

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT CLASS EA STUDY FOR LANGSTAFF ROAD FROM WESTON ROAD TO HIGHWAY 7 REGIONAL MUNICIPALITY OF YORK, ONTARIO

Report

to

WSP

Date: February 11, 2021 File: 13659

TABLE OF CONTENTS

1.	IN	TROD	DUCTION	. 1
2.	BA	CKG	ROUND INFORMATION	. 1
	2.1	Site D	Description	. 1
	2.2	Existi	ng Pavement Conditions	. 2
	2.3	Geolo	Dgy	. 3
	2.4	Revie	ew of Existing Geotechnical Information	. 3
	2.4	4.1	Highway 400 Underpass	. 3
	2.4	4.2	West Don River Bridge	. 4
3.	IN	VEST	IGATION PROCEDURES	. 4
4.	LA	BOR	ATORY TESTING	. 5
5.	DE	SCR	PTION OF SUBSURFACE CONDITIONS	. 6
	5.1	Pave	ment Structure	. 6
	5.2	Fill		. 7
	5.3	Alluvi	al Deposits	. 8
	5.4	Uppe	r Silty Clay to Clayey Silt Till	. 8
	5.5	Claye	ey Silt	10
	5.6	Sand	to Silt	10
	5.7		r Silty Clay to Silty Clay Till	
	5.8	Lowe	r Sandŕ	12
	5.9	Silt	······	12
			ndwater Levels	
6.			ERING DISCUSSION AND RECOMMENDATIONS	
	6.1	Pave	ment Design and Construction	14
	6.1	1.1	Design Analysis	14
	6.1	1.2	Recommended Pavement Design	15
		1.3	Pavement Subgrade Preparation	
	6.2	Prelir	ninary Foundation Design	18
		2.1	Highway 400 Underpass	
	6.2	2.2	CN MacMillan Yard	19
	6.2	2.3	West Don River Bridge	23
	6.2	2.4	GO Transit Barrie Line Grade Separation	24
	6.2	2.5	Frost Cover	
	6.3		nent Backfill and Lateral Earth Pressures	
	6.4		ankments and Retaining Walls	
	6.5	Munio	cipal Service Installation	28

	6.6	Soil Management	. 29
		Detailed Geotechnical Investigation	
7.	(CLOSURE	. 33

APPENDICES

Appendix A	Site Photographs
Appendix B	Record of Borehole Sheets
Appendix C	Borehole Location Plans
Appendix D	Geotechnical Laboratory Soil Test Results
Appendix E	Laboratory Certificate of Analysis – Soil Management

1. INTRODUCTION

This report presents the factual findings obtained from a preliminary geotechnical and pavement investigation conducted in support of the Class EA Study for Langstaff Road from Weston Road to Highway 7 in the Regional Municipality of York, Ontario.

The preliminary preferred plans (November 2018) call for the widening of Langstaff Road to six lanes from Weston Road to Dufferin Street, a connection overpass crossing the CN MacMIllan Yard between Creditstone Road and Keele Street, an overpass structure at the GO Transit Barrie Line, replacement of the West Don River Bridge, and improvements to the Highway 400 interchange.

The purpose of the investigation was to explore the subsurface conditions within the project limits and based on the data obtained, to provide borehole logs, borehole location plans, a written description of the subsurface conditions, and preliminary geotechnical recommendations regarding foundations for all crossing structures, roadway pavement design, fill embankments, the environmental quality of the soils, and other construction concerns.

Thurber Engineering Ltd. (Thurber) carried out the investigation as a sub-consultant to WSP who are conducting the EA Study for the Regional Municipality of York (York Region).

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2. BACKGROUND INFORMATION

2.1 Site Description

The study area extends along Langstaff Road between Weston Road and Highway 7 in the City of Vaughan. The total length of the study corridor is approximately 6.7 km, of which an approximate 1.4 km long section between Creditstone Road and Keele Street crosses the CN MacMillan Yard and the remainder follows existing Langstaff Road.

Langstaff Road is an east-west arterial roadway with a posted speed limit of 60 km/h. The roadway presently comprises a four-lane urban cross section with curb-and-gutter between Weston Road and Creditstone Road, and a two-lane rural cross section with gravel shoulders between Keele Street and Dufferin Street. The two sections of roadway are separated by the CN MacMillan Yard and industrial/commercial properties.

Langstaff Road passes over Highway 400 approximately 660 m east of Weston Road. The interchange with Highway 400 provides access ramps from westbound and eastbound Langstaff Road to southbound Highway 400 and from northbound Highway 400 to eastbound and westbound Langstaff Road. Langstaff Road also crosses the West Don River about 180 m east of Keele Street, and the GO Transit Barrie Line at a level crossing approximately 730 m east of Keele Street.

The area surrounding the project corridor is largely developed for commercial and industrial purposes. The ground surface elevation generally exhibits a level to undulating topography, with grades typically lower towards the east. Typical photographs from the corridor are provided in Appendix A.

2.2 Existing Pavement Conditions

A visual examination of the roadway surface was carried out in February 2019 to obtain a general overview of the existing pavement conditions. In general, the existing roadway pavement is in good condition to the west of the CN Yard and in fair condition to the east. The following conditions were noted:

- The section between Weston Road and Highway 400 exhibits frequent slight transverse cracking, with areas of moderate map/alligator cracking and resurfacing in the westbound lanes approaching Weston Road, and intermittent moderate transverse and longitudinal joint cracking approaching Highway 400.
- From Highway 400 to Jane Street, frequent slight transverse and longitudinal joint cracking was observed, along with slight edge cracking along the curbs, as well as intermittent moderate transverse, longitudinal and wheel path cracking in the westbound lanes.
- Between Jane Street and the CN Yard, sealing of frequent slight cracks was evident, and intermittent edge/alligator cracking was observed in the outer wheel path.
- In the two lane section west of the CN Yard, moderate single and multiple transverse cracks were observed throughout, as were zones of moderate alligator cracking along wheel paths.

Representative photographs of the existing pavement are provided in Appendix A.

2.3 Geology

Based on the information in *The Physiography of Southern Ontario*¹ by Chapman and Putnam (1984), the site is located within the Peel Plain physiographic region. The Peel Plain is characterized by a level to undulating topography gradually sloping towards Lake Ontario with surficial soil comprising a thin lacustrine clay underlain by till. Based on *Surficial Geology of Southern Ontario*² and *Quaternary Geology Map P2204*³, the surficial deposits in the vicinity of the site are generally clay or silt till with an overlay of shallow glaciolacustrine sediments consisting of silts and clays with pockets of sandy and gravelly flow till and rainout deposits. According to *Paleozoic Geology of Southern Ontario*⁴, the bedrock geology consists of grey shale of the Georgian Bay Formation. The underlying bedrock is generally expected to be at depths of over 40 m.

2.4 Review of Existing Geotechnical Information

Existing geotechnical information was available in MTO GEOCRES files for the Highway 400 grade separation structure and the West Don River bridge. The subsurface information was reviewed and is summarized below.

2.4.1 Highway 400 Underpass

The MTO database provided the following information relevant to this structure:

- "Dynamic Monitoring of Piles Langstaff Road Bridge over Highway 400, Town of Vaughan, Ontario", Geocres No. 30M13-89, by Golder Associates Ltd. (Golder) for McCormick Rankin & Associates Limited, dated April 25, 1991.
- Numerous correspondence memoranda regarding the foundation design between MTO and Golder and/or McCormick Rankin dated March 14, 1989 to August 15, 1991.

Based on a review of these files, the subsurface stratigraphy was reported to generally consist of "a complex succession of silty clay, sandy to clayey silt till, sand and silt deposits of variable consistency overlying hard clayey silt to silty clay till."

¹ Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario, Ontario Geological Survey Special Volume 2, Third Edition. Accompanied by Map P.2715, Scale 1:600,000.

² Ontario Geological Survey, 2010: Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV

³ Sharpe, D. R., 1980: Quaternary Geology of Toronto and Surrounding Area; Ontario Geological Survey Preliminary Map P. 2204, Geological Series. Scale 1:100 000. Compiled 1980

⁴ Armstrong, D.K. and Dodge, J.E.P., 2007: Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219.

2.4.2 West Don River Bridge

The MTO GEOCRES database provided the following report for the existing bridge:

"Proposed Bridge Structure – Langstaff Side Road, Vaughan Township", Geocres No. 30M13-46, by Donald Inspection Limited, dated February 25, 1964.

The subsurface conditions encountered in two boreholes completed during the investigation comprised 4.3 m of loose fill over a 1.5 m thick very stiff silt layer or a 1.4 m thick loose sand layer, underlain by compact sand to depths of 7.0 to 8.5 m. Very stiff to hard glacial till was encountered below the sands to the termination depths of 10.9 to 11.0 m.

3. INVESTIGATION PROCEDURES

The field investigation for this project was carried out between April 2 and 26, 2019 and comprised a total of sixteen boreholes (Boreholes 19-01 to 19-16) advanced to depths ranging from 3.7 m to 34.1 m. Borehole details are provided in Table 3.1 and in the Record of Borehole sheets included in Appendix B. The approximate locations of the boreholes are shown on the Borehole Location Plans, Drawings 13659-1 to 13659-6, provided in Appendix C.

Facility	Borehole No.	Approx. Ground Elevation (m)	Borehole Termination Depth (m)	Approx. Borehole Termination Elevation (m)
Highway 400	19-02	213.7	33.9	179.8
Underpass	19-03	213.9	34.1	179.8
CN MacMillan Yard	19-09	208.0	26.4	181.6
Civimacivilliari raru	19-10	205.6	24.4	181.2
West Don River Bridge	19-11	199.8	21.7	178.1
GO Transit Line	19-12	203.7	27.7	175.9
Pavement	19-01, 19-04 to			
Structure, Municipal Services	19-08,19-13 to 19-16	204.8 to 212.8	3.7	201.1 to 209.1

The borehole locations were established in the field by Thurber using a portable GPS receiver and verified relative to existing site features. The ground surface elevations at the borehole locations were provided by the client.

All borehole locations were cleared of utilities prior to commencement of drilling. The boreholes were repositioned as necessary in consideration of surface features, underground utilities, and restricted site access.

The boreholes were advanced using hollow stem augers and HW casing advancer powered by a truck mounted CME-75 drill rig supplied and operated by Geo-environmental Drilling Inc. Soil samples were obtained at selected intervals using a 50 mm outside diameter split-spoon sampler driven in conjunction with the Standard Penetration Test (SPT). The field investigation was carried out under the full-time supervision of Thurber technical staff. All boreholes were logged in the field. Soil samples were identified, placed in labelled containers and transported back to Thurber's laboratory in Oakville for further examination and testing.

Groundwater conditions were observed in the open boreholes throughout the drilling operations. Monitoring wells were installed in Boreholes 19-02, 19-09, 19-10, 19-11 and 19-12 to permit monitoring of the groundwater levels at the site. The monitoring wells consisted of 50 mm diameter PVC pipe with a slotted screen sealed at a selected depth within the borehole. The installation details are summarized in Table 3.2 below.

Borehole	Monitori	Slotted Screen	
No.	Depth (m)	Elevation (m)	Length (m)
19-02	33.5	180.2	3.0 m
19-09	25.9	182.1	3.0 m
19-10	24.4	181.2	3.0 m
19-11	9.1	190.7	3.0 m
19-12	9.1	194.6	3.0 m

Table 3.2 – Monitoring Well Details

The boreholes in which no monitoring wells were installed were backfilled in general accordance with Ontario Regulation 903.

4. LABORATORY TESTING

All recovered soil samples were subjected to Visual Identification (VI) and to natural moisture content determination. Representative soil samples were also subjected to grain size analysis and Atterberg Limits testing. Test results are shown on the individual borehole logs presented in Appendix B. The grain size distribution curves and Atterberg limit test results are plotted on the figures attached in Appendix D.

Selected soil samples were submitted to SGS Canada Inc. (SGS), an independent Canadian Association for Laboratory Accreditation (CALA) accredited laboratory for analytical testing to assess the environmental quality of potential excavated materials. The results of the chemical laboratory testing are presented on the laboratory certificates of analysis in Appendix E.

5. DESCRIPTION OF SUBSURFACE CONDITIONS

A generalized description of the subsurface conditions encountered in the boreholes is given in the following sections. Detailed descriptions of the soil conditions at the specific locations drilled are presented on the Record of Borehole sheets in Appendix B, and take precedence over the generalized description. It should be recognized and expected that soil conditions will vary between and beyond borehole locations.

The subsurface stratigraphy encountered in the boreholes generally comprises a surficial pavement structure overlying deposits of fill, localized alluvial sand and clay deposits, underlain by native deposits of silty clay till, clayey silt till, sand and silt. Further description of the individual strata are presented below.

5.1 Pavement Structure

The pavement structure encountered in the boreholes drilled on the roadway (Boreholes 19-01 to 19-11, 19-13 and 19-16) typically consisted of 125 to 200 mm of asphalt, typically 150 to 175 mm, overlying a granular base varying from sand and gravel to sand with trace gravel. The granular materials extended to depths ranging from 0.4 to 1.7 m, locally 1.9 and 2.3 m in Boreholes 19-02 and 19-03. Locally in Borehole 19-16, a buried 50 mm thick layer of asphalt was encountered at 0.5 m depth and underlain by 500 mm of sand fill.

In Boreholes 19-12, 19-14 and 19-15, drilled on the shoulder of the roadway, gravelly sand to sand and gravel granular was contacted from the ground surface to depths of 0.8 to 0.9 m (Elev. 202.8 to 204.0).

The results of grain size analyses conducted on samples of the granular material are presented on Figures D1 to D3 of Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	2 to 42
Sand	46 to 86
Silt + Clay	11 to 19

None of the samples tested meet the OPSS Granular B Type I or Granular A gradation specifications. The results may be impacted by the effects of compaction, auger sampling procedures, infiltration of fines with road runoff, or deterioration of the granular material over time.

5.2 Fill

A fill layer was encountered below the pavement structure in Boreholes 19-01 to 19-04, 19-09, 19-11, 19-12 and 19-16.

