			
Outlet Control HW Elev.	206.19 m	Upstream Velocity Head	0.26 m
Ke	0.20	Entrance Loss	0.05 m
Inlet Control Properties			
Inlet Control HW Elev.	206.24 m	Flow Control	Unsubme rged
Inlet Type	0° wingwall flares	Area Full	3.7 m ²
K	0.06100	HDS 5 Chart	8
1.5			
M	0.75000	HDS 5 Scale	3
* *		HDS 5 Scale Equation Form	3 1

Culvert Designer/Analyzer Report Culvert LC1

Check: Trial-1 (100-year)

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	N/A	m	Storm Event	Check	
Computed Headwater	206.30	m	Discharge	3.2140	m³/s
Elevation			T 11 (E) (1	005.50	
Headwater Depth/Height	0.62		Tailwater Elevation	205.50	m
Inlet Control HW Elev.	206.30	m	Control Type	Inlet	
Outlet Control HW Elev.	206.25	m		Control	
Grades					
Upstream Invert	205.35	m	Downstream Invert	205.10	m
Length	68.00		Constructed Slope	0.003676	
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.54	m
Slope Type	Steep		Normal Depth	0.54	m
Flow Regime	Supercritical		Critical Depth	0.56	m
Velocity Downstream	2.43	m/s	Critical Slope	0.003329	m/m
Section					
Section Shape	Box		Manning's Coefficient	0.013	
Section Material	Concrete		Span	2.44	m
Section Size	2440 x 1520 mm		Rise	1.52	m
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	206.25 m	Upstr	eam Velocity Head	0.28 m	•
Ke	0.20	Entrance Loss		0.06 m	
Inlet Control Properties					
·					
Inlet Control HW Elev.	206.30	m	Flow Control	Unsubme rged	
Inlet Type	0° wingwall flares		Area Full	3.7	m²
K	0.06100		HDS 5 Chart	8	
M	0.75000		HDS 5 Scale	3	
С	0.04230		Equation Form	1	
Υ	0.82000				

APPENDIX

D

Fluvial Geomorphology Report

Langstaff Road Class Environmental Assessment, Fluvial Geomorphological Support Vaughan, Ontario

Geomorphological Erosion and Meander Belt Width Assessment

Prepared for: WSP/MMM Group 610 Chartwell Rd, Suite 300 Oakville, ON

June 30, 2017 PN17032

Report Prepared by: GEO Morphix Ltd.

2800 High Point Drive

Suite 100A

Milton, ON L9T 6P4

Report Title: Langstaff Road Class Environmental Assessment,

Fluvial Geomorphological Support

Geomorphological Erosion and Meander Belt Width

i

Assessment Vaughan, Ontario

Project Number: PN17032

Status: Draft

Version: 0.1

First Submission Date: June 30, 2017

Revision Date N/A

Prepared by: Bryce Molder, M.Sc.

Approved by: Paul Villard, Ph.D., P.Geo.

Approval Date: June 30, 2017

Table of Contents

1	Intro	duction	1
2	Field	Assessment	1
	2.1	West Branch of Don River Field Observations	1
	2.2	Black Creek Field Observations	2
	2.3	Westminster Creek Field Observations	2
3	Geon	norphological Erosion Issues and Meander Belt Widths	3
4		sing Recommendations	
5	Refer	rences	6
App	endi	ces	
Appei	ndix A	Photographic Record	⊅
Annoi	ndiv B	Field Observations	Р

1 Introduction

This report outlines the geomorphological study completed to support the Environmental Assessment (EA) associated with improvements along Langstaff Road in Vaughan. Three watercourses were identified and assessed within the project limits, in the road right-of-way, located along Langstaff Road between Dufferin Street and the Highway 400 interchange. The assessed watercourses include Black Creek, the West Branch of the Don River, and Westminster Creek. In addition to the EA, an erosion hazard assessment was completed for the West Branch of the Don River to inform crossing requirements and the potential impact to aquatic habitat.

The geomorphological assessment included the following activities:

- A review of watershed characteristics that directly influence the local geomorphology;
- Field investigation to document channel conditions and determine the meander belt width and erosion hazards, where applicable;
- Rapid field assessments, including a Rapid Geomorphic Assessment to evaluate channel stability, and Rapid Stream Assessment Technique to determine stream 'health'; and
- Preliminary design recommendations for the proposed crossing structures, from a geomorphological perspective.

2 Field Assessment

Black Creek, the West Branch of Don River, and Westminster Creek each cross beneath Langstaff Road within the project limits and were therefore identified as part of the Environmental Assessment. Field observations and channel measurements were completed on April 21th, 2017 by GEO Morphix Ltd. staff to characterize channel conditions and potential erosion issues to assist with informing crossing sizing. As part of the assessment, rapid stream assessment applications were completed to evaluate channel stability and stream health.

Channel instability was semi-quantified through the application of the Ontario Ministry of the Environment's (2003) Rapid Geomorphic Assessment (RGA). Observations were quantified using an index that identifies channel sensitivity based on evidence of aggradation, degradation, channel widening, and planimetric (planform) adjustment. The index produces values that indicate whether the channel is stable/in regime (score <0.20), stressed/transitional (score 0.21-0.40) or adjusting (score >0.41). The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system and consider the ecological functioning of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34) or excellent (35-42) degree of stream health.

The field assessment findings are outlined for each stream below. Additionally, site photographs are provided in **Appendix A** and fieldnotes are provided in **Appendix B**.

2.1 West Branch of Don River Field Observations

Field observations for the West Branch of the Don River upstream of the Langstaff Road crossing revealed a meandering channel within an open grass-dominated field. A large meander with an amplitude of 30 m was documented 40 m north of Langstaff Road, with limited potential to impact the crossing. Portions of the channel bank were slumped into the stream along the outer bank of the channel bend. The Langstaff Road crossing consisted of an ~ 11 m wide concrete box culvert. There was no riparian buffer within the culvert. Downstream of the crossing, stormwater drainage

outlets flanked the sides of the channel. The west outlet was elevated, located midway up the road embankment. Downstream of Langstaff Road, the channel was partially confined on one side by the valley slope, which extended southward to nearby commercial lots. A \sim 25 m riparian buffer, comprised mainly of large trees existed alongside the channel. A stand of recently planted coniferous trees were noted along the outside bend of the channel. One of the trees and its full root structure had slumped and fallen into the channel, indicative of channel widening processes. The average bankfull widths and depths of the channel were 8.63 m and 1.80 m, respectively. Local meander amplitudes upstream and downstream of the crossing at Langstaff Road were measured in the range of 16 - 30 m.

Rapid stream assessments for the West Branch of Don River were conducted within the vicinity of the Langstaff Road crossing. With a RGA score of 0.39, the study reach was assessed to be "in transition" primarily due to observations that support channel widening, such as bank slumping and fallen trees. Evidence of aggradation / degradation was also observed throughout the reach. With regards to the RSAT, stream health was assessed to be "fair" with a score of 15. Riparian conditions, water quality, and channel stability scored low, while habitat conditions scored relatively higher.

2.2 Black Creek Field Observations

The Black Creek study reach stemmed from a 14 m wide four-cell concrete culvert at Creditview Road, approximately 200 m west of the Highway 400. Downstream (east) of the culvert, the channel had been previously realigned to follow a meandering planimetric form. Arrangements of shrub plantings (e.g., red osier dogwood) were in-place along the channel overbank. At the time of inspection, the channel was at bankfull capacity, due to recent rainfall events. The average bankfull widths and depths of the realigned channel were 3.50 m and 0.75 m, respectively, and the designed meander amplitude measured approximately 10 m. Approximately 150 m east of the Creditview Road crossing, the realigned channel formed into a wide vegetated swale with riprap-reinforced banks. The reinforced swale extended ~100 m south, alongside the Highway 400, before crossing beneath it within a triple-cell concrete culvert. Each cell was 2.4 m in width, for a total opening of 7.2 m. The reinforced swale emerged on the east side of the Highway 400, where it continued south towards Langstaff Road. The Langstaff Road channel crossing consisted of a similar 2.4 m triple-cell concrete culvert (7.2 m total width). The channel was tapered into the crossing by gabion basket wingwalls, which were in good condition. Downstream of Langstaff Road, the swale feature persisted south between the Highway 400 and its interchange to Langstaff Road. The swale passed beneath another 2.4 m triple-cell concrete culvert (7.2 m total width), flanked by gabion basket wingwalls. The channel emerged on the east side of the interchange lane, adjoined by a storm sewer outlet. A concrete meshing in good condition lined the channel banks near the crossing. The vegetated swale continued south, alongside the Highway 400.

Rapid Assessments were not completed for the Black Creek due to channel armouring and stream realignment.

2.3 Westminster Creek Field Observations

The Westminster Creek study reach consisted of a straightened channel armoured with gabion basket. The channel was confined within a narrow valley between commercial lots. Upstream of the Langstaff Road crossing, the channel and valley corridor (including the valley slopes, the overbank, and the channel banks) were armoured with gabion basket. Grasses, shrubs, and trees grew from the gabion, which was partially buried in soil. The gabion baskets were generally in good condition. A few small breaches in the gabion wire meshing were noted along the channel toe. The average bankfull widths and depths of the upstream section of channel were 1.8 m and 0.50 m, respectively. The Langstaff Road crossing consisted of a double-cell concrete box culvert.

Each cell measured 3.4 m in width, for a total opening of 6.8 m. Piped roadside drainage features discharged directly within the culvert to the watercourse. South of Langstaff Road, the valley corridor was armoured with gabion basket from the channel overbanks to midway up the valley slope. The gabion baskets were arranged to form a terrace consisting of multiple courses of baskets. Near the crossing, the gabion basket armouring was offset from the channel by $\sim 1-2$ m. This buffer between the channel and gabion baskets was vegetated with grasses, shrubs, and trees. The channel was wider, relative to upstream of Langstaff Road, with an average channel bankfull width and depth of 3.0 m and 0.70 m. Some undercutting of 0.05 – 0.10 m was noted along the channel banks, indicative of widening towards the gabion basket offset protection. ~ 70 m downstream from the Langstaff Road crossing, the channel narrowed slightly, to a width of 2.2 m, thereby reducing the riparian buffer mentioned above and exposing gabion basket along the channel banks. The straight channel and valley corridor continued south beyond the area of study.

Rapid Assessments were not completed for the Westminster Creek study site due to substantive channel armouring.