In Borehole 19-01, the fill layer consisted of sand, was 1.3 m thick, and was penetrated at a depth of 2.1 m (Elev. 205.0). SPT 'N' values of 14 and 24 blows per 0.3 m of penetration were recorded in the sand fill layer, indicating a compact condition. Moisture contents of 12% and 17% were measured.

In Boreholes 19-02 and 19-03, approach embankment fill consisting of silty clay over sand over silty clay were encountered below the pavement structure at depths of 1.9 and 2.3 m (Elev. 211.8 and 211.6) and penetrated at 5.6 and 8.6 m (Elev. 208.0 and 205.3). SPT 'N' values of 5 to 24 blows per 0.3 m of penetration were recorded, indicating a firm to very stiff/compact condition. Moisture contents ranged between 8 and 17%.

A silty clay fill layer was contacted below the pavement structure in Boreholes 19-04, 19-09, 19-11, 19-12 and 19-16 at depths of 0.9 to 1.7 m (Elev. 198.1 to 207.1) and was contacted to 1.7 to 4.1 m (Elev. 195.7 to 205.7). SPT 'N' values recorded in the fill layer varied from 4 to 20 blows per 0.3 m, indicating a firm to very stiff consistency. Measured moisture contents varied between 8% and 29%.

The results of grain size distribution analyses carried out on selected samples of the silty clay fill layer are shown on Figure D4 in Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0 to 6
Sand	34 to 41
Silt	34 to 36
Clay	19 to 32

Atterberg limits testing was carried out on one sample of the clay fill. The measured plastic limit, liquid limit and plasticity index were 35, 17 and 18, respectively. These results, which are plotted on Figure D14 in Appendix D, indicate that the sample tested consists of low to medium plastic silty clay (CL to CI).

5.3 Alluvial Deposits

In Borehole 19-03, a 3.1 m thick layer of alluvial silty clay was contacted at a depth of 8.6 m (Elev. 205.3) and was penetrated at a depth of 11.7 m (Elev. 202.2). SPT 'N' values of 10 and 11 blows per 0.3 m of penetration were recorded in the alluvial clay layer, indicating a stiff consistency. Occasional organic inclusions and rootlets were noted in this stratum. Moisture contents of 13% and 21% were measured.

The results of a grain size distribution analysis carried out on a sample of the alluvial clay are presented on Figure D5 of Appendix D. The results indicated 4% gravel, 20% sand, 28% silt and 48% clay sized particles. Atterberg limits testing carried out on a sample measured a plastic limit, liquid limit and plasticity index of 30, 14 and 16, respectively. These results, which are plotted on Figure D15 in Appendix D, indicate that the sample tested consists of low plastic silty clay (CL).

In Borehole 19-11, alluvial sand was encountered below the fill at a depth of 4.1 m (Elev. 195.7) and penetrated at 5.6 m (Elev. 194.2). An SPT 'N' value of 5 blows per 0.3 m of penetration was recorded, indicating a loose relative density. Occasional decayed wood, shell fragments and organic inclusions were observed in this layer. A moisture content of 26% was measured.

5.4 Upper Silty Clay to Clayey Silt Till

An upper unit of silty clay to clayey silt till was encountered below the pavement structure, fill and alluvial deposits in all boreholes except Borehole 19-11.

Roadway Boreholes 19-01, 19-04, 19-08, and 19-13 to 19-16 were terminated in the clay till at 3.7 m depth (Elev. 201.1 to 209.1). In Boreholes 19-05 to 19-07, the till layer was 2.3 to 2.8 m thick and underlain by sand at depths of 3.1 to 3.2 (Elev. 204.4 to 209.7).

In Boreholes 19-02 and 19-03 drilled at the Highway 400 crossing, the upper till deposit was 11.3 to 11.4 m thick. The upper and lower boundaries of this layer varied within the boreholes however; the till was encountered between depths of 5.6 and 17.0 m (Elev. 208.0 and 196.7) in Borehole 19-02, and between depths of 11.7 and 23.0 m (Elev. 202.2 and 190.9) in Borehole 19-03.

In Boreholes 19-09, 19-10 and 19-12 drilled at the CN Yard and GO Transit crossings, the upper till layer varied in thickness from 1.7 to 7.6 m, with a lower boundary at depths of 1.5 to 9.9 m (Elev. 198.0 to 203.0).

SPT 'N' values recorded in the upper till deposits ranged from 7 blows per 0.3 m of penetration to 94 blows for 275 mm of penetration. In general, the 'N' values indicate a stiff to very stiff consistency, with localized hard zones. Measured moisture contents ranged from 8 to 28%, typically less than 20%.

The results of grain size distribution analyses carried out on selected samples of the upper silty clay to clayey silt till are shown on Figures D6 and D7 in Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0 to 2
Sand	11 to 44
Silt	37 to 52
Clay	19 to 37

Atterberg limits testing was carried out on five samples of the upper till. The results indicate that the till samples tested consist of silty clay of low plasticity (CL) to clayey silt of slight plasticity (CL-ML). The results are plotted on Figure D16 in Appendix D and summarized below.

	Silty Clay	Clayey Silt
Liquid Limit	22 to 27	16
Plastic Limit	12 to 14	11
Plasticity Index	10 to 13	5

Till soils frequently contain cobbles and boulders, and these should be anticipated when excavating during construction.

5.5 Clayey Silt

A localized zone of clayey silt was encountered below the clay till in Boreholes 19-02 and 19-10. In Borehole 19-02, the clayey silt layer was 3.0 m thick with a lower boundary at 20.0 m depth (Elev. 193.7). In Borehole 19-10, it was 1.1 m thick with a lower boundary at 2.6 m depth (Elev. 203.0).

SPT 'N' values of 47 and 18 blows per 0.3 m of penetration were recorded in the clayey silt, indicating a consistency of hard and very stiff. Moisture contents of 16 to 20% were measured.

The results of grain size distribution analyses carried out on selected samples of the clayey silt are shown on Figure D8 in Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0 to 1
Sand	2 to 16
Silt	64 to 85
Clay	13 to 19

Atterberg limits testing carried out on a sample of the clayey silt measured a plastic limit, liquid limit and plasticity index of 20, 14 and 6, respectively. These results, which are plotted on Figure D17 in Appendix D, indicate that the sample tested consists of clayey silt (CL-ML).

5.6 Sand to Silt

An upper sand layer was contacted below the clay till in roadway Boreholes 19-05 to 19-07 at depths of 3.1 to 3.2 m. These boreholes were terminated in the sand at 3.7 m depth (Elev. 203.8 to 209.1). It was not determined if this sand deposit is connected to the sand deposit contacted at greater depths in the deep boreholes.

A sand deposit was encountered below the upper till deposit, clayey silt layers, and alluvial sand in deep Boreholes 19-02 and 19-09 to 19-12. The sand layer was not identified in Borehole 19-03. The upper boundary of the sand deposit was encountered at depths of 2.6 to 20.0 m (Elev. 203.0 to 193.7), and the lower boundary was at depths of 9.5 to 23.0 m (Elev. 191.0 to 188.1). The thickness ranged from 3.0 to 14.2 m. The gradation of the deposit varied from silty to gravelly, with zones grading to sand and silt, and occasional interspersed layers of silt and silty clay.

SPT 'N' values ranging from 14 to 84 blows per 0.3 m of penetration and up to 50 blows for no penetration were recorded in the sand material, indicating a variable relative density of compact to very dense. Measured moisture contents ranged from 5 to 24%.

The results of grain size distribution tests carried out on samples of sand, silt and sand, and silt are shown on Figure D9 in Appendix D and summarized below:

Soil Particle	Sand	Silt and Sand	Silt
Gravel %	7	1	0
Sand %	77	37	6
Silt %	16	56	84
Clay %	16	6	10

5.7 Lower Silty Clay to Silty Clay Till

A lower unit of silty clay locally resembling a till deposit was encountered below the sand layer at depths of 9.5 to 23.0 m (Elev. 191.0 to 188.1) in Boreholes 19-02, 19-03, and 19-09 to 19-12. The clay/till was penetrated at depths of 20.6 to 26.2 m (Elev. 183.1 to 187.9) in Boreholes 19-02, 19-03 and 19-12. Boreholes 19-09 to 19-11 were terminated in the till at depths of 21.7 to 26.4 m (Elev. 178.1 to 181.6). A 2.0 m thick sand layer was encountered within the till at 14.8 m depth in Borehole 19-11, and the till graded to clayey silt and sand near 18.4 m depth in Borehole 19-12.

SPT 'N' values ranging from 26 to 85 blows per 0.3 m of penetration and up to 50 blows for 100 mm of penetration were recorded in the lower clay/till deposits, indicating a very stiff to hard consistency. Measured moisture contents ranged from 8 to 22%.

The results of grain size distribution analyses carried out on selected samples of the lower silty clay/till, as well as the localized clayey silt and sand zone, are shown on Figures D10 and D11 in Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Silty Clay	Silt & Sand
Gravel %	0 to 1	2
Sand %	0 to 13	49
Silt %	41 to 76	34
Clay %	24 to 45	15

Atterberg limits testing was carried out on one sample of the clay/till. The results indicate that the till sample tested consists of silty clay of low plasticity (CL). The results are plotted on Figure D18 in Appendix D and summarized below.

Liquid Limit	30
Plastic Limit	17
Plasticity Index	13

Till soils frequently contain cobbles and boulders, and these should be anticipated in any construction operations extending into this deposit.

5.8 Lower Sand

A lower sand deposit was contacted below the lower clay/till at depths of 20.6 to 26.2 m (Elev. 183.1 to 187.9) in Boreholes 19-02, 19-03 and 19-12. A 2.0 m thick sand layer was also encountered in Borehole 19-11, within the till at 14.8 m depth. The lower sand deposits were penetrated at 32.3 m depth (Elev. 181.4 and 181.6) in Boreholes 19-02 and 19-03; Borehole 19-12 was terminated in the sand at 27.7 m (Elev. 175.9). The sand typically contained some silt (to silty), locally becoming gravelly with depth in Borehole 19-12.

SPT 'N' values ranging from 17 to 72 blows per 0.3 m of penetration, locally up to 100 blows for 200 mm of penetration, were recorded in the sand material, indicating a variable relative density of compact to very dense. Measured moisture contents ranged from 10 to 23%.

The results of a grain size distribution analysis carried out on a sample of the sand are presented on Figure D12 of Appendix D. The results indicated 61% sand, and 39% silt and clay sized particles.

5.9 Silt

A silt layer was encountered below the lower sand at a depth of 32.3 m (Elev. 181.4 and 181.6) in Boreholes 19-02 and 19-03. These boreholes were terminated in the silt at depths of 33.9 and 34.1 (Elev. 179.8 and 179.8). SPT 'N' values of 86 blows per 0.3 m of penetration and 50 blows for 50 mm of penetration were recorded, indicating a very dense condition. Moisture contents of 17 and 21% were measured.

The results of a grain size distribution analysis carried out on one sample of the silt are presented on Figure D13 of Appendix D. The results indicated 0% gravel, 13% sand, 76% silt and 11% clay sized particles.

5.10 Groundwater Levels

During drilling, wet conditions were noted in the surficial fil materials in Boreholes 19-03, 19-04, 19-11, 19-12 and 19-16, at approximate depths ranging from 0.8 to 4.7 m. Wet conditions were also noted near 3.1 m depth in the sand layer in Boreholes 19-05 and 19-05, as well as in the clay till near 2.3 m depth in Borehole 19-13.

The groundwater depths and elevations measured in the monitoring wells installed in the boreholes are summarized in Table 5.1.

Borehole	Date	Water Lo	Nater Level (m)	
Dorenole	Dale	Depth	Elevation	
19-02	May 3, 2019	9.5	204.2	
19-09	May 3, 2019	2.0	206.0	
19-10	May 3, 2019	4.5	201.1	
19-11	May 3, 2019	3.6	196.2	
19-12	May 3, 2019	2.9	200.8	

Table 5.1 – Summary of Groundwater Level Observations

The above groundwater level measurements are short-term observations and seasonal fluctuations of the groundwater level are to be expected. Further, groundwater levels may be higher after prolonged periods of precipitation.

6. ENGINEERING DISCUSSION AND RECOMMENDATIONS

This section of the report provides preliminary geotechnical recommendations for design and construction of the roadway improvements and structure foundations. The recommendations are based on the subsurface soil and groundwater conditions encountered during the preliminary investigation. The soil conditions may vary between and beyond the borehole locations. Additional investigation will be required during the detailed design stage to supplement the subsurface information and confirm the preliminary recommendations.

6.1 Pavement Design and Construction

6.1.1 Design Analysis

Langstaff Road is a major arterial roadway carrying increasing traffic loads from major commercial and residential developments in the area, traffic passing through the study area, and transit service. Proposed improvements include widening of the road to a six-lane urban cross-section from the current four-lane urban section west of the CN MacMillan Yard and the two-lane rural section to the east.

The existing and projected traffic volumes along Langstaff Road, provided by WSP, are presented in Table 6.1. Construction of the section between Keele Street and Dufferin Street is expected to be completed in 2026, and between Weston Road and Keele Street in 2031.

Section	Existing ADT (2019)	Future ADT (2041, No Build)	Future ADT (2041, Build)	Truck Volume
Weston Road to Silmar/Terecar Drive	29716	25903	37223	6.7%
Highway 400 to Edgeley Blvd.	22944	24581	33827	7.4%
Millway Avenue to Jane Street	22886	24335	32203	6.9%
Creditstone Road to Keele Street	-	-	30466	-
Staffern/N.Rivermede Road to Dufferin Street	18125	22327	36121	5.6%

The traffic data was used to determine the pavement damage caused by the anticipated traffic volumes over the design life of the pavement. Using axle load equivalency factors, different axle loads and axle groups are converted to a standard axle load known as an Equivalent Single Axle

Loads (ESALs). The Design ESALs calculation was completed in accordance with the MTO *Procedures for Estimating Traffic Loads for Pavement Designs.* Assuming an average truck factor of 2.2, the number of ESALs during a 20-year design period was computed to be 14.0 million in the west section (Weston Road to Jane Street) and 12.4 million to the east of the CN yard.