3 Geomorphological Erosion Issues and Meander Belt Widths

An assessment of erosion issues and channel meander belt width provides insight into the lateral extent that a meandering channel has historically occupied and may likely occupy in the future. This information, along with estimates of bankfull channel characteristics, helps to inform crossing structure sizing, as the structure span should compensate for any future adjustment to channel planimetric form. However, as each assessed stream was constrained between local infrastructure the full extent of the channel meander belt width could not be realistically applied as a tool to inform crossing structure sizing. As such, the assessment was completed with these constraints in mind. A summary of the findings is outlined in **Table 1**.

Of the three watercourses assessed, only the West Branch of the Don River exhibited a naturally occurring meandering alignment and could be measured for the local meander amplitude. As mentioned previously, a meander bend with an amplitude of approximately 30 m was noted within this section of channel. However, the meander bend was located $\sim\!40$ m from the roadside and angled such that the bend was not expected to progress towards the road. Downstream from the crossing, the channel was partially-confined on one side by commercial lots but did not pose any adjustment concerns within the vicinity of the crossing. As noted within the rapid assessments, the channel did exhibit signs of bank erosion and slumping throughout. Additionally, there was no riparian buffer under the crossing.

Meander amplitudes were not measured for Black Creek and Westminster Creek due to evidence of channel straightening and substantive channel armouring (e.g., gabion basket / concrete mesh reinforcement). Both Black Creek and Westminster Creek were therefore not expected to migrate laterally or pose any erosion issues.

Table 1: Channel Characteristics and Meander Amplitudes

Stream	Channel Characteristics	Notes
W Branch of Don River	Max. Meander Amplitude: 30 m Bankfull Width: 8.6 m	 Valley wall contact along right (west) bank downstream of Langstaff Road crossing, constrained by commercial lots. Bank erosion along both sides of channel Existing crossing structure: 11 m box culvert
Black Creek	Max. Meander Amplitude: N/A (straightened) Bankfull Width: 3.5 m	 Unconfined, realigned channel / armoured swale Stable and vegetated channel banks Existing crossing structures: Triple-cell concrete box culvert. Cell width = 2.4 m, total width = 7.2 m
Westminster Creek	Max. Meander Amplitude: N/A (straightened) Bankfull width: 2.3 m	 Confined, armoured corridor Straightened, armoured channel Existing crossing structure: Double-cell concrete box culvert. Cell width = 3.4 m, total width = 6.8 m

4 Crossing Recommendations

Culvert crossings are evaluated in the context of limiting or mitigating impact to creek form and function. Crossings should achieve the following:

- Address potential channel migration;
- Maintain sediment transport processes for frequent storm events;
- Provide a span that is respectful of potential future channel erosion/migration;
- Maintain velocity differentials through the culvert for frequent storm events;
- Be placed away from actively migrating meanders; and
- Be placed along a stable and straight length of channel at a perpendicular angle to the watercourse.

Given these considerations, for Black Creek and Westminster Creek we recommend the existing crossing spans of 7.2 m and 6.8 m, respectively, be maintained at minimum. The current crossing sizes are appropriate as both streams are straight and armoured with gabion baskets and/or concrete meshing, and therefore are not expected to migrate laterally. Furthermore, the crossings are in good condition and fully encompass the existing average channel bankfull widths.

With regards to the West Branch of Don River, present channel alignment did not suggest any further planimetric adjustment towards the road. We recommend the current crossing span of 11 m be improved upon to a minimum of 15 m in width. The additional 4 m would provide a buffer against any potential erosion issues to the crossing footings, as the channel currently contacts both walls of the existing crossing. The addition of an overbank buffer would also permit passage for terrestrial wildlife beneath Langstaff Road.

It is important to note that further amendment to the recommended crossing spans is possible. In the case where only a portion of the suggested width can be provided due to other design considerations (e.g., the presence of subsurface infrastructure or the shallowness of the road),

the incorporation of channel bioengineering may also help to reduce a given crossing span while maintaining channel form and function.

We trust this report meets your requirements. Should you have any questions please contact the undersigned.

Respectfully submitted,

Paul Villard Ph.D., P.Geo., CAN-CISEC Director, Senior Geomorphologist

Bryce Molder M.Sc., Earth Scientist in-Training

5 References

Brierley, G.J. and Fryiers, K.A. 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK, 398pp.

Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Toronto and Region Conservation Authority (TRCA). 2004. Belt Width Delineation Procedures.

Vermont Agency of Natural Resources (VANR). 2007. Step 7: Rapid Geomorphic Assessment (RGA). Phase 2 Stream Geomorphic Assessment.

Appendix A Photographic Record

Don River: Downstream from the Langstaff Road crossing, the study reach followed a meandering planimetric form. In-channel woody debris was common.

Don River: Channel bank erosion and slumping due to undercutting was observed throughout the study reach.

Project #: PN17032

Don River: Fresh sand deposits and sand dominated point bars were noted throughout the study reach.

Don River: The channel spanned the entirety of the Langstaff Road crossing.

Project #: PN17032

Photo 3

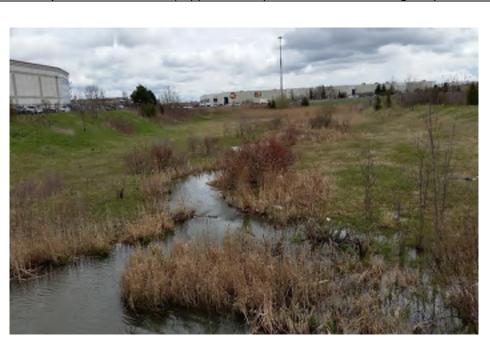
Don River: A stormwater outlet was located adjacent to the Langstaff Road crossing at the downstream end.

Don River: A roadside drainage outlet was located midway up the road embankment adjacent to the Langstaff Road crossing.

Project #: PN17032

Photo 6

Don River: Upstream from the Langstaff Road crossing, the channel entered an open field. Erosion was generally observed along the outer banks.


Photo 8

Don River: A meander amplitude of approximately 30 m was observed within the vicinity of the Langstaff Road crossing.

Black Creek: The studied reach stemmed from a concrete box culvert (~14 m in total width) at Creditview Road, approximately 200 m west of the Highway 400.

Black Creek: The channel was realigned directly downstream of the Creditview Road crossing.

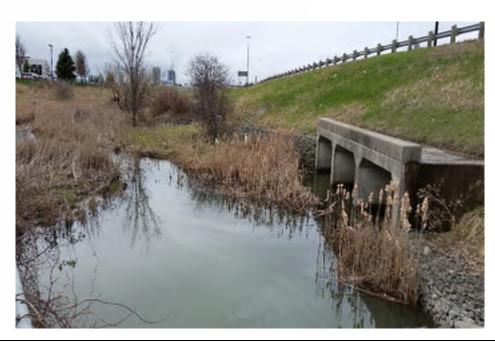
Black Creek: The realigned channel design followed a sinuous planform. Flow conditions were at bankfull capacity during the time of assessment due to recent rainfall.

Black Creek: A stormwater management pond was located adjacent to the realigned channel, west of the Highway 400.

Black Creek: The channel formed into a wide vegetated swale near the Highway 400 crossing. The channel had been previously realigned and reinforced with riprap.

Black Creek: The reinforced swale feature persisted downstream of the Highway 400 crossing. The channel veered south towards Langstaff Road.

Project #: PN17032



Black Creek: A wide vegetated swale was observed downstream from the Langstaff Road crossing.

Black Creek: A triple-cell concrete box culvert was observed at the highway interchange crossing, south of Langstaff Road.

Black Creek: Downstream of the Highway 400 interchange crossing, the reinforced swale continued south. A concrete meshing and gabion baskets lined the channel banks near the crossing.

Black Creek: The swale was well-vegetated downstream of the Highway 400 interchange crossing.

Westminster Creek: Upstream of the Langstaff Road crossing the channel and valley corridor were armoured with gabion basket. The channel was straight.

Westminster Creek: Some sections of the gabion basket wire meshing were eroded and missing stone.

Westminster Creek: The Langstaff Road crossing consisted of a double-cell concrete box culvert. The gabion baskets near the crossing were in good condition.

Westminster Creek: Downstream (south) of the Langstaff Road crossing, there was a $\sim 1-2$ m riparian buffer on either side of the channel.

Westminster Creek: The channel corridor was armoured with gabion basket. The corridor was constrained between commercial lots.

Westminster Creek: Vegetation, including grasses and trees, grew from the gabion baskets. The gabion baskets were in good condition.

Project #: PN17032

Appendix B Field Observations В

General Site Characteristics Project Code: 17032 Date: Stream/Reach: W beauch Weather: Location: Field Staff: Watershed/Subwatershed: Features Site Sketch: Reach break MA = 30 m 53 Cross-section WE Flow direction Field Riffle Pool 8 Medial bar ANNUAL Eroded bank ---- Undercut bank Rip rap/stabilization/gabion -> Leaning tree 113 D m x-x-x Fence Culvert/outfall Swamp/wetland ₩₩W Grasses Tree Instream log/tree DARK * * * Woody debris 只 Station location TO Vegetated Island Flow Type H1 Standing water H2 Scarcely perceptible flow Smooth surface flow нз **H4** Upwelling H5 Rippled Unbroken standing wave **H6** Na = 25m H7 Broken standing wave Chute Free fall H9 Substrate Sillt Small boulder S1 **S2** Sand Large boulder **S3** Gravel Bimodal TOS 54 Small cobble Bedrock/till **S**5 Large cobble Other Railroad BM Benchmark EP Erosion pin BS Backsight Rebar DS Downstream US Upstream Building WDJ Woody debris jam TR Terrace vwc Valley wall contact FC Flood chute Scale: BOS Bottom of slope Flood plain FP Additional Notes: Leonsits noted throughout RESOUR