The pavement design analysis was carried out using the methodology outlined in the 1993 AASHTO "Guide for the Design of Pavement Structures", as modified by the Ministry's "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions", and the MTO "Pavement Design and Rehabilitation Manual". The AASHTO procedure determines a required Structural Number that characterizes the structural capacity of the pavement layers for a given set of inputs. The following design inputs were used in the AASHTO design analysis.

- Design Period = 20 years
- Initial serviceability, (Pi) = 4.5
- Terminal serviceability (Pt) = 2.5
- Reliability level (R) = 90 percent
- Overall standard of deviation (So) = 0.44
- Mean soil resilient modulus (MR) = 30 MPa

The subgrade for the pavement structure is expected to consist primarily of firm to stiff silty clay fill or native silty clay till.

Based on the design input parameters and calculated ESALs, design structural numbers (SN_{Des}) of 149 and 147 mm are required for the west and east sections, respectively. The recommended pavement design thickness, based on the structural requirements, traffic projections, and subgrade conditions, is presented below.

6.1.2 Recommended Pavement Design

In general, the existing pavement structure on Langstaff Road between Weston Road and the CN Yard appears to be in relatively good condition exhibiting primarily slight transverse and longitudinal cracking. However, areas of moderate transverse, longitudinal, edge, map and/or alligator cracking are also present. The pavement structure encountered in the boreholes in this section comprised 150 to 200 mm of asphalt over a variable 230 to 730 mm, locally up to 2.1 m, of granular base.

The existing pavement structure is not considered to be structurally adequate to carry the 20-year design ESAL's calculated above, and strengthening by such means an overlay would be required.

However, the potential would exist for the observed cracks and other localized distresses to reflect up into the new pavement surface, as well as for differential performance between the existing pavement and new pavement in widening areas. To avoid the development of reflection cracks and provide a uniform pavement performance, it is recommended that the roadway pavement be fully reconstructed as part of the widening project.

Complete reconstruction would also facilitate alignment or grade revisions if required, allow subgrade reshaping to enhance drainage toward the pavement edges, and avoid joint cracks along pavement cuts such as for new utility installation or raised median removal.

The two lane section of Langstaff Road west of the CN Yard appears to be in fair condition with moderate transverse cracks and alligator cracking along wheel paths. This pavement is not considered to be suitable for strengthening in conjunction with widening, and therefore complete reconstruction is recommended.

Based on the borehole data, the anticipated traffic volumes, and assuming adequate subgrade drainage, the following preliminary pavement design is recommended for widening and reconstruction of Langstaff Road:

Component	Thickness
HL1	50 mm
HDBC (2 lifts)	140 mm
OPSS Granular A Base	150 mm
OPSS Granular B Type II Subbase	500 mm

A consistent pavement structure is recommended for the full study area as a significant increase in traffic is anticipated on the east leg immediately upon opening of the east-west connection. The pavement design thicknesses should be reviewed during detailed design.

The minimum PGAC grade of virgin asphalt cement in the surface and top binder course should be PG 64-28, and minimum PG 58-28 for the lower binder course. Consideration should be given to further upgrading of the PGAC grade to PG 70-28 if rutting has been experienced in other sections of this roadway due to truck traffic. Aggregates for the asphalt mixes should be in accordance with OPSS.MUNI 1003.

Should the Region consider using Superpave asphalt mixes for this project, the recommended HL1 material should be substituted with a Superpave 12.5 FC1 asphalt mix, and the HDBC asphalt material should be replaced with Superpave SP 19. As the 20-year design ESALs for Langstaff Road was estimated to be 14 million, a Traffic Category D designation should be used in preparing all Superpave asphalt mix designs.

All new granular subbase material should consist of OPSS Granular B Type II, while the granular base material should consist of OPSS Granular A. All new granular material should meet the requirements of OPSS 1010, and be compacted to 100 percent of the Standard Proctor Maximum Dry Density (SPMDD) within 2 percent of Optimum Moisture Content (OMC). All granular material should be compacted in accordance with the requirements of OPSS.MUNI 501, and should be carried the entire width of the roadway platform to maintain appropriate drainage.

6.1.3 Pavement Subgrade Preparation

Pavement subgrade preparation should include removal of the existing pavement structure and all surficial vegetation, topsoil, organic or compressible material. Grading to the new top of subgrade should match or exceed the thickness of the existing pavement to maintain lateral drainage at the top of subgrade. The exposed subgrade should be compacted and proof-rolled with a heavy roller and examined to identify areas of unstable subgrade. Any soft/wet areas identified shall be subexcavated and replaced with approved material within 2% of Optimum Moisture Content (OMC), and compacted to at least 98% of Standard Proctor Maximum Dry Density (SPMDD).

Bulk fill used to raise the road grade should be constructed as engineered fill, consisting of approved inorganic material, placed in maximum 200 mm thick lifts, within 2% of optimum moisture content, and compacted to at least 98% of SPMDD. Standard side slopes of 2H:1V or flatter should be suitable for embankment construction. Exposed embankment surfaces should be provided with a vegetation cover or otherwise protected against erosion in accordance with OPSS 804.

The top of the compacted subgrade should be graded smooth with a minimum crossfall of 3% towards subdrains. Continuity of drainage should be maintained at transitions from existing pavement to new pavement.

6.2 Preliminary Foundation Design

6.2.1 Highway 400 Underpass

The proposed improvements to Langstaff Road at the Highway 400 interchange are expected to include widening of the existing underpass structure to accommodate two additional lanes of traffic. Preliminary design consultations are ongoing however, and replacement of the existing structure may also be considered.

The General Arrangement drawing for the existing Highway 400 Underpass was provided for review (Sheet No. 27, McCormick Rankin Consulting Engineers for the Town of Vaughan, dated May 1989). The drawing indicates that the overpass is a three span structure with spans of 28.1, 26.9 and 30.7 m, for a total length of approximately 85.7 m. The bridge deck widens from about 20.9 m at the east abutment to about 27.7 m at the west abutment to accommodate the beginning of the E-S ramp in addition to four lanes of through traffic.

The GA drawing indicates that the bridge abutments and piers are supported on battered HP 310x110 H-piles "to be driven in accordance with the special provisions of this contract".

Prior to construction of the existing structure, dynamic monitoring of eighteen test piles was carried out to establish driving criteria for the design loads of HP 310x110 piles driven to support the structure (MTO Geocres File 30M13-89). Four piles at the east abutment, seven piles at the west pier, and seven piles at the west abutment were monitored during driving using a pile driving analyser (PDA) and assessed using Case Method Estimate (CMES) and Case Pile Wave Analysis Program (CAPWAP). Ultimate pile capacities ranging from 1065 to 2780 kN were reported for piles driven to depths of 21.9 to 33.0 m (Elev. 176.9 to 186.9). The maximum loadings for which the driving criteria were established varied from 557 to 1070 kN at ULS and 451 to 910 kN at SLS.

The subsurface stratigraphy encountered in Boreholes 19-02 and 19-03 drilled at the west and east abutments of the existing bridge, respectively, consisted of a pavement structure and embankment fill, underlain locally by alluvial deposits, overlying a stiff to hard deposit of silty clay till, underlain by variable deposits of very stiff to hard silty clay/clayey silt and compact to very dense silty sand, over very dense silt. Groundwater was measured in the monitoring well in Borehole 19-02 at a depth of 9.5 m below the road surface (Elev. 204.2).

Based on the borehole data and the results of the previous pile monitoring program, the preferred foundation system for support of the bridge widening or replacement consists of steel H-piles driven to adequate resistance in the native soils. Bedrock or a suitable stratum for support of high

capacity piles in end-bearing was not encountered within the exploration depth of about 34.0 m, and therefore the piles will obtain resistance primarily through friction along the pile shaft. For widening, selection of a foundation system similar to the existing foundations is recommended to maintain consistency of performance between the new and existing sections.

Review of the dynamic monitoring results from the test piles indicates that ultimate pile capacities of 1400 to 2400 kN are typically obtained for HP 310x110 piles driven to tip elevations of 178 to 183. Higher capacities were not confirmed by driving to greater depths, and a decrease in capacity may actually be experienced. Therefore for preliminary design purposes, it is recommended that a tip elevation of 178.0 be assumed and corresponding factored geotechnical resistances of 800 kN at ULS and 600 kN at SLS be employed for HP 310x110 piles.

Based on the borehole data, supporting a replacement bridge on spread footings constructed on the very stiff silty clay till encountered at 5.6 and 11.7 m depth (Elev. 208.0 and 202.2) at the west and east abutments, respectively, could be considered. It must be noted however that the elevation and geotechnical resistance of the native clay till is variable, and additional investigation will be required to confirm the feasibility of spread footings and determining design founding levels for each foundation unit. Factored geotechnical resistances of 300 kPa at ULS and 200 kPa at SLS are recommended for preliminary design of spread footings founded on the silty clay till.

Perching the footings on an engineered fill pad is also considered feasible for a replacement bridge structure. The engineered fill pad should founded at the same reference levels indicated for the footings on native soils and comprise Granular A material placed in maximum 200 mm thick lifts, compacted to 100% of the ASTM D698 (standard Proctor) maximum dry density. The pad should extend laterally to a line inclined downwards at 45° to the horizontal originating at least 1 m from the edge of the footing. Factored geotechnical resistances of 500 kPa at ULS and 350 kPa at SLS are recommended for preliminary design.

Augered caissons are not expected to be the preferred foundation type due to the layers of cohesionless sand deposits below the groundwater level, requiring the use of a steel liner and/or drilling slurry to maintain sidewall stability and enable caisson construction. Further, a very dense stratum suitable for support of high capacity caissons was not encountered within the depth of exploration.

6.2.2 CN MacMillan Yard

Construction of a new multi-span bridge is proposed to connect the west and east sections of Langstaff Road over the CN MacMillan Yard between Creditstone Road and Keele Street. The

linear distance of the crossing is approximately 1.4 km, however the structure will be offset approximately 300 m to the south of the direct line to achieve overhead clearance above the outer railway lines.

At present, the overall crossing design consists of two bridges separated by a high embankment. The main structure will comprise ten spans with a total length of about 930 m. A separate single span structure with a span of about 40 m will be constructed approximately 90 m to the west of the west abutment of the main structure. The east and west approach embankment as well as the embankment between the two structures will be constructed using reinforced soil system (RSS) walls with heights of up to 15 m.

Access to the CN yard was not permitted and therefore preliminary investigation for the crossing structure was limited to two boreholes, Boreholes 19-09 and 19-10, located to the west and east of the yard, respectively. The distance between the boreholes is approximately 1.4 km, and a dissimilar stratigraphy was encountered in the boreholes. Therefore the comments presented below regarding preliminary foundation design, based on the conditions encountered in the two widely spaced boreholes, do not necessarily reflect the actual conditions at the locations of the foundation units, and should be considered for their general implications. A detailed drilling program will be required to confirm conditions at each individual foundation unit.

The stratigraphy encountered in Borehole 19-09 drilled to the west of the CN yard consisted of a pavement structure overlying silty clay fill to a depth of 2.3 m (Elev. 205.7), underlain by a 7.6 m thick deposit of cohesive silty clay to clayey silt till with a lower boundary at 9.9 m depth (Elev. 198.1), over 7.1 m of compact to dense sand, then a lower silty clay till unit encountered at 17.0 m depth (Elev. 191.0) to the exploration depth of 26.4 m. The consistency of the cohesive till deposit was very stiff to a depth of approximately 4.1 m (Elev. 203.9), and then hard below this level.

The stratigraphy encountered in Borehole 19-10 drilled to the east of the CN yard consisted of a pavement structure overlying a 1.1 m thick layer of very stiff silty clay till and a 1.1 m thick layer of very stiff clayey silt, underlain by 14.2 m of sand to gravelly sand between depths of 2.6 and 16.8 m (Elev. 203.0 and 188.8), underlain by hard silty clay to the exploration depth of 24.4 m. The relative density of the sand deposit was typically compact to a depth of 7.2 m (Elev. 198.4), and very dense below this level.

Water was measured at depths of 2.0 and 4.5 m (Elev. 206.0 and 201.1) in the monitoring wells installed in Boreholes 19-09 and 19-10, respectively.

Based on the borehole data, consideration may be given to supporting the proposed structures on spread footings, driven pile foundations, or augered caissons. The preferred alternative for each foundation unit may depend upon the subsurface conditions specific to that foundation location, and will need to be determined/confirmed during detailed design. Comments regarding the foundation options at the borehole locations are presented below.

Spread Footings

Spread footings may be founded on the very stiff to hard silty clay till encountered in Borehole 19-09, and on the very stiff silty clay/clayey silt or compact to dense sand encountered in Borehole 19-10. The geotechnical resistances recommended for preliminary design of spread footings founded at or below the levels listed are as follows:

Borehole No.	Founding Level	Founding Soil	Factored Resistance at ULS (kPa)	Factored Resistance at SLS (kPa)
19-09	205.7	Very stiff silty clay till	375	250
19-09	203.5	Hard silty clay till	600	400
19-10 204.4		Very stiff silty clay till	330	225
19-10	203.0	Compact to dense sand	500	300

Table 6.2 – Preliminary Geotechnical Resistances for Spread Footing Design

Alternatively, the available geotechnical resistance could be increased and the founding level established by constructing the footings on a pad of compacted Granular A material. The granular pad should be constructed by subexcavation of the fill, very stiff silty clay till, and clayey silt down to the hard clay till and compact to dense sand (Elev. 203.9 in Borehole 19-09, and Elev. 203.0 in Borehole 19-10), and placement of Granular A compacted in thin lifts to 100% of standard Proctor maximum dry density to the design founding level. The pad should extend laterally beyond the footing a distance of 1.0 m plus the thickness of the pad. Footings constructed on a minimum 2.0 m thick pad of engineered fill may be designed using factored geotechnical resistances of 900 kPa at ULS and 350 kPa at SLS.

Driven H-Piles

The new bridge structures could be supported on driven steel H-piles. For preliminary design purposes, a factored geotechnical resistance of 1,200 kN at ULS and a factored geotechnical resistance of 1,000 kN at SLS are recommended for HP310x110 piles driven into the hard silty clay till or very dense sand.