TOS

Top of slope

KP

Knick point

Reach Characteristics

Project Code/Phase: PN 7-532

Date:	April 21/2017	1		Stream/Reach:		Jan	8					
Weather:	Overcast 1	0,0		Location:		Longstaff	Rd.	/ Keele		Jameshan		
Field staff:	AM BM			Watershed/Subwatershed:	bwatershed:	Dan R			,)		
UTM (Upstream)				UTM (Downstream)	eam)							
Land Use (Table 1)	Valley Type (Table 2)	Channel Type (Table 3)	Channel Zone (Table 4)	one (4)	Flow Type (Table S)	Grou	Groundwater	Evio	Evidence: N	NA		
Riparian Vegetation				Aqua	Aquatic/Instream Vegetation	ation			Water Quality	ity		
Dominant Type: Cove (Table 6) 1	Coverage: during the state of t	Age Class (yrs): 18 4	Encroachment: (Table 7)		Type (Table8) 1 O	Coverage of Reach (%) >	Reach (%) > S FWD: WDJ/50m:			Odour (Table 16) Turbidity (Table 17)	sble 16) Fable 17)	
Channel Characteristics												
Sinuosity (Type)	Sinuosity (Degree)	ree) Gradient	Numb	Number of Channels		Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9)	(Table 10)	3 (Table 11)	(Table 12)	12)	Riffle Substrate			d	40			
Entrenchment	Type of Bank Failure	Failure Downs's Classification	sification		Pool Substrate	Ø						
(Table 13)	(Table 14)	1/2 (Table 15)			Bank Material	Ø	囟					
Bankfull Width (m)	85. B.S.	2 46 Wett	Wetted Width (m)	S.S. 8.	37	Ba	Bank Angle	Bank Erosion		Notes:		
Bankfull Depth (m)	6		Wetted Depth (m)	1 St.º	4.5	3 25 C	09-00	5-30%	. 3			
Riffle/Pool Spacing (m)	089-	% Riffles: 30 %	% Pools: Sb	Meander Amplitude:	nplitude: 28 -		Undercut	G 60 - 100%	%0			
Pool Depth (m)	1~ RITHE	Riffle Length (m)	Undercuts (m)	0.05 com	Comments:							
Veloctity (m/s)	1m/05030048		Wiffle ball / ADV / Estimated	Estimated								

Completed by: AM

Checked by:

Rapid Geomorphic Assessment Project Code: Date: Stream/Reach: an R. W Branch. Weather: Location: Field Staff: Watershed/Subwatershed: Geomorphic Indicator Present? Factor Process Value No. Description Yes No 1 Lobate bar 2 Coarse materials in riffles embedded 3 Siltation in pools Evidence of Aggradation Medial bars 4 (AI) 5 Accretion on point bars 6 Poor longitudinal sorting of bed materials Deposition in the overbank zone 5 0.29 Sum of indices = 2 1 Exposed bridge footing(s) 2 Exposed sanitary / storm sewer / pipeline / etc. 3 Elevated storm sewer outfall(s) 4 Undermined gabion baskets / concrete aprons / etc. NA Evidence of 5 Scour pools downstream of culverts / storm sewer outlets Degradation 6 Cut face on bar forms (DI) 7 Head cutting due to knick point migration 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 10 Channel worn into undisturbed overburden / bedrock Sum of indices = 0.25 1 Fallen / leaning trees / fence posts / etc. 2 Occurrence of large organic debris 3 Exposed tree roots Basal scour on inside meander bends Evidence of 5 Basal scour on both sides of channel through riffle Widening 6 Outflanked gabion baskets / concrete walls / etc. (WI) 7 Length of basal scour >50% through subject reach Exposed length of previously buried pipe / cable / etc. NA 8 9 Fracture lines along top of bank 10 Exposed building foundation Sum of Indices = 1 Formation of chute(s) 2 Single thread channel to multiple channel Evidence of 3 Evolution of pool-riffle form to low bed relief form Planimetric Form 4 Cut-off channel(s) Adjustment 5 Formation of island(s) (PI) 6 Thalweg alignment out of phase with meander form Bar forms poorly formed / reworked / removed 0 . 14 Sum of indices =

Additional notes:		Stability I	Stability Index (SI) = (AI+DI+WI+PI)/4 = ೦ನ್ನ್					
	Condition	In Regime	In Transition/Stress	In Adjustment				
	SI score =	□ 0.00 - 0.20	□ 0.21 - 0.40	□ 0.41				

Completed	w.em.	Checked by:	
completed	U) . =		-

Rapid Stream Assessment Technique

Project Code: 17020

Date:	April 21, 2017	Stream/Reach:	On R.
Weather:	12° C clouds	Location:	Langetal / Keele
Field Staff:	Am 8m	Watershed/Subwatershed:	Don R

Evaluation Category	Poor	Fair	Good	Excellent
Channel Stability	< 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed	50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common	71-80% of bank network stable Infrequent signs of bank sloughing, slumping or failure	> 80% of bank network stable No evidence of bank sloughing, slumping or failure
	Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m	Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m	Stream bend areas stable Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for large mainstem areas) Bank overhang 0.6-0.8 m	Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
	Young exposed tree roots abundant > 6 recent large tree falls per stream mile	Young exposed tree roots common 4-5 recent large tree falls per stream mile	Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile	Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
	Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised	Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
	Channel cross-section is generally trapezoidally- shaped	 Channel cross-section is generally trapezoidally- shaped. 	Channel cross-section is generally V- or U-shaped	Channel cross-section is generally V- or U-shaped
Point range	□ 0 □ 1 □ 2	10/3 0 4 0 5	□ 6 □ 7 □ 8	□ 9 □ 10 □ 11
Channel Scouring/ Sediment Deposition	> 75% embedded (> 85% embedded for large mainstem areas)	50-75% embedded (60- 85% embedded for large mainstem areas)	25-49% embedded (35- 59% embedded for large mainstern areas)	Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	Few, if any, deep pools Pool substrate composition >81% sand- silt	Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt	Moderate number of deep pools Pool substrate composition 30-59% sand-silt	High number of deep pool (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt
	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits uncommon	Streambed streak marks and/or "banana"-shaped sediment deposits absent
	Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area.	Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks	Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks	Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand	Point bars common, moderate to large and unstable with high amount of fresh sand	Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand	Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range	0 0 1 0 2	E 3 □ 4	□ 5 □ 6	□ 7 □ 8

Date:	2017 April 21	Reach:	Don R			Project Code:	170	30	
Evaluation Category	Poor	Fa	ir		Go	ood		Excellent	
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	Wetted perin 60% of bott width (45-6) mainstern and	om channel 5% for large	()	of bottom ch 66-90% for nainstem ar	large eas)	of botto	perimeter > 85% om channel width (> r large mainstem	
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	Few pools p and runs do Velocity and generally sk shallow (for mainstem a and pools do velocity and diversity interests.)	minant. depth ow and large reas, runs ominant, depth		uns and poo	verse velocity	habitat • Diverse of flow	runs and pool present velocity and depth present (i.e., slow, allow and deep	
Physical Instream	Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble	 Riffle substr composition predominan cobble, grav 5-24% cobb 	: tly small rel and sand	(Riffle substra composition: gravel, cobb naterial 25-49% cob	good mix of le, and rubble	gravel,	sition: cobble, rubble, boulder mix tle sand	
Habitat	Riffle depth < 10 cm for large mainstem areas	Riffle depth large mains			Riffle depth arge mainst	15-20 cm for em areas	Riffle depth > 20 cm for large mainstern areas		
	Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	Large pools 46 cm deep for large ma areas) with overhead co	(61-91 cm instem	1	cm deep (91		cm deep (> 122 cm for large mainstem areas) w good overhead cover/structure		
	Extensive channel alteration and/or point bar formation/enlargement	Moderate ar channel alte moderate in point bar formation/e	eration and/or ocrease in	1	Slight amous alteration ar increase in p formation/er	oint bar	signific	nnel alteration or ant point bar ion/enlargement	
	 Riffle/Pool ratio 0.49:1; ≥1.51:1 	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1			1.11-1.3:1		Riffle/F	ool ratio 0.9-1.1:1	
	Summer afternoon water temperature > 27°C	Summer aft temperature			Summer aft temperature	ernoon water 20-24°C	Summer afternoon water temperature < 20°C		
Point range	□ 0 □ 1 □ 2	□ 3	□ 4		0 5	□ 6	1	7 0 8	
	Substrate fouling level: High (> 50%)	Substrate for Moderate (2			Substrate fo Very light (1			ate fouling level: nderside (0-10%)	
	Brown colour TDS: > 150 mg/L	Grey colour TDS: 101-1			Slightly grey TDS: 50-10		Clear f TDS: <	low : 50 mg/L	
Water Quality	Objects visible to depth	Objects visi 0.15-0.5m	ble to depth below surface		Objects visit 0.5-1.0m be	ole to depth slow surface		s visible to depth n below surface	
	Moderate to strong organic odour	Slight to me organic odd			Slight organ	ic odour	• No odd	our	
Point range	00010/2	□ 3	□ 4		□ 5	□ 6		0708	
Riparian	Narrow riparian area of mostly non-woody vegetation	Riparian area predominantly wooded but with major localized gaps				ffer generally e along major oth banks	Wide (> 60 m) mature forested buffer along be banks		
Habitat Conditions	Canopy coverage: <50% shading (30% for large mainstem areas)	Canopy coverage: 50-				erage: eding (45-59% sinstem areas)			
Point range	□ 0 □ 1	5 2	□ 3	0 4 0 5			□ 6 □ 7		
Total overall	score (0-42) = \5	Poor (<	13)	Fali	(13-24)	Good (25-	-34) Excellent (>35)		

Completed by: 60 Checked by:

General Site Characteristics

TOS Top of slope

KP Knick point

Project Code: 17032

Date:	Man 31	Stream/Reach:	Westmingter cle	
Weather:	80°C .	Location:	Langetall + Outlerin	
Field Staff:	em	Watershed/Subwatershed:	Den B.	
Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut ban Rip rap/stabil Leaning tree Fence Culvert/outfa Swamp/wetla VVVV Grasses Tree Instream log. XXX Woody debris Station locati	n nk lization/gabion ill and /tree 3		Compared N N S S S S S S S S S S S S S S S S S	XS Pieces gabers
Flow Type H1 Standing wat H2 Scarcely perc H3 Smooth surfa H4 Upwelling H5 Rippled H6 Unbroken stand H7 Broken stand H8 Chute H9 Free fall Substrate S1 Silt S2 Sand S3 Gravel S4 Small cobble S5 Large cobble	per ceptible flow see flow anding wave	man. L	aun E3E33 Commercial	0.1 s
Other BM Benchmark BS Backsight DS Downstream WDJ Woody debris VWC Valley wall co BOS Bottom of slo	ontact FC Flood chute	Additional Notes:	Scale:	

Reach Characteristics

Project Code/Phase: 13082

Date:	Man Bl Zoll	Stream/Reach:	Washmangher de			
Weather:	-	Location:	Knewal Rd.			
Field staff:	Rm	Watershed/Subwatershed:	00 00			
UTM (Upstream)		UTM (Downstream)				
(Table 1)	Valley Type Channel Type Channel Zone (Table 2) (Table 3)	(Table 4) Slow Type (Table 5)	☐ Groundwater AJ\$	Evidence:		
Riparian Vegetation		Aquatic/Instream Vegetation	getation	Water Quality	ality	4
Dominant Type: Coverage (Table 6) /	Coverage: Course Age Class (yrs): Encroachment:	nt: Type (Table8) (7) Woody Debris	Coverage of Reach (%) S Density of WD:		Odour (Table 16)	16)
	rented 4-10	Present in Cutbank	Er Low WDJ/50m: D Moderate		Turbidity (Table 17)	e 17)
Channel Characteristics				*		
Sinuosity (Type)	Sinuosity (Degree) Gradient Nun	Number of Channels	Clay/Silt Sand Gra	Gravel Cobble	Boulder Pa	Parent Rootlets
(Table 9)	(Table 10) [(Table 11) 2 (Tal	(Table 12) Riffle Substrate	o 0 0 0	0	0	0 0
Entrenchment	Type of Bank Failure Downs's Classification	Pool Substrate	nte 0 0 0	0 0	0	0
(Table 13)	(Table 14) 2 (Table 15)	Bank Material			0	0
Bankfull Width (m)	1,35 2.2 8.0 Wetted Width (m)	1.70	Bank Angle Ba	Bank Erosion	Notes:	
Bankfull Depth (m)	0.5 0.5 Wetted Depth (m)	0.10 0.15 0.30	- 6	305 OS 0		
Riffle/Pool Spacing (m)	NA % Riffles: NA % Pools: NA	Meander Amplitude:		0 60-100%		
Pool Depth (m)	Ni Riffle Length (m) Ni Undercuts (m)	3.05 Comments: Carbona	in the day	Carin		
Veloctity (m/s)	0.6 0.3 0.1 WITTE BAIL ADV	Ball / ADV / Estimated	por book US, soud frip	sand fipagianel D		

Completed by: BM.

Checked by:

Weather: Color Co	Date:		2017, Apr21	Stream/Reach:	Black CK
Features Reach break Cross-section Flow direction Riffle Pool Medial bar Ferded bank Undercut bank Rigrap/stabilization/gabion Leaning tree Leaning tree Samp/wetland VYV Grasses Tree Instream log/tree X X Woody debris Station location Vegetated island Flow Type H1 Standing water H2 Scarcely perceptible flow H3 Smooth surface flow H4 Upwelling H5 Rippled H6 Unbroken standing wave H7 Broken standing wave H8 Chute H9 Free fall Substrate S1 Silt S6 Small boulder S2 Sand S7 Large boulder S3 Gravel S8 Bimodal S4 Small cobble S9 Bedrock/till S5 Large cobble Other	Weathe	er:	10°6. aux	Location:	400/Langraff
Reach break Cross-section Flow direction Riffle Pool Medial bar Ereded bank Undercut bank Rip rap/stabilization/gabion Leaning tree Culvert/outfall Swamp/wetland VVV Grasses Instream log/tree X X Woody debris R Station location Vegetated island Flow Type H1 Standing water H2 Scarcely perceptible flow H3 Smooth surface flow H4 Upwelling H5 Rippled H6 Unbroken standing wave H7 Broken standing wave H7 Broken standing wave H8 Chute H9 Free fall Substrate S1 Silt S6 Small boulder S2 Sand S7 Large boulder S3 Gravel S8 Bimodal S4 Small cobble S9 Bedrock/till S5 Large cobble Other	Field St	taff:			Black Cla
Reach reak Cross-section Flow direction Ruffle Pool Medial bar Eroded bank Undercut bank Rip rap/stabilization/gabion Leaning tree X-X-X- Fence Culvert/outfall Swamp/wetland YVV Grasses Tree Instream log/tree X-X-X- Woody debris R Station location Y- Vegetated island Flow Type H1 Standing water H2 Scarcely perceptible flow H3 Smooth surface flow H4 Upwelling H5 Rippled H6 Unbroken standing wave H7 Broken standing wave H7 Broken standing wave H8 Chute H9 Free fall Substrate S1 Silt S6 Small boulder S2 Sand S7 Large boulder S3 Gravel S8 Bimodal S4 Small cobble S9 Bedrock/till S5 Large cobble Other		es		Site Sketch:	
BS Backsight RB Rebar DS Downstream US Upstream WDJ Woody debris jam TR Terrace	X X X X X X X X X X	Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut bank Rip rap/stabilization Leaning tree Fence Culvert/outfall Swamp/wetland Grasses Tree Instream log/tree Woody debris Station location Vegetated island ype Standing water Scarcely perceptible Smooth surface flor Upwelling Rippled Unbroken standing water Scarcely berceptible Smooth surface flor Upwelling Rippled Unbroken standing water Scarcely berceptible Smooth surface flor Upwelling Rippled Unbroken standing water Scarcely perceptible Smooth surface flor Upwelling Rippled Unbroken standing Broken standing water Scarcely berceptible Smooth surface flor Upwelling Rippled Unbroken standing Broken standing water Salt Sand Gravel Small cobble Large cobble Benchmark Backsight Downstream Woody debris jam	e flow wave nve S6 Small boulder S7 Large boulder S8 Bimodal S9 Bedrock/till EP Erosion pin RB Rebar US Upstream TR Terrace	Constitute of the second of th	Sunde State

TOS

Top of slope

KP Knick point

Completed by: _____ Checked by: _____

APPENDIX

E

Stormwater Management

Stage-Storage-Discharge Summary - Pipe Storage HSP-1

Storage Facility # HSP-1A

Stage	Discharge					1 01	ebays	1416	uni i ooi (Excida	ing Forebay)	Stora	gc	Estimated
		Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m²)	(m³)	(m³)	(m²)	(m³)	(m³)	(m ³)	(m ³)	(hrs)
204.12	0.0000	0	0	204.12					0	0	0	0	
204.32	0.0081	31	31	204.32					0	31	0	31	
204.52	0.0123	74	74	204.52					0	74	0	74	
204.72	0.0155	118	118	204.72					0	118	0	118	
204.92	0.0181	161	161	204.92					0	161	0	161	
205.12	0.0584	204	204	205.12					0	204	0	204	
205.32	0.0920	259	259	205.32					0	259	0	259	

3216079 Langstaff Road EA

Detailed Outlet Structure Discharge Calculations

			D	ischarge	(m³/s)						Parameters			
	Spillway			0	utlet Riser		DICE	Total	Overflow We	ir 1	Ori	fice 1		
Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICB	Discharge	Crest Elevati	ion	Orifice Centre	Perimeter		
0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 r	m	204.17 m	314 mm		
0.000	0.000	0.000	0.00808	0.000	0.000	0.008	0.000	0.0081						
0.000	0.000	0.000	0.01235	0.000	0.000	0.012	0.000	0.0123	Crest Width	h	Orifice Invert	Area		
0.000	0.000	0.000	0.01548	0.000	0.000	0.015	0.000	0.0155	1 r	m	204.12 m	7,854 mm ²		
0.000	0.000	0.000	0.01808	0.000	0.000	0.018	0.000	0.0181	Slope (x:1)	5	Orifice Diameter	Orifice Coeff.		
0.000	0.000	0.000	0.02034	0.000	0.038	0.058	0.000	0.0584	Weir Coeff.	1.670	100 mm	0.6		
0.000	0.000	0.000	0.02238	0.000	0.070	0.092	0.000	0.0920	Weir Top Width (m)	-97935.8	Orientation			
									Overflow Weir 2		Vertical			
									Crest Elevation		W	eir 1		
									9999.00 m		Top of Weir Structure	Max Perimeter		
									Crest Width		9999.30 m	1,400 mm		
									3 m		Weir Crest Invert	Max Open Area		
									Slope (x:1)	3	9999.00 m	240,000 mm ²		
									Weir Coeff.	1.670	Weir Dimension	s (Height x Length)		
									Weir Top Width (m)	-58941.000	300 mm Height	800 mm L		
									DICB		Side Walls	Weir Coeff.		
									T/G Invert		Vertical	1.670		
									9999.00 r	m	Ori	fice 2		
									CB Size		Orifice Centre	Perimeter		
									1200 r	mm	205.03 m	785 mm		
									by		Orifice Invert	Area		
									600 r	mm	204.91 m	49,087 mm ²		
									Grate Slope	е	Orifice Diameter	Orifice Coeff.		
									4 :1		250 mm	0.6		
									Area (m ²)			Operates Above (m)		
									Perimeter (m)	3.600	Vertical	205.03		
									0 01 2 1 1	D)				
									$Q = CA \sqrt{2g \left(h_2 - h_1 \right)}$	2000	$ Q = CL(h_2 - h_1)$	$^{1.5} + 1.268z(h_2 - h_1)^{2.5}$		
	0.000 0.000 0.000 0.000 0.000 0.000	Weir 1 Weir 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Weir 1 Weir 2 Total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Spillway Weir 1 Weir 2 Total Orifice 1 0.000 0.000 0.000 0.00000 0.000 0.000 0.000 0.00808 0.000 0.000 0.000 0.01235 0.000 0.000 0.01548 0.000 0.000 0.01808 0.000 0.000 0.01808 0.000 0.000 0.02034	Spillway O Weir 1 Weir 2 Total Orifice 1 Weir 1 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.00808 0.000 0.000 0.000 0.001 0.01235 0.000 0.000 0.000 0.01548 0.000 0.000 0.000 0.01808 0.000 0.000 0.000 0.00234 0.000	Spillway Outlet Riser Weir 1 Weir 2 Total Orifice 1 Weir 1 Orifice 2 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.00080 0.000 0.000 0.000 0.000 0.001235 0.000 0.000 0.000 0.000 0.01548 0.000 0.000 0.000 0.000 0.01808 0.000 0.000 0.000 0.000 0.02034 0.000 0.038	Spillway Outlet Riser Weir 1 Weir 2 Total Orifice 1 Weir 1 Orifice 2 Total 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.00808 0.000 0.000 0.008 0.000 0.000 0.000 0.01235 0.000 0.000 0.012 0.000 0.000 0.000 0.01548 0.000 0.000 0.015 0.000 0.000 0.000 0.01808 0.000 0.000 0.018 0.000 0.000 0.000 0.0234 0.000 0.038 0.058	Spillway	Note Note	Spillway	Spillway	Spillway		

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Pipe Storage HSP-1

Storage Facility # HSP-1B

		Sto	rage			For	ebays	М	ain Pool (Exclud	ing Forebay)	Stora	ge	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m³/s)	(m³)	(m ³)	(m)	(m²)	(m ³)	(m³)	(m²)	(m³)	(m ³)	(m ³)	(m ³)	(hrs)
205.35	0.0000	0	0	205.35					0	0	0	0	
205.55	0.0081	31	31	205.55					0	31	0	31	
205.75	0.0123	74	74	205.75					0	74	0	74	
205.95	0.0155	118	118	205.95					0	118	0	118	
206.15	0.0181	161	161	206.15					0	161	0	161	
206.35	0.0584	204	204	206.35					0	204	0	204	
206.55	0.0920	259	259	206.55					0	259	0	259	
											1		
										_			
											1		
										_			