The subsurface conditions at the site are variable, and as experienced during the pile driving operations at the Highway 400 underpass, prediction of the depth at which the piles will achieve the required resistance is particularly difficult in this area. For planning purposes, it may be assumed that the above noted resistances will be achieved for a pile tip at a depth of 24.0 m (Elev. 184.0) at Borehole 19-09 and 12.0 m (Elev. 193.6) at Borehole 19-10.

Considering the variability of the soils in the area and the large number of piles that may be required to support the multiple spans, a program of static pile load tests and/or dynamic monitoring of test piles is recommended to confirm the geotechnical resistances, pile lengths and required number of piles prior to construction.

Augered Caissons

The use of augered caissons may be advantageous in the CN Yard to minimize disruption to the rail facilities. However, installation of caissons may be particularly problematic due the presence of a thick cohesionless sand deposit and high groundwater levels. Construction will require use of a steel liner to maintain stability of the caisson sidewalls as well as techniques such as drilling slurry to prevent disturbance of the caisson base. As a result, the use of caissons is less preferred from a geotechnical viewpoint.

If employed, caissons should extend into the hard silty clay till in Borehole 19-09 and the very dense sand in Borehole 19-10. The geotechnical resistances recommended for preliminary design of caissons with base levels as listed are as follows:

Borehole Base		Caisson	Factored Axial Resistance at	Factored Axial Resistance at SLS (kN)	
No.	Level	Diameter	ULS (kN)	10 mm	25 mm
		0.9	2400	800	2000
19-09	184.0	1.2	4000	1100	2600
		1.5	6000	1300	3300
		0.9	3600	1200	2300
19-10 193.5	193.5	1.2	6000	1600	3000
		1.5	9500	2100	3800

 Table 6.3 – Preliminary Geotechnical Resistances for Caissons

Note: Factored axial resistances at SLS are given for displacements of 10 mm and 25 mm.

The resistances provide in the above table are based on single boreholes drilled a considerable distance from the structure locations. The depth of caisson and axial resistances of caissons at each foundation unit will need to be determined by further investigation during detailed design.

6.2.3 West Don River Bridge

The existing Langstaff Road bridge over the West Don River will be replaced with a wider and longer bridge as part of the roadway reconstruction project.

The stratigraphy encountered in Borehole 19-11 drilled at the bridge location consisted of a pavement structure and embankment fill extending to a depth of 4.1 m (Elev. 195.7), underlain by loose alluvial sand, loose sand, and compact silt and sand to a depth of 9.5 m (Elev. 190.4), overlying very stiff to hard silty clay till. The upper clay till layer was underlain at 14.8 m depth (Elev. 185.0) by a 2.0 m thick layer of very dense sand, and then hard silty clay till contacted to the exploration depth of 21.7 m. Groundwater was measured in the monitoring well at a depth of 3.6 m (Elev. 196.2). This water level is expected to be near the water level in the West Don River.

Based on the borehole data, the preferred means of supporting the replacement bridge comprises steel H-piles driven into the very dense sand or hard clay till. For preliminary design purposes, a factored geotechnical resistance at ULS of 1,200 kN and a factored geotechnical resistance at SLS of 1,000 kN are recommended for HP310x110 piles. The piles are expected to achieve the recommended resistances at a pile tip depth in the order of 18 m (Elev. 182.0).

The use of H-piles at the abutments allows for the design of an integral abutment structure. To reduce resistance to lateral movement and provide a relatively flexible pile system, the top of each pile should be installed in a pre-augered hole supported by a CSP and filled with loose sand as per MTO Structural Office Report SO-96-01.

Suitable bearing strata for support of spread footings is not available until a depth of approximately 10.0 m (Elev. 189.8). Excavation for footing construction would need to extend through loose cohesionless deposits below the river water level, and cofferdam installation would be necessary to enable construction of footings in the dry. In view of these conditions, spread footings are not considered to be a practical foundation option to support this structure.

Augered caissons extended to the hard clay till below a depth of approximately 18.0 m could be considered at this site. However, installation of caissons may be problematic due the presence of cohesionless sand deposits and a high groundwater level. Construction will require use of a steel liner to maintain stability of the caisson sidewalls as well as techniques such as drilling slurry to prevent disturbance of the caisson base. As a result, the use of caissons does not appear to provide an advantage over driven piles, and is not recommended from a geotechnical viewpoint.

6.2.4 GO Transit Barrie Line Grade Separation

A grade separation at the GO Transit Barrie Line is planned. Current plans call for the construction of an overpass structure with road grades approximately 9.3 m above the existing tracks, near Elev. 213.3.

The stratigraphy encountered in Borehole 19-12 drilled at the GO Line crossing consisted of sand and gravel shoulder material over silty clay fill to 1.7 m depth (Elev. 202.0), underlain by successive deposits of very stiff to firm silty clay till, compact to very dense sand, hard silty clay till, and compact to very dense sand to gravelly sand to the exploration depth of 27.7 m. Groundwater was measured at a depth of 2.9 m (Elev. 200.8) in the monitoring well.

Based on the borehole data, the preferred means of supporting the replacement bridge comprises steel H-piles driven into the very dense sand deposits. For preliminary design purposes, a factored geotechnical resistance at ULS of 1,200 kN and a factored geotechnical resistance at SLS of 1,000 kN are recommended for HP310x110 piles driven to a tip depth in the order of 27 m (Elev. 177). Prediction of the depth at which the piles will achieve the required resistance is difficult at this site, and it is possible that the piles may encounter refusal in the very dense sand zone between depths of 10 to 15 m.

The use of H-piles at the abutments allows for the design of an integral abutment structure. To reduce resistance to lateral movement and provide a relatively flexible pile system, the top of each pile should be installed in a pre-augered hole supported by a CSP and filled with loose sand as per MTO Structural Office Report SO-96-01.

Consideration could be given to supporting the structure on spread footings founded on the very stiff clay till encountered at 1.7 m depth (Elev. 202.0). The presence of the firm zone between 4.1 and 5.6 m depth would require use of a relatively low geotechnical resistance however, and footing design is not expected to be practical. Extending the footings down to the compact to very dense sand below the clay till is also considered impractical. In view of these conditions, the use of spread footings is not recommended at this site.

Augered caissons extended to the very dense sand at a depth of approximately 12.0 m (Elev. 192.0) could be considered at this site. However, installation of caissons may be particularly problematic due the presence of the cohesionless sand deposit and high groundwater levels. Construction will require use of a steel liner to maintain stability of the caisson sidewalls as well as techniques such as drilling slurry to prevent disturbance of the caisson base. As a result, the

use of caissons is less preferred from a geotechnical viewpoint. The geotechnical resistances recommended for preliminary design of caissons, if employed, are as follows:

Borehole	Base	Caisson	Factored Axial Resistance at		al Resistance S (kN)
No.	Level	Diameter	ULS (kN)	10 mm	25 mm
	0.9	2400	800	2000	
19-12	19-12 192.0	1.2	4000	1100	2600
		1.5	6000	1300	3300

Table 6.4 – Preliminar	y Geotechnical Resistances for Caissons

Note: Factored axial resistances at SLS are given for displacements of 10 mm and 25 mm.

6.2.5 Frost Cover

The depth of frost penetration at this site is approximately 1.2 m. All spread footings or pile caps should be provided with a minimum of 1.2 m of earth cover as protection against frost action.

6.3 Abutment Backfill and Lateral Earth Pressures

Backfill behind grade separation structure and bridge abutments should consist of non-frost susceptible, free-draining granular material conforming to OPS Granular A or Granular B Type II specifications.

The lateral earth pressures acting on the walls, assuming full drainage from behind the walls, may be calculated from the following expression:

	\mathbf{p}_{h}	=	K (γh + q)
Where:	\mathbf{p}_{h}	=	horizontal pressure on the wall at depth h (kPa)
	K	=	earth pressure coefficient (see table below)
	γ	=	unit weight of retained soil (see table below)
	h	=	depth below top of fill where pressure is computed (m)
	q	=	value of any surcharge (kPa)

Table 6.5 lists unfactored parameters for design purposes, assuming an essentially level ground surface behind and in front of the walls.

Retained Unit		Friction	Earth Pressure Coefficient		
Material	Weight (kN/m ³)	Angle (degrees)	Active (K _a)	At-rest (k₀)	Passive (K _p)
Granular A or B Type II	22.8	35	0.27	0.43	3.7
Granular B Type I	21.2	32	0.31	0.47	3.3

Table 6.5: Unfactored Earth Pressure Parameters

If lateral movement is not permissible and/or the wall is restrained from lateral yielding, the at-rest earth pressure coefficient, K_o , should be used. If the wall design allows lateral yielding (non-rigid structure), the active earth pressure coefficient, K_a , may be used.

The earth pressure coefficients in the table above do not include potential compaction effects that must be included in the design. Compaction effects should be considered as per the CHBDC.

Design of the structures must incorporate measures such as weepholes to permit drainage of the backfill and avoid potential build-up of hydrostatic pressures behind the walls.

6.4 Embankments and Retaining Walls

Based on the preliminary profile drawings of the alignment provided by WSP, high fill embankments and/or retaining walls will be required in association with each of the grade separation structures. Preliminary details are as follows:

- The approach embankments to the Highway 400 grade separation structure will require widening to match the proposed widening of the structure. The approach embankments have a maximum height of approximately 7.0 m, and extend about 150 m west and 200 m east of the abutments.
- Extensive RSS walls are proposed for the approaches to the structure crossing the CN MacMillan Yard. The west approach to the single span structure will be up to 9 m high and extend approximately 200 m to the west of the west abutment, the approximate 90 m long section between the single span structure and the main multi-span structure will range from about 12 to 15 m in height, and the east approach will be up to 15 m in height and extend about 280 m east of the east abutment.

• The approach embankments for the proposed GO Barrie Line grade separation will be up to 9 m in height and extend approximately 250 and 150 west and east of the abutments, respectively.

Preliminary comments regarding the anticipated foundation conditions, stability and settlement of the high fill embankments and RSS walls are presented below.

Highway 400 Underpass

The foundation soils underlying the existing embankment fill generally consisted of very stiff to hard cohesive deposits and compact to very dense sands and silts at depth. In general, the stability of embankment slopes and settlement of the foundation soils under the new embankment loads are not expected to be a concern for embankment widening. Approximate 3.0 m thick zones of stiff material (clay till and clay alluvium) were identified in Boreholes 19-02 and 19-03, respectively; the prevalence and impact of these materials should be further assessed during detail design.

Embankments with standard side slope inclinations of 2H:1V are expected to be stable. Midheight berms comprising 2 m wide benches must be incorporated along the length of embankments with heights exceeding 8 m. Where new embankment fill is placed against existing embankment slopes or on a sloping ground surface, the existing earth or fill slope must be benched in accordance with OPSD 208.010. Earth fill embankment slopes must be provided with erosion protection in accordance with OPSS.PROV 804.

CN MacMillan Yard

The native foundation soils underlying the pavement structure and fill in Borehole 19-09 drilled to the west of the CN yard generally consisted of very stiff to hard silty clay to clayey silt till underlain by compact to dense sand. In Borehole 19-10 drilled to the east of the CN yard, the foundation soils consisted of very stiff silty clay till and clayey silt underlain by compact to dense sand. In general, these soils are expected to be capable of supporting the proposed RSS walls. Settlement of the walls is expected to be within acceptable limits of the RSS and occur essentially as construction of the walls proceeds.

For sections where the wall height exceeds about 8 to 10 m, it may be necessary to improve the subgrade to increase the geotechnical resistance and factor safety against global instability. It is envisioned that this would entail subexcavating the upper very stiff silty clay till and clayey silt layer encountered in Boreholes 19-09 and 19-10 to depths of about 4.1 and 2.6 m, respectively, and re-establishing the design foundation level with Granular A material compacted to 100% of

standard Proctor maximum dry density. The need for and extent of subgrade improvement should be determined during detailed design following detailed investigation of the foundation conditions at the locations of the proposed wall alignments.

Design and construction of the RSS walls should be in accordance with the MTO RSS Design Guidelines, and Special Provisions SP599S22 and SP599S23. In general, the RSS walls should be specified as "High Performance" and "High Appearance".

The RSS walls must also be designed against various modes of failure including sliding and overturning. Sliding resistance along the base of the wall on native clay till, sand or engineered fill may be estimated using ultimate friction coefficients of 0.45, 0.5 and 0.6, respectively. The internal stability of the RSS wall should be analysed by the supplier/designer of the proprietary product selected for this site.

GO Barrie Line

The foundation soils underlying the proposed approach embankments are expected to consist primarily of very stiff to hard clay till and compact to very dense sand. In general, the stability of embankment slopes and settlement of the foundation soils under the embankment loads are not expected to be a concern. An approximate 1.5 m thick zone of firm clay till was identified at 4.1 m depth in Borehole 19-12; the prevalence and impact of this zone should be further assessed during detail design.

Embankments with standard side slope inclinations of 2H:1V are expected to be stable. Midheight berms comprising 2 m wide benches must be incorporated along the length of embankments with heights exceeding 8 m. Earth fill embankment slopes must be provided with erosion protection in accordance with OPSS.PROV 804.

6.5 Municipal Service Installation

In general, excavation for open cut installation of municipal services to an assumed maximum depth of 3.5 m will extend through the existing roadway pavement structure and fill materials, and into native silty clay till. Locally between Highway 400 and Jane Street, a sand deposit may be encountered in excavations extending below a depth of about 3.0 m. Sand may also be encountered in the vicinity of Keele Street and the West Don River. Use of a hydraulic excavator should be suitable for trench excavation within these materials.

All temporary excavations must be carried out in accordance with the current Occupational Health and Safety Act (OHSA) of Ontario and local regulations. In general, the native soils are classified

as Type 3 soils above the groundwater level, and Type 4 soils if excavation extends below the water level without prior dewatering. Groundwater is not expected to pose construction issues during excavation of relatively shallow trenches.