3216079 Langstaff Road EA

Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Or	ifice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICB	Discharge	Crest Elevation	Orifice Centre	Perimeter
205.35	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	205.40 m	314 mm
205.55	0.000	0.000	0.000	0.00808	0.000	0.000	800.0	0.000	0.0081			
205.75	0.000	0.000	0.000	0.01235	0.000	0.000	0.012	0.000	0.0123	Crest Width	Orifice Invert	Area
205.95	0.000	0.000	0.000	0.01548	0.000	0.000	0.015	0.000	0.0155	1 m	205.35 m	7,854 mm ²
206.15	0.000	0.000	0.000	0.01808	0.000	0.000	0.018	0.000	0.0181	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
206.35	0.000	0.000	0.000	0.02034	0.000	0.038	0.058	0.000	0.0584	Weir Coeff. 1.670	100 mm	0.6
206.55	0.000	0.000	0.000	0.02238	0.000	0.070	0.092	0.000	0.0920	Weir Top Width (m) -97923.	Orientation	
										Overflow Weir 2	Vertical	
										Crest Elevation	W	eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)
										Weir Top Width (m) -58941.0		800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m		ifice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	206.26 m	785 mm
										by	Orifice Invert	Area
										600 mm	206.14 m	49,087 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	250 mm	0.6
										Area (m ²) 0.7		Operates Above (m)
										Perimeter (m) 3.6	00 Vertical	206.26
										0 - C1 22(1 1 D)		115 ()25
										$Q = CA \sqrt{2 g \left(h_2 - h_1 + \frac{D}{2000} \right)}$	$Q = CL(h_2 - h)$	$(h_1)^{1.5} + 1.268z(h_2 - h_1)^{2.5}$

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Pipe Storage HSP-2

Facility # HSP-2

		Sto	rage			Fore	ebays	Mai	n Pool (Excludii	ng Forebay)	Stora	ge	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m³/s)	(m³)	(m³)	(m)	(m²)	(m³)	(m³)	(m²)	(m³)	(m³)	(m³)	(m³)	(hrs)
204.44	0.0000	0	0	204.44					0	0	0	0	
204.64	0.0264	24	24	204.64					0	24	0	24	
204.84	0.0457	99	99	204.84					0	99	0	99	
205.04	0.0590	204	204	205.04					0	204	0	204	
205.24	0.0699	309	309	205.24					0	309	0	309	
205.44	0.0792	414	414	205.44					0	414	0	414	
205.64	0.0876	666	666	205.64					0	666	0	666	
1													
1													
-													
1													

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Or	ifice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter
204.44	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	204.54 m	628 mm
204.64	0.000	0.000	0.000	0.02640	0.000	0.000	0.026	0.000	0.0264			
204.84	0.000	0.000	0.000	0.04573	0.000	0.000	0.046	0.000	0.0457	Crest Width	Orifice Invert	Area
205.04	0.000	0.000	0.000	0.05904	0.000	0.000	0.059	0.000	0.0590	1 m	204.44 m	31,416 mm ²
205.24	0.000	0.000	0.000	0.06986	0.000	0.000	0.070	0.000	0.0699	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
205.44	0.000	0.000	0.000	0.07921	0.000	0.000	0.079	0.000	0.0792	Weir Coeff. 1.670	200 mm	0.6
205.64	0.000	0.000	0.000	0.08757	0.000	0.000	0.088	0.000	0.0876	Weir Top Width (m) -97932.6	Orientation	
										Overflow Weir 2	Overflow Weir 2 Vertical	
										Crest Elevation	W	/eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)
										Weir Top Width (m) -58941.000	300 mm Height	800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m	Or	ifice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	205.67 m	974 mm
										by	Orifice Invert	Area
										600 mm	205.51 m	75,477 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	310 mm	0.6
										Area (m ²) 0.720		Operates Above (m)
										Perimeter (m) 3.600	Vertical	205.67
			-							$Q = CA \sqrt{2g\left(h_1 - h_1 + \frac{D}{M}\right)}$		
										$\frac{1}{2} - \frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2000} \right)}$	$Q = CL(h_2 - h_1)^{1.5} + 1.268z(h_2 - h_2)^{1.5}$	
-	1	1	1	1				1		<u> </u>		

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m^2)

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Pipe Storage HSP-3

Facility # HSP-3

		Sto	rage			For	ebays	M	ain Pool (Exclud	ling Forebay)	Stora	ge	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m³/s)	(m ³)	(m³)	(m)	(m²)	(m ³)	(m³)	(m²)	(m³)	(m³)	(m ³)	(m³)	(hrs)
204.00	0.0000	0	0	204.00					0	0	0	0	
204.20	0.0185	30	30	204.20					0	30	0	30	
204.40	0.0302	120	120	204.40					0	120	0	120	
204.60	0.1132	251	251	204.60					0	251	0	251	
204.80	0.2123	383	383	204.80					0	383	0	383	
205.00	0.2753	515	515	205.00					0	515	0	515	
205.20	0.3258	792	792	205.20					0	792	0	792	
-									-		-		
-									-		-		
					-								
		 	 										

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m³/s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Ori	fice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter
204.00	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	204.08 m	503 mm
204.20	0.000	0.000	0.000	0.01851	0.000	0.000	0.019	0.000	0.0185			
204.40	0.000	0.000	0.000	0.03023	0.000	0.000	0.030	0.000	0.0302	Crest Width	Orifice Invert	Area
204.60	0.000	0.000	0.000	0.03853	0.000	0.075	0.113	0.000	0.1132	1 m	204.00 m	20,106 mm ²
204.80	0.000	0.000	0.000	0.04534	0.000	0.167	0.212	0.000	0.2123	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
205.00	0.000	0.000	0.000	0.05125	0.000	0.224	0.275	0.000	0.2753	Weir Coeff. 1.670	160 mm	0.6
205.20	0.000	0.000	0.000	0.05655	0.000	0.269	0.326	0.000	0.3258	Weir Top Width (m) -97937.0	Orientation	
										Overflow Weir 2	Vertical	
										Crest Elevation	W	eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimensions	s (Height x Length)
										Weir Top Width (m) -58941.00	0 300 mm Height	800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m	Ori	fice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	204.55 m	1,257 mm
										by	Orifice Invert	Area
										600 mm	204.35 m	125,664 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	400 mm	0.6
										Area (m ²) 0.72		Operates Above (m
										Perimeter (m) 3.60	0 Vertical	204.55

Where, h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) D = orifice diameter (mm) C = orifice coefficient

A = orifice open area (m²)

 $Q = CL(h_2 - h_1)^{1.5} + 1.268z(h_2 - h_1)^{2.5}$

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Pipe Storage DSP-1

Facility # DSP-1

		Sto	rage			For	ebays	Ma	in Pool (Excludi	ing Forebay)	Stora	ge	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
207.98	0.0000	0	0	207.98					0	0	0	0	
208.18	0.0056	72	72	208.18					0	72	0	72	
208.38	0.0084	283	283	208.38					0	283	0	283	
208.58	0.0105	553	553	208.58					0	553	0	553	
208.78	0.0122	823	823	208.78					0	823	0	823	
208.98	0.0382	1,093	1,093	208.98					0	1,093	0	1,093	
209.18	0.0516	1,598	1,598	209.18					0	1,598	0	1,598	
	1	1											
	1	1											
	l	1	l			l	l			l			

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Ori	fice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter
207.98	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	208.02 m	258 mm
208.18	0.000	0.000	0.000	0.00560	0.000	0.000	0.006	0.000	0.0056			
208.38	0.000	0.000	0.000	0.00841	0.000	0.000	0.008	0.000	0.0084	Crest Width	Orifice Invert	Area
208.58	0.000	0.000	0.000	0.01049	0.000	0.000	0.010	0.000	0.0105	1 m	207.98 m	5,281 mm ²
208.78	0.000	0.000	0.000	0.01223	0.000	0.000	0.012	0.000	0.0122	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
208.98	0.000	0.000	0.000	0.01374	0.000	0.025	0.038	0.000	0.0382	Weir Coeff. 1.670	82 mm	0.6
209.18	0.000	0.000	0.000	0.01511	0.000	0.036	0.052	0.000	0.0516	Weir Top Width (m) -97897.2	Orientation	
										Overflow Weir 2	Vertical	
										Crest Elevation	W	eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)
										Weir Top Width (m) -58941.000	300 mm Height	800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m	Ori	fice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	208.81 m	534 mm
										by	Orifice Invert	Area
										600 mm	208.73 m	22,698 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	170 mm	0.6
										Area (m ²) 0.720	Orientation	Operates Above (m
										Perimeter (m) 3.600	Vertical	208.81
										$\left(\begin{array}{cccc} & & & \\ & & \\ & & \end{array}\right)$		
										$Q = CA \sqrt{2g \left[h_2 - h_1 + \frac{D}{2000} \right]}$	$Q = CL(h_1 - h_2)$	$^{1.5} + 1.268z(h_2 - h_1)$

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)

h2 = elevation at stage 2 (m)

h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

3211026 I3216079 Langstaff Road EA

Stage-Storage-Discharge Summary - Dry Pond DDP-1

Dry Pond # DDP-1

		Sto	rage			Fore	ebays	Ma	in Pool (Excludi	ing Forebay)	Stora	ge	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
205.60	0.0000	0	0	205.60				447	0	0		0	0.0
205.92	0.0071	165	165	205.92				584	165	165	0	165	6.5
206.18	0.0098	331	331	206.18				694	166	331	0	331	11.2
206.44	0.0119	526	526	206.44				805	195	526	0	526	15.7
206.70	0.0138	750	750	206.70				916	224	750	0	750	20.2
206.96	0.0471	1,003	1,003	206.96				1,027	253	1,003	0	1,003	21.7
207.22	0.0636	1,284	1,284	207.22				1,138	282	1,284	0	1,284	23.0
207.48	0.0763	1,594	1,594	207.48				1,249	310	1,594	0	1,594	24.1
207.74	0.0870	1,934	1,934	207.74				1,365	340	1,934	0	1,934	25.2
208.00	0.0964	2,308	2,308	208.00				1,511	374	2,308	0	2,308	26.2
	1												1 1
													1
													1
													1
<u> </u>	I	l	l			1			l	l			

3211026 Fifth Line EA

Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters		
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Or	ifice 1	
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter	
205.60	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	208.00 m	205.64 m	251 mm	
205.92	0.000	0.000	0.000	0.00707	0.000	0.000	0.007	0.000	0.0071				
206.18	0.000	0.000	0.000	0.00982	0.000	0.000	0.010	0.000	0.0098	Crest Width	Orifice Invert	Area	
206.44	0.000	0.000	0.000	0.01195	0.000	0.000	0.012	0.000	0.0119	1.2 m	205.60 m	5,027 mm ²	
206.70	0.000	0.000	0.000	0.01375	0.000	0.000	0.014	0.000	0.0138	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.	
206.96	0.000	0.000	0.000	0.01535	0.000	0.032	0.047	0.000	0.0471	Weir Coeff. 1.670	80 mm	0.6	
207.22	0.000	0.000	0.000	0.01679	0.000	0.047	0.064	0.000	0.0636	Weir Top Width (m) 1.2	Orientation		
207.48	0.000	0.000	0.000	0.01812	0.000	0.058	0.076	0.000	0.0763	Overflow Weir 2	Vertical		
207.74	0.000	0.000	0.000	0.01936	0.000	0.068	0.087	0.000	0.0870	Crest Elevation	W	eir 1	
208.00	0.000	0.000	0.000	0.02052	0.000	0.076	0.096	0.000	0.0964	9999.00 m	Top of Weir Structure	Max Perimeter	
										Crest Width	9999.3 m	2,600 mm	
										3 m	Weir Crest Invert	Max Open Area	
										Slope (x:1) 3	9999.0 m	600,000 mm ²	
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)	
										Weir Top Width (m) -58941.000	300 mm Height	2000 mm L	
										DICB	Side Walls	Weir Coeff.	
										T/G Invert	Vertical	1.670	
										9999.00 m	Or	ifice 2	
										CB Size	Orifice Centre	Perimeter	
										1200 mm	206.74 m	565 mm	
										by	Orifice Invert	Area	
										600 mm	206.65 m	25,447 mm ²	
										Grate Slope	Orifice Diameter	Orifice Coeff.	
										4 :1	180 mm	0.6	
										Area (m²) 0.720	Orientation	Operates Above (r	
										Perimeter (m) 3.600	Vertical	206.74	
										$Q = CA \sqrt{2g \left(h_2 - h_1 + \frac{2}{200} \right)}$	$Q = CL(h_2 - h_2)$	$(h_2 - h_1)^{1.5} + 1.268z(h_2 - h_1)^{1.5}$	

Where, h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) D = orifice diameter (mm) C = orifice coefficient

A = orifice open area (m²)

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Wet Pond DWP-1

Wet Pond DWP-1

(m) (m 206.40 0.0 206.45 0.0 206.50 0.0 206.55 0.0 206.60 0.0	m³/s) 0000 0013 0033 0044	Active (m³) 0 157 320 487	Total (m³) 0 157 320	(m) 206.40 206.45 206.50	Area (m²)	Incremental Volume (m³)	Accumulated Volume (m³)	Area (m²) 3,098	Volume (m³)	Accumulated Volume (m³)	Sediment (m³)	Total (m³)	Detention Time
206.40 0.0 206.45 0.0 206.50 0.0 206.55 0.0 206.60 0.0	0000 0013 0033 0044	0 157 320	0 157 320	206.40 206.45	(m ²)	(m³)	(m³)	` '	` '		(m ³)	(m ³)	(hre)
206.45 0.0 206.50 0.0 206.55 0.0 206.60 0.0	0013 0033 0044	157 320	157 320	206.45				3,098	•				(1113)
206.50 0.0 206.55 0.0 206.60 0.0	0033 0044	320	320						U	0		0	0.000
206.55 0.0 206.60 0.0	0044			206.50				3,197	157	157	0	157	0.000
206.60 0.0		487						3,297	162	320	0	320	13.781
	0050		487	206.55				3,396	167	487	0	487	24.271
	ひしつづ	659	659	206.60				3,495	172	659	0	659	33.226
	0061	837	837	206.65				3,594	177	837	0	837	41.268
	0068	1,019	1,019	206.70				3,694	182	1,019	0	1,019	48.698
	0074	1,206	1,206	206.75				3,793	187	1,206	0	1,206	55.688
	0800	1,398	1,398	206.80				3,892	192	1,398	0	1,398	62.347
	0086	1,595	1,595	206.85				3,992	197	1,595	0	1,595	68.747
	0091	1,797	1,797	206.90				4,091	202	1,797	0	1,797	74.942
	.0095	2,004	2,004	206.95				4,190	207	2,004	0	2,004	80.970
	0100	2,216	2,216	207.00				4,289	212	2,216	0	2,216	86.860
	0104	2,433	2,433	207.05				4,389	217	2,433	0	2,433	92.636
	0109	2,655	2,655	207.10				4,488	222	2,655	0	2,655	98.316
	0113	2,882	2,882	207.15				4,587	227	2,882	0	2,882	103.914
207.20 0.0	0116	3,114	3,114	207.20				4,686	232	3,114	0	3,114	109.444
207.30 0.1	1520	3,592	3,592	207.30				4,885	479	3,592	0	3,592	110.318
207.45 0.5	5654	4,336	4,336	207.45				5,026	743	4,336	0	4,336	110.684
207.60 1.1	1316	5.100	5.100	207.60				5.167	764	5.100	0	5.100	110.871

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge (m ³ /s)					Parameters	
Lievation		Spillway			Out	tlet Riser		DICB	Total	Overflow Weir 1	Orific	e 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter
206.40	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	207.64 m	206.44 m	251 mm
206.45	0.000	0.000	0.000	0.00134	0.000	0.000	0.001	0.000	0.0013			
206.50	0.000	0.000	0.000	0.00327	0.000	0.000	0.003	0.000	0.0033	Crest Width	Orifice Invert	Area
206.55	0.000	0.000	0.000	0.00443	0.000	0.000	0.004	0.000	0.0044	1.2 m	206.40 m	5,027 mm ²
206.60	0.000	0.000	0.000	0.00534	0.000	0.000	0.005	0.000	0.0053	Slope (x:1) 12.5	Orifice Diameter	Orifice Coeff.
206.65	0.000	0.000	0.000	0.00612	0.000	0.000	0.006	0.000	0.0061	Weir Coeff. 1.670	80 mm	0.6
206.70	0.000	0.000	0.000	0.00681	0.000	0.000	0.007	0.000	0.0068	Weir Top Width (m) 0.2	Orientation	Obvert
206.75	0.000	0.000	0.000	0.00744	0.000	0.000	0.007	0.000	0.0074	Overflow Weir 2	Vertical	206.48 m
206.80	0.000	0.000	0.000	0.00802	0.000	0.000	0.008	0.000	0.0080	Crest Elevation	Rectangula	ar Weir 1
206.85	0.000	0.000	0.000	0.00855	0.000	0.000	0.009	0.000	0.0086	9999.00 m	Bottom Weir Crest Invert	Top Weir Width Invert
206.90	0.000	0.000	0.000	0.00906	0.000	0.000	0.009	0.000	0.0091	Crest Width	207.20 m	207.20 m
206.95	0.000	0.000	0.000	0.00954	0.000	0.000	0.010	0.000	0.0095	3 m	Bottom Weir Crest Width, L	Top Weir Crest Width, B
207.00	0.000	0.000	0.000	0.01000	0.000	0.000	0.010	0.000	0.0100	Slope (x:1) 3	0.00 m	2.40 m
207.05	0.000	0.000	0.000	0.01043	0.000	0.000	0.010	0.000	0.0104	Weir Coeff. 1.670	Bottom Weir Crest Height	Weir Coeff.
207.10	0.000	0.000	0.000	0.01085	0.000	0.000	0.011	0.000	0.0109	Weir Top Width (m) -58941.0	0.00 m High	1.84
207.15	0.000	0.000	0.000	0.01126	0.000	0.000	0.011	0.000	0.0113	DICB		
207.20	0.000	0.000	0.000	0.01165	0.000	0.000	0.012	0.000	0.0116	T/G Invert		
207.30	0.000	0.000	0.000	0.01239	0.140	0.000	0.152	0.000	0.1520	99999.00 m	Orific	e 2
207.45	0.000	0.000	0.000	0.01343	0.552	0.000	0.565	0.000	0.5654	CB Size	Orifice Centre	Perimeter
207.60	0.000	0.000	0.000	0.01439	1.117	0.000	1.132	0.000	1.1316	600 mm	99999.00 m	0 mm
										by	Orifice Invert	Area
										600 mm	99999.00 m	0 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	0 mm	0.60
										Area (m ²) 0.360	Orientation	Obvert
						***************************************				Perimeter (m) 2.400	Vertical	99999.00 m

Stage-Storage-Discharge Summary - Pipe Storage DSP-2

Facility # DSP-2

		Sto	rage			For	ebays	Ma	in Pool (Excludi	ing Forebay)	Stora	ige	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
197.58	0.0000	0	0	197.58					0	0	0	0	
197.78	0.0081	48	48	197.78					0	48	0	48	
197.98	0.0123	192	192	197.98					0	192	0	192	
198.18	0.0155	372	372	198.18					0	372	0	372	
198.38	0.0181	552	552	198.38					0	552	0	552	
198.58	0.0203	732	732	198.58					0	732	0	732	
198.78	0.0224	1,152	1,152	198.78					0	1,152	0	1,152	
	1										i e		
	1										i e		
											1		
1	1				l	1			1		1	l	
	l									l			

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Ori	fice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICB	Discharge	Crest Elevation	Orifice Centre	Perimeter
197.58	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	197.63 m	314 mm
197.78	0.000	0.000	0.000	0.00808	0.000	0.000	0.008	0.000	0.0081			
197.98	0.000	0.000	0.000	0.01235	0.000	0.000	0.012	0.000	0.0123	Crest Width	Orifice Invert	Area
198.18	0.000	0.000	0.000	0.01548	0.000	0.000	0.015	0.000	0.0155	1 m	197.58 m	7,854 mm ²
198.38	0.000	0.000	0.000	0.01808	0.000	0.000	0.018	0.000	0.0181	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
198.58	0.000	0.000	0.000	0.02034	0.000	0.000	0.020	0.000	0.0203	Weir Coeff. 1.670	100 mm	0.6
198.78	0.000	0.000	0.000	0.02238	0.000	0.000	0.022	0.000	0.0224	Weir Top Width (m) -98001.2	Orientation	
										Overflow Weir 2	Vertical	
										Crest Elevation	W	eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)
										Weir Top Width (m) -58941.000	300 mm Height	800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m	Ori	fice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	198.90 m	1,257 mm
										by	Orifice Invert	Area
										600 mm	198.70 m	125,664 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	400 mm	0.6
										Area (m ²) 0.720		Operates Above (m)
										Perimeter (m) 3.600	Vertical	198.90
										D		
										$Q = CA \sqrt{2g \left[h_2 - h_1 + \frac{D}{2000} \right]}$	Q = CL(h, -h,	$(h_1)^{1.5} + 1.268z(h_2 - h_1)^2$
											$\mathcal{L} = CE(n_2 - n_1)$	1 112002 (112