Prior to placement of the pipe bedding, the base of the trench should be maintained in a dry condition, free of loose or disturbed material. The pipe must be placed on a uniformly competent subgrade. Pipe bedding materials, compaction and cover should follow OPSD 802.030 to 803.034, and/or York Region specifications.

Trench backfill materials should be placed in loose lift thicknesses not exceeding 200 mm and compacted to at least 98% of its SPMMD. Where utility trenches are located beneath the roadway, OPSS Granular A or B material, or unshrinkable fill should be employed as backfill.

For trenches located outside of the roadway, the portion of the trench above the pipe cover can be backfilled with excavated soil provided it is unfrozen and free of organics, debris and other deleterious materials. The placement moisture content should be within about 2% of the optimum moisture content for efficient compaction, and the till must be adequately broken down and compacted in the trench.

6.6 Soil Management

In general, visual and olfactory examination of the soil samples recovered from the field investigation program revealed no unusual staining or odours indicative of hydrocarbon impact or other contamination.

To evaluate the general environmental quality of the soils along the alignment, representative samples of the soils recovered from the boreholes were submitted to SGS for analysis of selected metals and inorganic parameters, petroleum hydrocarbons (PHC) fractions F1 to F4, including benzene, ethylbenzene, toluene and xylenes (BTEX) and volatile organic compounds (VOCs), as outlined in Ontario Regulation 153/04 (O.Reg. 153/04). Four samples were also tested in accordance with the Toxicity Characteristic Leaching Procedure (TCLP) of O.Reg. 347 – General Waste Management as amended by O.Reg. 558/00.

The sample locations and material types are summarized in Table 6.6. The results of the analyses are provided on the Certificates of Analysis in Appendix E.

Borehole	Sample ID	Depth (m)	Material	Analysis	
19-02	BH19-02 SS7	6.1 – 6.7	Clay Till	Metals & Inorganics BTEX, PHCs F1 to F4 VOCs	
19-03	BH19-03 SS8	7.6 – 8.2	Clay Fill	Metals & Inorganics BTEX, PHCs F1 to F4 VOCs	
19-05	BH19-05 SS2	0.8 – 1.4	Clay Till	Metals & Inorganics	
19-07	BH19-07 SS2	0.8 – 1.4	Clay Till	Metals & Inorganics	
19-09	BH19-09 SS2B	0.9 – 1.4	Clay	Metals & Inorganics	
19-09	BH19-09 SS4	2.3 – 2.9	Clay Till	BTEX, PHCs F1 to F4	
19-10	BH19-10 SS6	4.6 – 5.2	Sand	Metals & Inorganics BTEX, PHCs F1 to F4	
19-11	BH19-11 SS3B	1.7 – 2.1	Clay Fill	Metals & Inorganics BTEX, PHCs F1 to F4	
19-11	BH19-11 SS6	4.6 - 5.2	Sand	Metals & Inorganics BTEX, PHCs F1 to F4	
19-12	BH 19-12 SS2B	0.9 – 1.4	Clay Fill	Metals & Inorganics BTEX, PHCs F1 to F4	
19-15	BH 19-15 SS2B	0.9 – 1.4	Clay Till	Metals & Inorganics	
19-02	TCLP-1	6.1 – 8.2	Clay Till	TCLP	
19-09	TCLP-2	0.9 – 2.1	Clay Fill	TCLP	
19-11	TCLP-3	1.7 – 5.2	Clay Fill/Sand	TCLP	
19-12	TCLP-4	0.9 – 2.1	Clay Fill/Till	TCLP	

 Table 6.6 – Samples Selected for Environmental Testing

The analytical results were compared to the MECP Table 1 "Full Depth Background Site Condition Standards" for Property Uses other than Agricultural. The concentrations of all parameters measured in the samples meet the Table 1 Standards with the exception of electrical conductivity (EC) and sodium adsorption ratio (SAR) in multiple samples and F4 PHCs in one sample. The exceeding parameters are summarized in the following table:

Borehole	Sample ID	Soil Type	Parameters	Table 1 Standard	Sample Result
19-02	BH19-02 SS7	Clay Till	PHC F4 (µg/g) PHC F4G (µg/g)	120 120	276 927
19-03	BH19-03 SS8	Clay Fill	EC (mS/cm) SAR	0.57 2.4	0.60 5.2
19-05	BH19-05 SS2	Clay Till	EC (mS/cm) SAR	0.57 2.4	2.2 20.3
19-07	BH19-07 SS2	Clay Till	EC (mS/cm) SAR	0.57 2.4	1.4 7.1
19-09	BH19-09 SS2B	Clay	EC (mS/cm) SAR	0.57 2.4	2.2 7.8
19-09	BH19-09 SS4	Clay Till	EC (mS/cm)	0.57	0.99
19-11	BH19-11 SS3B	Clay Fill	EC (mS/cm) SAR	0.57 2.4	3.2 20.6
19-11	BH19-11 SS6	Sand	EC (mS/cm) SAR	0.57 2.4	1.4 4.7
19-12	BH 19-12 SS2B	Clay Fill	EC (mS/cm) SAR	0.57 2.4	2.1 3.4
19-15	BH 19-15 SS2B	Clay Till	EC (mS/cm) SAR	0.57 2.4	1.6 9.4

 Table 6.7 – Samples Exceeding Table 1 Background Standards

The PHC Fraction F4 and F4G concentrations measured in the sample from Borehole 19-02 exceeded the Table 1 Standard but were below the standard of 6600 μ g/g for Table 3 ("Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition", Industrial/ Commercial/Community Property Use). If excavation is planned in this area, additional sampling and testing should be carried out to confirm and/or delineate the extent of soil containing PHC's.

The EC and SAR values likely result from de-icing salt applied to the roadway for safety purposes. Currently, salt-related impacts are exempt where salt has been applied on a "highway" by a government or municipal authority, and the applicable site conditions standard is deemed not to be exceeded under O. Reg. 153/04. Therefore excavated materials may be managed by reuse in engineering applications on site (i.e. site grading fill or backfill). The material should not be used in landscaped areas with sensitive vegetation and plant species.

Considering that the parameter exceedances are non-health related, the soils may also be suitable for reuse at industrial/commercial/community sites that require fill for a beneficial use, pending approval of receiving site authorities. Alternatively, excess soils may be disposed of offsite as waste at a licensed facility (i.e. landfill and/or treatment facilities) with an Environmental

Compliance Approval (ECA) to receive this material, pending approval of receiving site authorities. The results of the leachate analyses met the respective Schedule 4 criteria provided under O. Reg. 347, and therefore, the materials may be disposed of as non-hazardous.

Additional analytical testing of excavated soils will be required during detailed design to further evaluate the environmental quality of the soil and confirm reuse and disposal requirements. It must be noted that samples were not recovered from within the CN MacMillan Yard, and particular attention should be given to establishing the characteristics of materials to be excavated for foundation construction in this area.

6.7 Detailed Geotechnical Investigation

The information presented in this report is provided for preliminary design and planning purposes only. Detailed geotechnical investigation will be required to confirm the subsurface conditions and recommendations. This work should incorporate:

- A detailed pavement investigation including additional boreholes within the existing roadway pavement and widening areas to further define the subgrade conditions and confirm the pavement design recommendations;
- Boreholes within the envelope of all foundation units to confirm the subsurface conditions at the structure locations and develop detailed geotechnical recommendations for design and construction of the new grade separation structures, structure widening, and bridge foundations;
- Additional investigation along the proposed RSS walls, high fill embankments, and temporary track and roadway protection locations;
- Further assessment of dewatering requirements and the need for a PTTW; and
- Supplemental chemical testing to confirm the requirements for reuse or disposal of excavated material.

7. CLOSURE

We trust the above provides the information you require at this time. If you have any questions regarding this report, please do not hesitate to contact us.

Yours truly,

Thurber Engineering Ltd.

Karel Furbacher, P.Eng. Geotechnical Engineer

Murray R. Anderson, M.Eng., P.Eng. Senior Geotechnical Engineer

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

Appendix A

Site Photographs



Photograph 6 – Langstaff Road at CN Property

Photograph 10 – Langstaff Road at Dufferin Street intersection

Appendix B

Record of Borehole Sheets

SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

1. <u>TEXTURAL CLASSIFICATION OF SOILS</u>

2.

3.

4.

5.

	PARTICLE SIZE Greater than 200mm	
Boulders Cobbles	75 to 200mm	
	4.75 to 75mm	same
Gravel		5 to 75mm
Sand	0.075 to 4.75mm	Not visible particles to 5mm
Silt	0.002 to 0.075mm	Non-plastic particles, not visible to
		the naked eye
Clay	Less than 0.002mm	Plastic particles, not visible to the naked eye
COARSE GRAIN SOIL D	ESCRIPTION (50% greater than	
TERMINOLOGY		PROPORTION
Trace or Occasional		Less than 10%
Some		10 to 20%
Adjective (e.g. silty or sand	dv)	20 to 35%
	ly)	35 to 50%
And (e.g. sand and gravel)		35 10 50%
TERMS DESCRIBING CO	NSISTENCY (COHESIVE SOII	LS ONLY)
DESCRIPTIVE TERM	UNDRAINED SHE	APPROXIMATE SPT ⁽¹⁾ N'
	STRENGTH (kPa)	VALUE
Very Soft	12 or less	Less than 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	Greater than 200	Greater than 30
		3) Laboratory Vane Testing4) SPT value5) Pocket Penetrometer
		5) Focket Fenetionneter
TERMS DESCRIBING DE	ENSITY (COHESIONLESS SOI	LS ONLY)
	ENSITY (COHESIONLESS SOI	LS ONLY)
DESCRIPTIVE TERM	SPT "N" VALUE	LS ONLY)
DESCRIPTIVE TERM Very Loose	SPT "N" VALUE Less than 4	<u>LS ONLY)</u>
DESCRIPTIVE TERM Very Loose Loose	SPT "N" VALUE Less than 4 4 to 10	<u>LS ONLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact	SPT "N" VALUE Less than 4 4 to 10 10 to 30	<u>LS ONLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50	<u>LS ONLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact	SPT "N" VALUE Less than 4 4 to 10 10 to 30	<u>LS ONLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50	<u>LS ONLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES	
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample	WS Wash Sample AS Auger (Grab) Sample
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample TW Thin Wall Shelby Tube S	WS Wash Sample AS Auger (Grab) Sample Sample TP Thin Wall Piston Sample
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample	WS Wash Sample AS Auger (Grab) Sample Sample TP Thin Wall Piston Sample ydraulic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR SAMPLE TYPE	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample TW Thin Wall Shelby Tube S PH Sampler Advanced by Hy WH Sampler Advanced by So Undisturbed Shear Strength	WS Wash Sample AS Auger (Grab) Sample Sample TP Thin Wall Piston Sample ydraulic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample TW Thin Wall Shelby Tube S PH Sampler Advanced by Hy WH Sampler Advanced by So	WS Wash Sample AS Auger (Grab) Sample Sample TP Thin Wall Piston Sample ydraulic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR SAMPLE TYPE	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample TW Thin Wall Shelby Tube S PH Sampler Advanced by Hy WH Sampler Advanced by So Undisturbed Shear Strength	WS Wash Sample AS Auger (Grab) Sample Sample TP Thin Wall Piston Sample ydraulic Pressure PM Sampler Advanced by Manual Pre

SPT 'N' Value Standard Penetration Test 'N' Value – refers to the number of blows from a 63.5kg hammer free falling a height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground.
 DCPT Dynamic Cone Penetration Test – Continuous penetration of a 50 mm outside diameter, 60° conical

steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

				F	REC	O	RC) (OF BOREHOLE 1	19-0'	1					
		JEC	0		Durate ui e									P	roject N	o. 13659
		ATIC RTEI		ian, C	Jntario									s	HEET 1	OF 1
			TED : April 2, 2019				I	N 4	851 599.0 E 616 682.0					D		Geodetic
щ		HOD	SOIL PROFILE		_	SA	MPL	ES	COMMENTS	S	HEAR S nat V -		H: Cu, K Q - D	Pa	_ U	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W W	40 8 ⊥ ATER C ∕p I	30 1 ONTENT 	20 1 	60 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		Ī	GROUND SURFACE	o	207.10											
F			ASPHALT: (175mm)		0.00											
			SAND, some gravel, trace silt and clay, compact, brown, moist: (FILL)		206.31	1	SS	14	Grain Size Analysis: Gr 13%/Sa 74%/ Si & Cl 13%	0						
- 1			SAND, some clay, trace to some silt, compact, brownish grey, moist: (FILL)		0.79	2	ss	14			0					
	Hollow Stem Auders	CME-75				3	99	24			0					
-2	Hollow Ct	CM	CLAY, silty, trace sand and gravel, very stiff, grey, moist: (TILL)		204.97 2.13			-								
						4	ss	22				0				
- 3						5	ss	26		c	>					
-4	╞		END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH BENTONITE AND ASPHALT AT		203.44 3.66											
			SURFACE													
- - 5																
-6																
- 7																
-8																
- 9 - 19																
=L-13659.G																
	_		GROUNDWATER ELE				<u> </u>	L v	ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE		BRM KF		THURBER
=																INUKDEK

				F	REC	0	RE) (OF BOREHOLE	19-0	2					
		JECT	0)ntari-									Projec	t No. 1	3659
		ATIO RTEE	0 / 0	an, C	Jntario									SHEE	T 1 OF	4
С	ЮМ	PLE	TED April 9, 2019				I	۷4	851 713.0 E 617 073.0					DATU	M Ge	odetic
Щ		ДОГ	SOIL PROFILE		-	SA	MPL	ES	COMMENTS	s	HEAR STF nat V - rem V -	RENGTH	l: Cu, KPa Q - X Cpen ▲	-J 4	2	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	w v	40 80 I I	0 120 NTENT, O ^W	0 160 PERCENT	ADDITIONAL		PIEZOMETER OR STANDPIPE NSTALLATION
			GROUND SURFACE		213.66 0.00											
-			ASPHALT: (175mm) SAND, some gravel, compact to very dense, brown, moist: (FILL)		0.18	1	SS	67	Grain Size Analysis: Gr 24%/Sa 58%/ Si & Cl 18%	0					Well Prot	hmount ector Set
- 1 - 1	n Augers	, ,				2	SS	54		0						
-2	Hollow Stem Augers		CLAY , silty, sandy, trace gravel, very stiff, grey to dark grey, moist: (FILL)		211.78 1.88	3	ss	19		0						
			SAND, some clay, compact, grey, moist, occasional wood fragments: (FILL)		211.12 2.54	4	ss	19	Grain Size Analysis: Gr 1%/ Sa 41%/ Si 36%/ Cl 22%		0					
- 3	-		CLAY, silty, some sand, trace gravel, stiff, grey, moist		210.61 3.05	5	ss	12			0					
-4																
- 5		CME-75				6	ss	15			0					hmount cetor Set
- - -6			CLAY, silty, some sand to sandy, trace gravel, stiff to very stiff, grey to brownish grey, moist: (TILL)		208.02 5.64											
- 7	HW Casing Advancer					7	ss	27		0						
•	HW C8							10	Grain Size Analysis:							
-8 - -						8	SS	19	Gr 1%/ Sa 31%/ Si 39%/ Cl 29%		0					
6PJ 8/29/19						9	SS	12				0			Ţ	
3659.0																
THURBER2S TEL-13659.GPJ 8/29/19	1		GROUNDWATER ELE				 _		/ATER LEVEL IN WELL/PIEZ ay 3, 2019	OMETE		.OGGED CHECKE				

	.			KEC	OF	RC) (OF BOREHOLE 1	9-02		
	OJEC [.] CATIC	Ũ		Ontario						Project I	No. 13659
	ARTEI MPLE	D : April 5, 2019 TED : April 9, 2019				1	۷4	851 713.0 E 617 073.0		SHEET DATUM	2 OF 4 Geodetic
		SOIL PROFILE			SA	MPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - ¥ rem V - ● Cpen ▲		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1 1 1	Mem V - Cpen A 40 80 120 160 WATER CONTENT, PERCENT Water Content, PERCENT Water Content, PERCENT 0 0 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 11 - 11 - 11 - 12 - 12 - 12 - 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13	Hollow Stem Augers CME-75	CLAY, silty, some sand to sandy, trace gravel, stiff to hard, grey to brownish grey, moist: (TILL) SILT, clayey, some sand, trace gravel, hard, grey, moist GROUNDWATER ELE			11 12 13 14	SS	41 27 27 47	Grain Size Analysis: Gr 1%/ Sa 16%/ Si 64%/ Cl 19%			Bentonite Grout
		$\overline{{\mathbb Y}}$ water level upon CC	OMPL	ETION		<u> </u>		ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : BRM	Л	
							М	ay 3, 2019	CHECKED : KF		THURBE

			F	REC	OF	RD) (OF BOREHOLE 1	9-02			
	OJEC	0) w t a wi a							Project N	lo. 13659
	CATIC	0 0	an, C	Intario							SHEET :	3 OF 4
co	MPLE	TED : April 9, 2019				١	۷4	851 713.0 E 617 073.0			DATUM	Geodetic
Ш	ДОН	SOIL PROFILE			SAN	MPL		COMMENTS	SHEAR ST nat V - rem V -	RENGTH: Cu, KPa Q - X ♥ Cpen ▲	NG	
DEPTH SCALE (metres)	BORING METHOD		STRATA PLOT	ELEV.	BER	ш	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80) 120 160 I I NTENT, PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
DEPT (m	ORING	DESCRIPTION	RATA	DEPTH (m)	NUMBER	түре	LOWS		wp I		ADDI LAB.	INSTALLATION
	ā		ST	()			В	20 40 60 80 100	10 20	0 30 40	_	
-		SAND, silty, trace clay, compact, grey, wet		19.99								
-												
ļ.												
- 21												
ļ.												
ŀ					15	ss	27		0			
-22												
-												
ļ												
				190.66								
- 23		CLAY , silty, some sand, trace gravel, hard, grey, moist		23.00								
ŀ												
[
-24												
-	ş											
ŀ	Auger 5				16	ss	68	Grain Size Analysis: Gr 1%/ Sa 13%/ Si 41%/ Cl 45%				
- 25	Hollow Stem Augers CME-75											
ŀ	Hollow											
ŀ												
-26												
20		SAND, silty, compact to very dense, grey,		187.46 26.20								
İ.		wet										
- 27												
ŀ												
ļ.					17	ss	72		0			
-28					\mid							
ļ												
ŀ												
- 29												
ŀ												
[
-												Bentonite Pellets
		GROUNDWATER ELE				_	,					
		$\overline{ au}$ water level upon CO	MPL	ETION	I	<u> </u>		ATER LEVEL IN WELL/PIEZC ay 3, 2019		LOGGED : BRM CHECKED : KF		
												THURBER

THURBER2S TEL-13659.GPJ 8/29/19

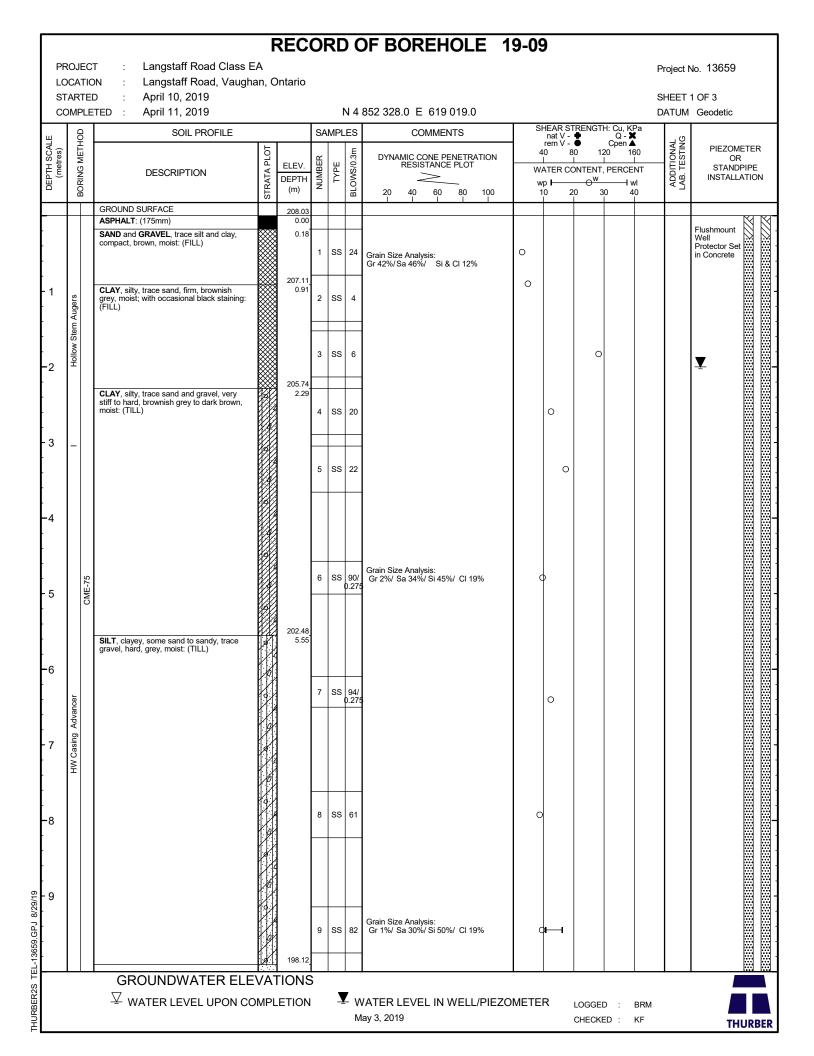
PMOLECT ::::::::::::::::::::::::::::::::::::					F	REC	O	RD) (DF BOREHOLE 1	9-02		
STATED X: April 5, 2019 Setter 1 of 4 COMPLETED X: April 5, 2019 N 4 851 713.0 E 617 073.0 DILCARDENT OLIVER Description				-		S						Project I	No. 13659
COMPLETED April 9, 2019 N 4 851 71.01 E 617 073.0 DATUM Generalization Image: Solid PROPILE SOLID PROPILE SAMPLES COMMENTS Image: Solid PROPILE Image:					an, C	Intario						SHEET	4 OF 4
Sign 1 Sign 1 DESCRIPTION Sign 1 Sign 1 Description Sign 1 Sign 2 Sign 2 Sign 3 Sig								1	N 4	851 713.0 E 617 073.0			
Sign 1 Sign 1 DESCRIPTION Sign 1 Sign 1 Description Sign 1 Sign 2 Sign 2 Sign 3 Sig	Щ	ģ	100	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X rem V - Cpen	4G F	
-31 -32 -33 <td>DEPTH SCA (metres)</td> <td></td> <td>JRING MELL</td> <td>DESCRIPTION</td> <td>RATA PLOT</td> <td>DEPTH</td> <td>NUMBER</td> <td>түре</td> <td>-OWS/0.3m</td> <td>\geq</td> <td>40 80 120 160</td> <td>ADDITIONA LAB. TESTIN</td> <td>PIEZOMETER OR STANDPIPE INSTALLATION</td>	DEPTH SCA (metres)		JRING MELL	DESCRIPTION	RATA PLOT	DEPTH	NUMBER	түре	-OWS/0.3m	\geq	40 80 120 160	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
-31 -			ă 		ST	(11)		_	B				
-31 -31 -31 -31 -31 -31 -31 -32 -31 -32 <td>-</td> <td></td> <td></td> <td>SAND, silty, compact to very dense, grey, wet</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Filter Sand</td>	-			SAND , silty, compact to very dense, grey, wet									Filter Sand
-32 A A A A A A A A B						•	18	ss	25		0		
33 9rey, wet 33 10 34 END OF BOREHOLE AT 33.88m. Montoring well installation contails of a 3.0m abited screen. 35 END OF BOREHOLE AT 33.88m. Montoring well installation contails of a 3.0m abited screen. 36 WATEF LOUGH ADDROS 37 May 03/19 38 Home Handle Screen.	- 31 -					•							
33 9rey, wet 33 10 34 END OF BOREHOLE AT 33.88m. Montoring well installation contails of a 3.0m abited screen. 35 END OF BOREHOLE AT 33.88m. Montoring well installation contails of a 3.0m abited screen. 36 WATEF LOUGH ADDROS 37 May 03/19 38 Home Handle Screen.		gers											
33 9rey, wet 33 10 34 END OF BOREHOLE AT 33.88m. Montoring well installation contails of a 3.0m abited screen. 35 END OF BOREHOLE AT 33.88m. Montoring well installation contails of a 3.0m abited screen. 36 WATEF LOUGH ADDROS 37 May 03/19 38 Home Handle Screen.	-32	Stem Au	CME-75										Slotted
-33 Image: Construct of the second of the		Hollow											Screen
34 END OF BOREHOLE AT 33.88m 19 \$5 500 Grain Size Analysis: Grin													
-34 END OF BOREHOLE AT 33.88m. Monitoring well instabilition consists of a 3.0m slotted screen. 111 193.78 0.004 Gr 0%/ Sa 13%/ Si 76%/ Cl 11% -35 WATER LEVEL READINGS: DATE: DATE: DEPTH(m) ELEV.(m) May 03/19 9.49 204.17 -36 -37 -38 -38 -31 -31 -31 -31	- 33												
-34 END OF BOREHOLE A1 33.8m. Montoring will istalization consists of Somm diameter Schedule 40 PVC pipe with a 30m solid screen. 33.88 -35 WATER LEVEL READINGS: DATE DEPTH(m) ELEV(m) May 03/19 9.49 204.17 WATER LEVEL READINGS: DATE DEPTH(m) ELEV(m) May 03/19 9.49 204.17 -36 -37 -38 -38 -38						179 78	19	SS	50/	Grain Size Analysis:	0		
35 WATER LEVEL READINGS: DATE DEPTH(m) ELEV(m) May 03/19 9.49 204.17 -36 I -37 I -38 I I I	-34			Monitoring well installation consists of 50mm diameter Schedule 40 PVC pipe with					0.000	GI 070/ Sa 1370/ GI 7070/ GI 1170			-
-35 -36 -36 -37 -37 -36 -				WATER LEVEL READINGS:									
	- 35												
	ŀ												
	-36												
	- 37												
39 39 Image: Second Seco	-38												
39 39 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER May 3, 2019 CHECKED : KF													
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : BRM CHECKED : KF	ନ୍ତୁ - 39												
GROUNDWATER ELEVATIONS	GPJ 8/20												
GROUNDWATER ELEVATIONS WATER LEVEL UPON COMPLETION May 3, 2019 GROUNDWATER LEVEL UPON COMPLETION May 3, 2019 CHECKED : KF THURBER	:L-13659.												
✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : BRM Image: Brm May 3, 2019 CHECKED : KF THURBER	28 IE	-						_	_			·	
	IHURBER			eq water level upon CC	OMPL	ETION		_				м	THURBER

				F	REC	O	RC) (OF BOREHOLE 1	9-0	3					
	RO		0											Ρ	roject N	o. 13659
			u u	n, C	Ontario									ç	HEET 1	
			TED : April 4, 2019				I	N 4	851 730.0 E 617 179.0							Geodetic
ш		8	SOIL PROFILE			SA	MPL	ES	COMMENTS	Ś	HEAR S		TH: Cu, KP: Q - X Cpen ▲	а	. 0	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	v,	40 8 /ATER C wp	30 1 L ONTENT	120 160	о IT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE		213.93											
			ASPHALT: (150mm) SAND and GRAVEL, compact to dense, brown, moist: (FILL)		0.00 0.15	1	ss	39	Grain Size Analysis: Gr 37%/Sa 49%/ Si & Cl 14%	0						
- 1	m Augers					2	ss	32		0						
-2	Hollow Stem Augers				044.04	3	ss	19		0						
			CLAY, silty, some sand to sandy, firm to stiff, grey to brownish grey, moist: (FILL)		211.64 2.29		ss	5			0					
- 3	-					5	ss	8	Grain Size Analysis: Gr 6%/ Sa 41%/ Si 34%/ Cl 19%		0					
4			SAND, some clay, trace gravel, compact, brown, wet: (FILL)		209.82 4.11											
- - 5 -		CME-75				6	ss	24			0					
-6																
. 7	HW Casing Advancer	,	CLAY, some sand, trace silt, trace gravel, firm to stiff, grey, wet; occasional organics inclusions: (FILL)		207.55 6.38		ss	15			0					
	HW Ca															
-8					205.33		SS	7			0					
) 8/29/19 			CLAY, silty, trace to some sand, trace gravel, stiff, grey, wet; occasional organic inclusions, roottets: (ALLUVIAL)		8.60											
THURBER2S TEL-13659.GPJ 8/29/19						9	SS	10				0				
S TE			GROUNDWATER ELE	/A ⁻	TIONS	3										
THURBER2			abla water level upon con	MPL	ETION		7	Z v	VATER LEVEL IN WELL/PIEZO	DMETE	R	LOGGE CHECK		BRM (F		THURBER