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)z = weir side slope (z:1)

h2 = elevation at stage 2 (m)

h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Pipe Storage DSP-3

Storage Facility # DSP-3A

Stage Discharge Ractive Total Stage Area Incremental Volume Volume			Sto	rage			For	ebays	M	ain Pool (Exclud	ing Forebay)	Stora	ge	Estimated
201.76 0.0000 0 0 201.76 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 139 0 139 0 139 0 139 0 139 0 139 0 139 0 199 0 199 0 199 0 199 0 259 0 259 0 259 0 259 0 259	Stage	Discharge	Active	Total	Stage	Area			Area			Sediment	Total	
201.96 0.0104 24 24 201.96 0 24 0 24 202.16 0.0162 79 79 202.16 0 79 0 79 202.36 0.0203 139 139 202.36 0 139 0 139 202.56 0.0238 199 199 202.56 0 199 0 199 202.76 0.0268 259 259 202.76 0 259 0 259			(m ³)	(m ³)		(m²)	(m ³)	(m ³)	(m²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
202.16 0.0162 79 79 202.16 0 79 0 79 202.36 0.0203 139 139 202.36 0 139 0 139 202.56 0.0238 199 199 202.56 0 199 0 199 202.76 0.0268 259 259 202.76 0 259 0 259										0		0		
202.36 0.0203 139 139 202.36 0 139 0 139 202.56 0.0238 199 199 202.56 0 199 0 199 202.76 0.0268 259 259 202.76 0 259 0 259	201.96				201.96					0		0		
202.56 0.0238 199 199 202.56 0 199 0 199 202.76 0.0268 259 259 202.76 0 259 0 259	202.16	0.0162	79	79	202.16					0	79	0	79	
202.76 0.0268 259 259 202.76 0 259 0 259	202.36	0.0203	139	139	202.36					0	139	0	139	
	202.56	0.0238	199	199	202.56					0	199	0	199	
202.96 0.0825 346 0 346 0 346 1	202.76	0.0268	259	259	202.76					0	259	0	259	
	202.96	0.0825	346	346	202.96					0	346	0	346	
												1		
												1		

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

			D	ischarge	(m ³ /s)						Parameters	
	Spillway			0	utlet Riser		DIOD	Total	Overflow We	eir 1	Ori	fice 1
Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevati	ion	Orifice Centre	Perimeter
0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 г	m	201.82 m	361 mm
0.000	0.000	0.000	0.01042	0.000	0.000	0.010	0.000	0.0104				
0.000	0.000	0.000	0.01616	0.000	0.000	0.016	0.000	0.0162	Crest Widt	h	Orifice Invert	Area
0.000	0.000	0.000	0.02033	0.000	0.000	0.020	0.000	0.0203	1 r	m	201.76 m	10,387 mm ²
0.000	0.000	0.000	0.02379	0.000	0.000	0.024	0.000	0.0238	Slope (x:1)	5	Orifice Diameter	Orifice Coeff.
0.000	0.000	0.000	0.02680	0.000	0.000	0.027	0.000	0.0268	Weir Coeff.	1.670	115 mm	0.6
0.000	0.000	0.000	0.02951	0.000	0.053	0.082	0.000	0.0825	Weir Top Width (m)	-97959.4	Orientation	
									Overflow We	eir 2	Vertical	
									Crest Elevati	ion	W	eir 1
									9999.00 r	m	Top of Weir Structure	Max Perimeter
									Crest Widt	h	9999.27 m	1,340 mm
									1 8	m	Weir Crest Invert	Max Open Area
									Slope (x:1)	3	9999.00 m	216,000 mm ²
									Weir Coeff.	1.670	Weir Dimension	s (Height x Length)
									Weir Top Width (m)	-58941.000	270 mm Height	800 mm L
									DICB		Side Walls	Weir Coeff.
									T/G Invert	t	Vertical	1.670
									1 00.000	m	Ori	fice 2
									CB Size		Orifice Centre	Perimeter
									1200 r	mm	202.80 m	785 mm
									by		Orifice Invert	Area
												49,087 mm ²
									-		Orifice Diameter	Orifice Coeff.
											250 mm	0.6
									` '			Operates Above (m)
									Perimeter (m)	3.600	Vertical	202.80
							1		0 - 01 20(1 1	D)		N
									$Q = CA \sqrt{2g} \left(n_2 - n_1 \right)$	2000	$Q = CL(h_2 - h_1)$	$^{1.5} + 1.268z(h_2 - h_1)^{2.5}$
	0.000 0.000 0.000 0.000 0.000 0.000	Weir 1 Weir 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Weir 1 Weir 2 Total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Spillway Weir 1 Weir 2 Total Orifice 1	Spillway O Weir 1 Weir 2 Total Orifice 1 Weir 1 0.000 0.000 0.000 0.00000 0.000 0.000 0.000 0.000 0.01042 0.000 0.000 0.000 0.01616 0.000 0.000 0.000 0.02033 0.000 0.000 0.000 0.02379 0.000 0.000 0.000 0.02680 0.000	Weir 1 Weir 2 Total Orifice 1 Weir 1 Orifice 2 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.01042 0.000 0.000 0.000 0.000 0.01616 0.000 0.000 0.000 0.000 0.02033 0.000 0.000 0.000 0.000 0.02379 0.000 0.000 0.000 0.000 0.02680 0.000 0.000	Spillway Outlet Riser Weir 1 Weir 2 Total Orifice 1 Weir 1 Orifice 2 Total 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.01042 0.000 0.000 0.010 0.000 0.000 0.01616 0.000 0.000 0.016 0.000 0.000 0.02033 0.000 0.000 0.020 0.000 0.000 0.02379 0.000 0.000 0.024 0.000 0.000 0.02680 0.000 0.000 0.027	Spillway Outlet Riser DICB Weir 1 Weir 2 Total Orifice 1 Weir 1 Orifice 2 Total 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.01042 0.000 0.000 0.010 0.000 0.000 0.000 0.01616 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.02033 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.02379 0.000 0.000 0.024 0.000 0.000 0.000 0.000 0.02680 0.000 0.000 0.027 0.000	Note	Spillway	Spillway	Spillway

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient z = weir side slope (z:1)

Stage-Storage-Discharge Summary - Pipe Storage DSP-3

Storage Facility # DSP-3B

Stage Discharge Active Total Stage Mrea Incremental Volume Area Volume Vo			Sto	rage			For	ebays	M	ain Pool (Exclud	ing Forebay)	Stora	ge	Estimated
202.50 0.0000 0 0 202.50 0 0 0 0 0 202.70 0.0274 26 26 202.70 0 26 0 26 202.90 0.0478 84 84 202.90 0 84 0 84 203.10 0.0619 149 149 203.10 0 149 0 149 203.30 0.0733 214 214 203.30 0 214 0 214 203.50 0.0831 278 278 203.50 0 278 0 278	Stage	Discharge	Active	Total	Stage	Area			Area			Sediment	Total	
202.70 0.0274 26 26 202.70 0 26 0 26 202.90 0.0478 84 84 202.90 0 84 0 84 203.10 0.0619 149 149 203.10 0 149 0 149 203.30 0.0733 214 214 203.30 0 214 0 214 203.50 0.0831 278 278 203.50 0 278 0 278			(m ³)	(m ³)		(m²)	(m ³)	(m ³)	(m²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
202.90 0.0478 84 84 202.90 0 84 0 84 203.10 0.0619 149 149 203.10 0 149 0 149 203.30 0.0733 214 214 203.50 0 214 0 214 203.50 0.0831 278 278 203.50 0 278 0 278										0		0		
203.10 0.0619 149 149 203.10 0 149 0 149 203.30 0.0733 214 214 203.30 0 214 0 214 203.50 0.0831 278 278 203.50 0 278 0 278	202.70			26	202.70					0		0		
203.30 0.0733 214 214 203.30 0 214 0 214 203.50 0.0831 278 278 203.50 0 278 0 278	202.90	0.0478	84	84	202.90					0	84	0	84	
203.50 0.0831 278 278 203.50 0 278 0 278	203.10	0.0619	149	149	203.10					0	149	0	149	
	203.30	0.0733	214	214	203.30					0	214	0	214	
203.70	203.50	0.0831	278	278	203.50					0	278	0	278	
	203.70	0.1449	374	374	203.70					0	374	0	374	
												1		
												1		

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

SWeir 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Spillway Weir 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Orifice 1 0.00000 0.02739 0.04785 0.06187 0.07326 0.08310	O Weir 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Utlet Riser Orifice 2 0.000 0.000 0.000 0.000 0.000 0.000	Total 0.000 0.027 0.048 0.062	0.000 0.000 0.000	Total Discharge 0.0000 0.0274	Overflow W Crest Eleva 9999.00	tion m	Orifice Centre 202.60 m	Perimeter 644 mm
0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.00000 0.02739 0.04785 0.06187 0.07326 0.08310	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.027 0.048	0.000 0.000 0.000	0.0000 0.0274	9999.00	m	202.60 m	
0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.02739 0.04785 0.06187 0.07326 0.08310	0.000 0.000 0.000 0.000	0.000 0.000 0.000	0.027 0.048	0.000	0.0274				644 mm
0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.04785 0.06187 0.07326 0.08310	0.000 0.000 0.000	0.000	0.048	0.000		0 1147			
0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.06187 0.07326 0.08310	0.000	0.000			0.0470	0			
0.000 0.000	0.000	0.000 0.000	0.07326 0.08310	0.000		0.062	0.000	0.0478	Crest Wid	th	Orifice Invert	Area
0.000	0.000	0.000	0.08310		0.000		0.000	0.0619	1	m	202.50 m	33,006 mm ²
				0.000		0.073	0.000	0.0733	Slope (x:1)	5	Orifice Diameter	Orifice Coeff.
0.000	0.000	0.000		0.000	0.000	0.083	0.000	0.0831	Weir Coeff.	1.670	205 mm	0.6
			0.09190	0.000	0.053	0.145	0.000	0.1449	Weir Top Width (m)	-97952.0	Orientation	
									Overflow W	eir 2	Vertical	
									Crest Eleva	tion	W	eir 1
									9999.00	m	Top of Weir Structure	Max Perimeter
									Crest Wid	th	9999.27 m	1,340 mm
									3	m	Weir Crest Invert	Max Open Area
									Slope (x:1)	3	9999.00 m	216,000 mm ²
									Weir Coeff.	1.670	Weir Dimensions	(Height x Length)
									Weir Top Width (m)	-58941.000	270 mm Height	800 mm L
									DICB		Side Walls	Weir Coeff.
									T/G Inver	t	Vertical	1.670
									9999.00	m	Ori	fice 2
									CB Size		Orifice Centre	Perimeter
									1200	mm	203.54 m	785 mm
									by		Orifice Invert	Area
									600	mm	203.41 m	49,087 mm ²
									Grate Slop	oe	Orifice Diameter	Orifice Coeff.
										:1	250 mm	0.6
										0.720	Orientation	Operates Above (m)
									Perimeter (m)	3.600	Vertical	203.54
									0 01 1	D		
									$Q = CA \sqrt{2g \left(n_2 - n_1 \right)}$	+ 2000	$Q = CL(h_2 - h_1)$	$^{1.5} + 1.268z(h_2 - h_1)^{2.5}$
						.000 0.000 0.000 0.09190 0.000 0.053				Overflow W:	Overflow Weir 2 Crest Elevation 9999.00 m Crest Width 3 m Slope (x:1) 3 Weir Coeff. 1.670 Weir Top Width (m) -58941.000 DICB T/G Invert 9999.00 m CB Size 1200 mm by 600 mm Grate Slope 4 :1 Area (m²) 0.720	Overflow Weir 2 Vertical

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient z = weir side slope (z:1) A = orifice open area (m²)

Stage-Storage-Discharge Summary - Pipe Storage DSP-4

Facility # DSP-4

		Sto	rage			For	ebays	Ma	in Pool (Excludi	ng Forebay)	Stora	ge	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
202.43	0.0000	0	0	202.43					0	0	0	0	
202.63	0.0053	48	48	202.63					0	48	0	48	
202.83	0.0080	154	154	202.83					0	154	0	154	
203.03	0.0100	261	261	203.03					0	261	0	261	
203.23	0.0116	367	367	203.23					0	367	0	367	
203.43	0.0131	474	474	203.43					0	474	0	474	
203.63	0.0202	639	639	203.63					0	639	0	639	
													1
													1
													1
													1
													1
													1
													1
													1
											1		1
				l									

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Ori	ifice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter
202.43	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	202.47 m	251 mm
202.63	0.000	0.000	0.000	0.00534	0.000	0.000	0.005	0.000	0.0053			
202.83	0.000	0.000	0.000	0.00802	0.000	0.000	0.008	0.000	0.0080	Crest Width	Orifice Invert	Area
203.03	0.000	0.000	0.000	0.01000	0.000	0.000	0.010	0.000	0.0100	1 m	202.43 m	5,027 mm ²
203.23	0.000	0.000	0.000	0.01165	0.000	0.000	0.012	0.000	0.0116	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
203.43	0.000	0.000	0.000	0.01309	0.000	0.000	0.013	0.000	0.0131	Weir Coeff. 1.670	80 mm	0.6
203.63	0.000	0.000	0.000	0.01439	0.000	0.006	0.020	0.000	0.0202	Weir Top Width (m) -97952.7	Orientation	
										Overflow Weir 2	Vertical	
										Crest Elevation	W	eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)
										Weir Top Width (m) -58941.0	300 mm Height	800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m	Ori	ifice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	203.61 m	440 mm
										by	Orifice Invert	Area
										600 mm	203.54 m	15,394 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
		<u> </u>						<u> </u>		4 :1	140 mm	0.6
										Area (m ²) 0.7		Operates Above (m)
										Perimeter (m) 3.6	00 Vertical	203.61
										(D.)	1	
										$Q = CA \sqrt{2g \left(h_2 - h_1 + \frac{D}{2000} \right)}$	Q = CL(h, -h,	$^{1.5} + 1.268z(h_2 - h_1)^{2.5}$
		1		1			l		l		~ (12 1	, - (2 1)

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)

h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Stage-Storage-Discharge Summary - Pipe Storage DSP-5

Facility # DSP-5

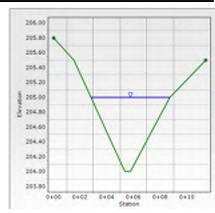
		Sto	rage			For	ebays	Ma	in Pool (Exclud	ing Forebay)	Stora	ige	Estimated
Stage	Discharge	Active	Total	Stage	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	Sediment	Total	Detention Time
(m)	(m ³ /s)	(m ³)	(m ³)	(m)	(m ²)	(m ³)	(m ³)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(hrs)
202.05	0.0000	0	0	202.05					0	0	0	0	
202.25	0.0118	48	48	202.25					0	48	0	48	
202.45	0.0184	154	154	202.45					0	154	0	154	
202.65	0.0232	261	261	202.65					0	261	0	261	
202.85	0.0271	367	367	202.85					0	367	0	367	
203.05	0.0306	474	474	203.05					0	474	0	474	
203.25	0.0415	639	639	203.25					0	639	0	639	
													1
							1		1		1	 	1
									1		1	1	1
											1		
											1		
												 	-
												 	-
									1		1		↓

3216079 Langstaff Road EA
Detailed Outlet Structure Discharge Calculations

Elevation				D	ischarge	(m ³ /s)					Parameters	
Lievation		Spillway			0	utlet Riser		DICB	Total	Overflow Weir 1	Or	ifice 1
(m)	Weir 1	Weir 2	Total	Orifice 1	Weir 1	Orifice 2	Total	DICE	Discharge	Crest Elevation	Orifice Centre	Perimeter
202.05	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.000	0.0000	9999.00 m	202.11 m	386 mm
202.25	0.000	0.000	0.000	0.01175	0.000	0.000	0.012	0.000	0.0118			
202.45	0.000	0.000	0.000	0.01837	0.000	0.000	0.018	0.000	0.0184	Crest Width	Orifice Invert	Area
202.65	0.000	0.000	0.000	0.02317	0.000	0.000	0.023	0.000	0.0232	1 m	202.05 m	11,882 mm ²
202.85	0.000	0.000	0.000	0.02714	0.000	0.000	0.027	0.000	0.0271	Slope (x:1) 5	Orifice Diameter	Orifice Coeff.
203.05	0.000	0.000	0.000	0.03059	0.000	0.000	0.031	0.000	0.0306	Weir Coeff. 1.670	123 mm	0.6
203.25	0.000	0.000	0.000	0.03370	0.000	0.008	0.042	0.000	0.0415	Weir Top Width (m) -97956.5	Orientation	
										Overflow Weir 2	Vertical	
										Crest Elevation	W	eir 1
										9999.00 m	Top of Weir Structure	Max Perimeter
										Crest Width	9999.30 m	1,400 mm
										3 m	Weir Crest Invert	Max Open Area
										Slope (x:1) 3	9999.00 m	240,000 mm ²
										Weir Coeff. 1.670	Weir Dimension	s (Height x Length)
										Weir Top Width (m) -58941.000	300 mm Height	800 mm L
										DICB	Side Walls	Weir Coeff.
										T/G Invert	Vertical	1.670
										9999.00 m	Or	ifice 2
										CB Size	Orifice Centre	Perimeter
										1200 mm	203.24 m	723 mm
										by	Orifice Invert	Area
										600 mm	203.13 m	41,548 mm ²
										Grate Slope	Orifice Diameter	Orifice Coeff.
										4 :1	230 mm	0.6
										Area (m ²) 0.720		Operates Above (m)
										Perimeter (m) 3.600	Vertical	203.24
										$Q = CA \sqrt{2g \left[h_2 - h_1 + \frac{2000}{2000} \right]}$	Q = CL(h, -h)	$(h_1)^{1.5} + 1.268z(h_2 - h_1)^2$
										$Q = CA \sqrt{2g \left(h_2 - h_1 + \frac{D}{2000} \right)}$	$Q = CL(h_2 - h_2)$	1)1.5 + 1.268

Where, h2 = elevation at stage 2 (m)
h1 = elevation at stage 1 (m)
D = orifice diameter (mm)
C = orifice coefficient

A = orifice open area (m²)


h2 = elevation at stage 2 (m) h1 = elevation at stage 1 (m) L = weir crest length (m) C = weir coefficient

Ditch Capacity Worksheet for Existing Channel Section

Project Description	Langstaff Road EA, York Region	North side of Langstaff Road between Westminster Creek Dufferin Street
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.007 m/m	
Normal Depth	1,000.0 mm	

Section Definitions

Station (m)	Elevation (m)
0+0.00	205.75
0+1.52	205.50
0+2.82	205.00
0+4.08	204.50
0+5.34	204.00
0+5.76	204.00
0+7.25	204.50
0+8.71	205.00
0+11.4	205.50

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 205.75)	(0+11, 205.50)	0.030

Results		
Discharge	5,440.40 L/s	
Roughness Coefficient	0.030	
Elevation Range	204.0 to 205.8 m	
Flow Area	3.2 m ²	
Wetted Perimeter	6.2 m	
Hydraulic Radius	506.3 mm	
Top Width	5.89 m	
Normal Depth	1,000.0 mm	
Critical Depth	883.4 mm	
Critical Slope	0.012 m/m	
Velocity	1.72 m/s	
Velocity Head	0.15 m	
Specific Energy	1.15 m	
Froude Number	0.750	
Flow Type	Subcritical	

Ditch Design Worksheet for Proposed Channel Section

	•	-
Project Description	Langstaff Road EA, York Region	North side of Langstaff Road between Westminster Dufferin Street
Friction Method	Manning Formula	
Solve For	Discharge	
nput Data		
Roughness Coefficient	0.030	
Channel Slope	0.007 m/m	
Normal Depth	1,000.0 mm	1,000.0 mm
Left Side Slope	2.500 H:V	
Right Side Slope	0.000 H:V	4.75
Bottom Width	1.75 m	1.75 m
Results		
Discharge	5,461.55 L/s	
Flow Area	3.0 m ²	
Wetted Perimeter	5.4 m	
Hydraulic Radius	551.2 mm	
Top Width	4.25 m	
Critical Depth	815.6 mm	
Critical Slope	0.014 m/m	
Velocity	1.82 m/s	
Velocity Head	0.17 m	
Specific Energy	1.17 m	
Froude Number	0.692	
Flow Type	Subcritical	