				REC	OF	RD	\mathbf{C}	OF BOREHOLE 1	9-03		
	ROJEC DCATIC	0		ntaria						Project No	o. 13659
	TARTE		an, O	mano						SHEET 2	OF 4
C	-	ETED : April 4, 2019						851 730.0 E 617 179.0		DATUM	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	14N TYPE	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1 1	SHEAR STRENGTH: Cu, KPa nat V - Q - X rem V - Cpen▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 11 - 11 - 12 - 12 - 13 - 13 - 13 - 14 - 15 - 15	Hollow Stem Augers BC CME-75 BC	CLAY, silty, trace to some sand, trace gravel, stiff, grey, wet; occasional organic inclusions, rootlets: (ALLUVIAL)		(m) 202.20 11.73	10 11 11 12	SS SS SS	11	Grain Size Analysis: Gr 4%/ Sa 20%/ Si 28%/ Cl 48%			
- 16 - 16 - 17 - 17 - 17 - 18 - 17 - 18 - 17 - 18 - 17 - 18 - 17 - 18 - 17 - 18 - 17 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		GROUNDWATER ELE		193.94 10NS	14			Gr 0%/ Sa 19%/ Si 47%/ Cl 34%			
RBER2S		GROUNDWATER ELE $\overline{\mathcal{Y}}$ water level upon co				Ţ	- v	ATER LEVEL IN WELL/PIEZO			
Ĩ									CHECKED : KF		THURBER

			R	EC	OF	RD) (DF BOREHOLE 1	19-03	•					
	ROJEC	e e											F	Project N	o. 13659
	DCATIC TARTE		an, On	itario									S	HEET 3	OF 4
CC	OMPLE	TED : April 4, 2019				1	N 4	851 730.0 E 617 179.0						ATUM	Geodetic
ΥΓE	DOH.	SOIL PROFILE			SA	MPL		COMMENTS	S⊦	IEAR S [°] nat V - rem V -	TRENG	TH: Cu, K Q - Cpen	(Pa	NGA	DIEZOMETED
DEPTH SCALE (metres)	BORING METHOD	DECODIDEION	STRATA PLOT	ELEV.	BER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	4	3 0	30 ·	120 1 1 T, PERCE	160	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
DEP1	30RIN	DESCRIPTION	TRAT/	DEPTH (m)	NUMBER	Σ	BLOW	20 40 60 80 100		- H	W		wl 40	ADD LAB.	INSTALLATION
							ш								
F		SILT , clayey, trace to some sand, hard, grey, wet: (TILL)		19.99											
ł															
- 21															
ŀ															
ŀ					15	ss	67		0						
-22															
ŀ															
			101												
				190.93											
- 23 -		CLAY , silty, trace sand and gravel, very stiff, grey, wet		23.00											
ł															
i.															
-24															
ļ.															
ł	Hollow Stem Augers CME-75				16	SS	26	Grain Size Analysis: Gr 0%/ Sa 0%/ Si 76%/ Cl 24%		C	>				
- 25	v Stem A CME-75														
-	Jollow O														
i.															
				187.93											
-26		SAND, some silt to silty, compact to very dense, grey, wet		26.00											
ŀ															
İ.															
- 27															
İ.															
ł					17	SS	22				0				
-28					.,	00	22								
İ.															
6L/67/29															
647 ~															
13050 -															
		GROUNDWATER ELE		ONS	;										
SEK2S		\overline{Y} water level upon co				<u> </u>	<u> </u>	ATER LEVEL IN WELL/PIEZO	OMETER	२	LOGGE	ED :	BRM		
H UK							-	· ·			CHECK		KF		THURBER
- ـ															

				F	REC	O	RD) (OF BOREHOLE 1	9-03		
		JEC	0								Project N	No. 13659
		ATIC RTEI		nan, C	Ontario						SHEET 4	
			TED : April 4, 2019				1	N 4	851 730.0 E 617 179.0			Geodetic
ш	Т	0	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	. (7)	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ♥ ↓ wl 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-												
						18	ss	61	Grain Size Analysis: Gr 0%/ Sa 61%/ Si & Cl 39%	ο		
- 31												
-32	Hollow Stem Augers	CME-75										
	Hollow	0	SILT, some sand and clay, very dense, grey, moist		181.62 32.31							
- 33 -												
						19	ss	86		ρ		
-34			END OF BOREHOLE AT 34.09m. BOREHOLE BACKFILLED WITH BENTONITE GROUT; ASPHALT AT SURFACE.		179.84 34.09							
- 35												
-36												
- - 37												
- -38 -												
- 399. du noverzo let-10000 du noverzo												
20001-												
			GROUNDWATER ELE		L FIONS	L	<u> </u>					
			\overline{Y} water level upon C				1	Z v	VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : BRI CHECKED : KF	Л	THURBER


			F	REC	O	RD) (OF BOREHOLE 1	19-04		
	ROJE	5								Project N	No. 13659
)cati Farte	• •	ian, O	Ontario						SHEET	1 OF 1
		ETED : April 26, 2019				I	N 4	851 800.0 E 617 413.0			Geodetic
щ	ЦОР	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	ں _	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp I 0 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-				208.00 0.00							
-		ASPHALT: (150mm) SAND, gravelly, trace silt and clay, very dense, brown, moist: (FILL)		0.15		ss	62	Grain Size Analysis: Gr 26%/Sa 55%/ Si & Cl 19%	0		
- 1 - 1 -	ers			206.47	2	ss	73		0		
-2	Hollow Stem Augers	CLAY, silty, some sand, trace gravel, firm to stiff, brown, moist to wet: (FILL)		1.52		ss	10		φ		
	Ŷ			205.03	4	ss	5		0		
- 3		CLAY, silty, trace sand, trace organics, stiff, brownish grey, moist: (TILL)		203.03 2.97 204.34	5	ss	12		0		
- -4 -		END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE.		3.66							
- 5 -											
-6											
- 7											
- -8 -											
9											
	<u>ı</u>						<u> </u>	L VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : BR CHECKED : KF		THURBER
-											HIGRBE

					REC	O	RE) (OF BOREHOLE 1	9-05		
		IECT	0								Project N	lo. 13659
		ATIO RTEE		nan, (Ontario						SHEET 1	I OF 1
			TED : April 26, 2019				I	N 4	851 901.0 E 617 703.0		DATUM	Geodetic
щ	6	00	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	۱ س	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen A 40 80 120 160 1 1 1 1 WATER CONTENT, PERCEN wp - • wp - • • • 10 20 30 40 •	ADDITION	PIEZOMETER OR STANDPIPE INSTALLATION
	<u> </u>		GROUND SURFACE	٥ ا	207.49			ш				
-			ASPHALT: (150mm) SAND and GRAVEL, trace silt and clay, compact, brown, moist: (FILL)		0.00							
-			compact, brown, moist: (FILL)			1	ss	16		0		
ļ			CLAY silty some sand to sandy trace		206.73 0.76							
- 1			CLAY, silty, some sand to sandy, trace gravel, stiff to very stiff, brownish grey, moist: (TILL)			2	ss	20		φ		
İ	s											
	Hollow Stem Augers											
ŀ	Stem					3	ss	23		р		
-2	Jollow											
-												
Ì						4	SS	14		0		
- 3			SAND, some silt, trace clay, trace gravel,		204.44							
ŀ			compact, grey, wet		. 3.03	5	ss	14	Grain Size Analysis: Gr 7%/ Sa 77%/ Si & Cl 16%	0		
					203.83							
ł.			END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH BENTONITE GROUT, ASPHALT AT		3.66							
-4			SURFACE.									
-												
ł												
- 5												
·												
ļ.												
-												
-6												
-												
- 7												
-												
Ì												
-												
-8												
Į.												
-												
- 19												
8/29/												
9.GPJ												
-1365												
			GROUNDWATER ELE	EVA	L TIONS	ـــــــــــــــــــــــــــــــــــــ			l			
THURBER2S TEL-13659.GPJ 8/29/19			$\overline{\mathcal{Y}}$ water level upon C				Ţ	Z w	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : B	RM	
THURE										CHECKED : K		THURBER

					REC	0	RD) (OF BOREHOLE 1	9-06			
	ROJI DCA		•		Ontario						Pr	oject N	o. 13659
	TAR		o : April 9, 2019	an, c	Jillano						SH	IEET 1	OF 1
C		PLE	TED : April 9, 2019						851 989.0 E 618 055.0			TUM	Geodetic
) ALE			SOIL PROFILE	TE	1	SA	.MPL		COMMENTS	SHEAR STRENGTH: C nat V - ♥ C rem V - ♥ Cp	u, KPa 2 - X en ▲	NG A	PIEZOMETER
DEPTH SCALE (metres)	BODING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 WATER CONTENT, PEI	160 I RCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
) DEP				STRAT	DEPTH (m)	NUN		BLOW	20 40 60 80 100	wp	wl 40	LAB	INSTALLATION
_			GROUND SURFACE ASPHALT: (175mm)		210.14 0.00								
·			SANDand GRAVEL, trace silt and clay, loose, brown, moist; (FILL)		0.18				Grain Size Analysis				
-			CLAY, silty, trace to some sand, trace gravel, trace organics, very stiff, brownish grey, moist: (TILL)		0.41	1	SS	8	Grain Size Analysis: Gr 36%/Sa 49%/ Si & Cl 15%	0			
- 1			grey, moist. (TILL)										
-						2	SS	16		0			
Ì	vugers												
-	Stem A	CME-75				3	ss	19		0			
-2	Hollow Stem Augers	O											
-								10					
ŀ						4	SS	19		0			
- 3					206.92								
-			SAND , some silt and gravel, trace clay, dense, brown to grey, moist		3.22	5	ss	44		φ			
Ì			END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH		206.48 3.66								
-4			BENTONITE, ASPHALT AT SURFACE.										
Ì													
-													
- 5													
ł													
-6													
ŀ													
ŀ													
- 7													
·													
ł													
-													
-8													
-													
ŀ													
- 9													
3PJ 8													
3659.(
			GROUNDWATER ELE			L							
THURBER2S TEL-13659.GPJ 8/29/19			\overline{Y} water level upon co				Ţ	L v	ATER LEVEL IN WELL/PIEZO		BRM		
THURE								-	· · . · ·	CHECKED			THURBER
· •													

				I	REC	O	R) (OF BOREHOLE 1	9-0	7					
		IEC ^T	0		Durtavia									F	roject N	lo. 13659
			0 / 0	han, C	Jntario									S	HEET 1	OF 1
C	OMF	PLE	TED : April 12, 2019					N 4	852 089.0 E 618 288.0	_					ATUM	Geodetic
Щ		ПОН	SOIL PROFILE	—		SA	MPL	ES	COMMENTS	s	HEAR S nat V - rem V -		H: Cu, K Q - Cpen	(Pa	Ч ^р	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m		w v	40 8 ⊥ ATER C /p I	30 1 L ONTENT — O ^W	20 1 	160 ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		м М	GROUND SURFACE	ST	212.77	-		B			10 :	20 :	30 ·	40		
-			ASPHALT: (150mm)	-	0.00											
-			SAND and GRAVEL, trace silt and clay, compact, brown, moist: (FILL)		212.31	1	ss	17	Grain Size Analysis: Gr 63%/Sa 26%/ Si & Cl 11%		0					
ŀ			CLAY, silty, trace to some sand, trace gravel, stiff to hard, brownish grey with orange oxidized staining, moist: (TILL)		0.46											
- 1								10								
						2	SS	12				0				
	Hollow Stem Augers															
-	tem A	CME-75				3	ss	21			0					
-2	llow S	Q														
	Ľ															
ŀ						4	ss	36		0						
- 3					209.72											
-			SAND, some silt, trace gravel, dense, brown, wet		3.05		ss	40			0					
ŀ					209.11	5	33	40								
-			END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH		3.66											
-4			BENTONITE, ASPHALT AT SURFACE.													-
-																
- 5																
·																
-																
-6																-
- 7																
Ţ.																
-8																-
ŀ																
- 9/19																
J 8/26																
59.GP																
L-136																
IS TE			GROUNDWATER ELE						1		1	1		<u> </u>		
THURBER2S TEL-13659.GPJ 8/29/19			$\overline{\mathcal{Y}}$ water level upon C	OMP	LETION	l	_	Ľγ	ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE	D :	BRM		
THUF												CHECK	ED :	KF		THURBER

					REC	O	RD) (OF BOREHOLE 1	9-0	8					
		JEC	0		Ontorio									P	roject N	lo. 13659
		ATIC RTEL		ian, C	Jntario									S	HEET 1	OF 1
C	OM	IPLE	TED : April 12, 2019				I	N 4	852 190.0 E 618 604.0						ATUM	Geodetic
Ц		ДОН	SOIL PROFILE	.		SA	MPL	ES	COMMENTS		HEAR S - nat V - rem V		H: Cu, K Q - Cpen	(Pa	귀일	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100		40 /ATER C wp	80 1 1 ONTENT 	20 1 	160 I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	╀		GROUND SURFACE	<u>م</u>	212.30									+0		
			ASPHALT: (200mm)		0.00				Grain Size Analysis: Gr 36%/Sa 46%/ Si & Cl 18%							
·			SAND and GRAVEL, trace silt and clay, compact, brown. moist: (FILL)		211.79 0.51		ss	18		0						
Ē			CLAY, silty, trace to some sand, trace gravel, orange iron-oxide staining, stiff to hard, brownish grey, moist: (TILL)		0.01											
- 1						2	ss	10			0					
Ē	ers															
-	Hollow Stem Augers	-75														
-2	w Ster	CME-75				3	SS	18			0					
-	Hollon															
Ē						4	ss	24			0					
- 3																
-					208.64	5	SS	32			9					
-	F		END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE.		3.66											
-4			BENTONITE, ASPHALT AT SURFACE.													
ŀ																
ŀ																
- 5																
ŀ																
-																
-6																
-																
Ţ.																
- 7																
Ţ.																
-																
-8																
-																
ļ																
9/19																
GPJ &																
13659.																
			GROUNDWATER ELE	=\/Δ												
THURBER2S TEL-13659.GPJ 8/29/19			$\overline{\Sigma}$ water level upon Co				<u> </u>	Z w	/ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE CHECK		BRM KF		THURBER
≓ L																INUKDEK

				REC	O	RC) (F BOREHOLE	19-09		
	ROJEC DCATIC	•		Ontario						Project	No. 13659
ST	ARTE		,			,		352 328 0 E 610 010 0		SHEET	2 OF 3 Geodetic
	-	SOIL PROFILE			S۵	I MPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - • Q - X rem V - • Cpen ▲		Geodetic
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	Т	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nat V - ▼ Q - X rem V - ▼ Cpen ▲ 40 80 120 160 I I I I WATER CONTENT, PERCENT wp I - - wp I - 0 30 40 10 20 30 40 -		PIEZOMETER OR STANDPIPE INSTALLATION
<u> </u>		SAND, trace silt, compact to dense, grey, wet		9.91							
- 16 - 16 - 17 - 17 - 17 - 18 - 18 - 18	Hollow Stem Augers CME-75	CLAY, silty, trace sand, trace gravel, hard, grey, moist: (TILL)		191.03 17.00	13	SS	23 36 23				Bentonite Grout
- 19 - - -		GROUNDWATER ELE									
		☑ WATER LEVEL UPON CO	OMPL	ETION		1		ATER LEVEL IN WELL/PIEZ(ay 3, 2019	OMETER LOGGED : BF CHECKED : KF	RM :	THURBER

			F	REC	0	RE) (F BOREHOLE	19-09		
	ROJE(DCATI	•		Intario						Project	No. 13659
	TARTE		an, c	Jilano						SHEET	3 OF 3
C		ETED : April 11, 2019						352 328.0 E 619 019.0			1 Geodetic
()	BORING METHOD	SOIL PROFILE	Ŀ		SA	MPL	1	COMMENTS	SHEAR STRENGTH: Cu nat V - ♥ Q rem V - ♥ Cpe 40 80 120	KPa -X IA 160 V0	PIEZOMETER
DEPTH SCALE (metres)	NG ME	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	WATER CONTENT, PER	<u>2</u> 🛯	OR STANDPIPE INSTALLATION
DEF	BORI		STRA	DEPTH (m)	N	l F	BLOV	20 40 60 80 100	wp		INSTALLATION
-	\square	CLAY, silty, trace sand, trace gravel, hard,	W.XV								
ł		grey, moist: (TILL)									
ł											
- 21											
-											
-					15	SS	80/ 0.200		0		
-22											
											Bentonite Pellets
	ugers										Filter Sand
- 23	v Stem Au CME-75				16	SS	78/ 0.275		0		
ŀ	Hollow Stem Augers CME-75										
ŀ		with occasional pockets of sand		184.19 23.84							
-24				20.04							
-					17	SS	50/		0		Slotted Screen
Ì							0.125				
- 25											
ŀ											
-											
-26					10	ss	05		0		
		END OF BOREHOLE AT 26.39m.		181.64 26.39		33	60				
-		Monitoring well installation consists of 50mm diameter Schedule 40 PVC pipe with		20.33							
- 27		a 3.04m slotted screen.									
ł											
-		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) May 03/19 2.00 206.03									
-28		Way 03/19 2.00 200.03									
-											
ļ											
»_ <u> </u>											
6L/67/8											
9.GPJ											
.L-1305											
		GROUNDWATER ELE				·				I	
JKBEK		\overline{arphi} water level upon CC	OMPL	ETION		7		ATER LEVEL IN WELL/PIEZ ay 3, 2019		BRM	
Ĭ							IVI	ay 0, 2010	CHECKED :	KF	THURBER

PRC	OJECI	E Langstaff Road Class E		LC	Ur	۲L		OF BOREHOLE 1	9-10	Project !	No. 13659
LOC	CATIO	N : Keele Street, Vaughan,		ario							
	ARTED MPLE	D : April 12, 2019 TED : April 16, 2019				1	N 4	852 562.0 E 620 350.0		SHEET DATUM	1 OF 3 Geodetic
щ	ДOF	SOIL PROFILE	_		SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	ق بـ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 WATER CONTENT, PERCENT WP - OW I WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE	STI	(m) 205.59	_		BL	20 40 60 80 100	10 20 30 40		
		ASPHALT: (175mm) SAND, some gravel, trace silt and clay,		0.00				Grain Size Analysis:			Flushmount
-		compact, brown, moist: (FILL) CLAY, silty, trace sand, trace gravel, orange iron-oxide staining, stiff to very stiff,		0.38	1	ss	13	Gr 19%/Sa 70%/ Si & Cl 11%	0		Well Protector Set in Concrete
		orange iron-oxide staining, stiff to very stiff, grey, moist: (TILL)									
- 1	lers				2	ss	17		0		Protector Set in Concrete
	m Aug			204.07							
- -	Hollow Stem Augers	SILT , clayey, trace sand, orange iron-oxide staining, very stiff, brown, moist		1.52	3	ss	18	Grain Size Analysis: Gr 0%/ Sa 2%/ Si 85%/ Cl 13%			
-2	오				5	55	10				
		SAND, trace silt, compact to very dense,		202.98	4	ss	29		φ		
-3.	_	brown, moist to wet									
				•	5	ss	57		0		
-4											
				• • •							
											⊻ ∰ ∰
	CME-75				6	SS	29		0		
5	C										
				•							
-6											
	cer				7	ss	28		0		
	HW Casing Advancer			•							
7	asing			•							
	MH N										
-8					8	SS	67/ 0.250		0		
9					9	SS	50/				
					F		50/ 0.00				
L		GROUNDWATER ELE	VA	195.59 TIONS	L		<u> </u>				
		abla water level upon co	OMPL	ETION		<u> </u>		ATER LEVEL IN WELL/PIEZO		1	
							М	ay 3, 2019	CHECKED : KF		THURBER

				ECC	R	D	JF BOREHOLE	19-10		
		-		io					Projec	t No. 13659
UDCINC M: Keels Store, Vaughan, Ontario SHETE 201 SHETE 2013 SHETE 2013 STATE D: April 12, 2019 N 4625 262.0 E 20 360.0 SHETE 2014 DOTATE SHETE 300 Image: State Stat										
со	MPLE	TED : April 16, 2019				N 4	852 562.0 E 620 350.0			M Geodetic
CALE s)	ETHOD	SOIL PROFILE	5							PIEZOMETER
oTH S(metre	NG ME	DESCRIPTION	TA PL(ELEV.	MBER in	VPE VS/0.3	DYNAMIC CONE PENETRATION RESISTANCE PLOT	WATER CONTENT, PERC		
с —	BORII		STRA	DEPTH (m)		BLOV	20 40 60 80 100	wp		
\neg		SAND, some gravel to gravelly, trace to		10.00		_				
		some silt, very dense, grey, wet								Bentonite Grout
			0	_			-			
11			о 2	-	10 S	SS 50	5			
1			.0							
			0							
2										
			.o . 2		11 5	S 50	- -			
			0.							
3			0							
			0							
			. o .							
			4		12 8	S 50	- a	C		
4			0			0.02				
			0							
	ing 5		0							
5	W Cas CME-7		.0							
	ź		n 2	-	13 5	S 50	-	ο		
						0.12				
,			.0							
			0							
			A							
7		ULAT, SIITY, TRACE SAND, NARD, GREY, MOIST		10.83						
8										
				_						
					14 5	SS 50	Grain Size Analysis: Gr 0%/ Sa 3%/ Si 60%/ Cl 37%			
				F			1			
9										
		GROUNDWATER ELE		ONS						
						▼ \	VATER LEVEL IN WELL/PIE	ZOMETER LOGGED :	BRM	
									KF	THURBE

				F	REC	O	RC) (OF BOREHOLE	19-10		
		JEC	0								Project	No. 13659
		ATIC RTEI		Onta	ario						SHEET	3 OF 3
			TED : April 16, 2019				I	N 4	852 562.0 E 620 350.0			Geodetic
щ		Q	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	ں _ا	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1 1 1	rem V • ● Cpen ▲ 40 80 120 160 ↓ ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ ↓ wp ↓ ↓ ↓ ↓ 10 20 30 40 ↓ ↓ ↓ ↓ ↓	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 21 - 21 - 22 - 23 - 23 - 24 - 25 - 27 - 26 - 27 - 27 - 28 - 29 - 28 - 29 - 28 - 29 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 29	NG Corina	CME-75	CLAY, silty, trace sand, hard, grey, moist END OF BOREHOLE AT 24.38m. Monitoring well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.04m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) May 03/19 4.54 201.05		181.21 24.38	15	SS	80				Bentonite Pellets
ER2S			$\overline{\Sigma}$ water level upon co						ATER LEVEL IN WELL/PIEZ	OMETER		
THURBE			WATER LEVEL UPON CC	JNIPL	ETION				/ATER LEVEL IN WELL/PIEZ ay 3, 2019	OMETER LOGGED : BR CHECKED : KF		THURBER

					REC	0	RC) (OF BOREHOLE 1	9-11		40050
	ROJ DCA		0		Ontario						Project	No. 13659
	tar Omf						1	N 4	852 876.0 E 620 512.0		SHEET DATUM	1 OF 3 Geodetic
ш	Ę	OD	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	. (7)	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ₩ wl 10 20 30 40 ↓ ↓ ↓	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-			GROUND SURFACE ASPHALT: (175mm)		199.80 0.00							N N
			SAND, trace clay, trace gravel, dense to compact, brown, moist to wet: (FILL)		0.18		ss	33		0		Flushmount Well Protector Set in Concrete
- 1 - 1	n Augers					2	ss	16		0		
-2	Hollow Stem Augers		CLAY, silty, trace sand, trace gravel, trace organics, firm to very stiff, grey, moist to wet: (FILL)		198.07 1.73		ss	5	Grain Size Analysis: Gr 4%/ Sa 79%/ Si & Cl 17%	0		-
						4	ss	12		0		
- 3	-					5	ss	16		ο		Bentonite
-4			SAND, some silt, trace gravel, loose, grey, wet; with occasional decayed wood and shell fragments, organics (ALLUVIAL)		195.68 4.11							
- 5 -				111111		6	ss	5		0		
-6			SAND, some gravel, trace silt, loose to compact, grey wet		194.20 5.60	-						Filter Cand
	NW Casing					7	ss	8		0		Filter Sand
- 7 - - - - 8	MN		becoming silt and sand, trace gravel			8	SS	16	Grain Size Analysis: Gr 1%/ Sa 37%/ Si 56%/ Cl 6%	0		Slotted Screen
1 8/29/19 0					100.05					0		
EL-13659.GP.			CLAY, silty, trace sand, trace gravel, very stiff to hard, grey, wet to moist: (TILL)		9.45	9	SS	11		0		
THURBER2S TEL-13659.GPJ 8/29/19			GROUNDWATER ELE				<u> </u>		/ATER LEVEL IN WELL/PIEZC lay 3, 2019	DMETER LOGGED : BRI CHECKED : KF	М	THURBER

			RE	ECC)F	RD	OF BOREHOLE 19-11			
	ROJEC	0							Project N	lo. 13659
	CATIC		an, Onta	ario					SHEET	2 OF 3
		TED : April 17, 2019				Ν	\$852 876.0 E 620 512.0			Geodetic
щ	дор	SOIL PROFILE			SAN	MPLE	COMMENTS SHEAR ST nat V	RENGTH: Cu, KPa	ں _	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	TA DE	.ev. Pth	NUMBER	түре	DYNAMIC CONE PENETRATION RESISTANCE PLOT WATER CO WP I	● Cpen ▲ 0 120 160 □ □ □ DNTENT, PERCENT ─ ─ ─ ─ ─ ₩	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	ß		I) STF	m)	2	1		0 30 40		
THURBERZS TEL-13659.GPJ 8/29/19	NW Casing	SAND, some silt, trace clay, trace gravel, very dense, grey, wet		85.02 	111 112 112	SS 2 SS 2 SS 2 0.				Bentonite
RBER2		$\overline{{ar ar {}}}$ water level upon CC	MPLET	ION		Ţ		LOGGED : BRM		
- OHL							May 3, 2019	CHECKED : KF		THURBER

			F	REC	O	RD) (F BOREHOLE '	19-11			
	ROJEC	•								Pro	ject N	lo. 13659
	OCATIC TARTE		an, C	Intario						SH	EET 3	3 OF 3
		TED : April 17, 2019				١	۷4	352 876.0 E 620 512.0		DA		Geodetic
щ	ДŎР	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu nat V - • C rem V - • Cpe	i, KPa X an ▲	- <u>-</u> 2	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120	160 RCENT 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-		CLAY, silty, trace to some gravel, trace to some sand, hard, grey, moist to wet: (TILL)										
- 21 -					15	SS			0			
-22		END OF BOREHOLE AT 21.74m. Monitoring well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.04m slotted screen.		178.06 21.74			0.250					
- 23 -		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) May 03/19 3.64 196.16										
-24 -												
- 25												
-26 -												
- 27 -												
- -28 -												
THURBER2S TEL-13659.GPJ 8/29/19												
					Ļ							
THURBER2S		GROUNDWATER ELE				_		ATER LEVEL IN WELL/PIEZ(ay 3, 2019	DMETER LOGGED : CHECKED :			THURBER

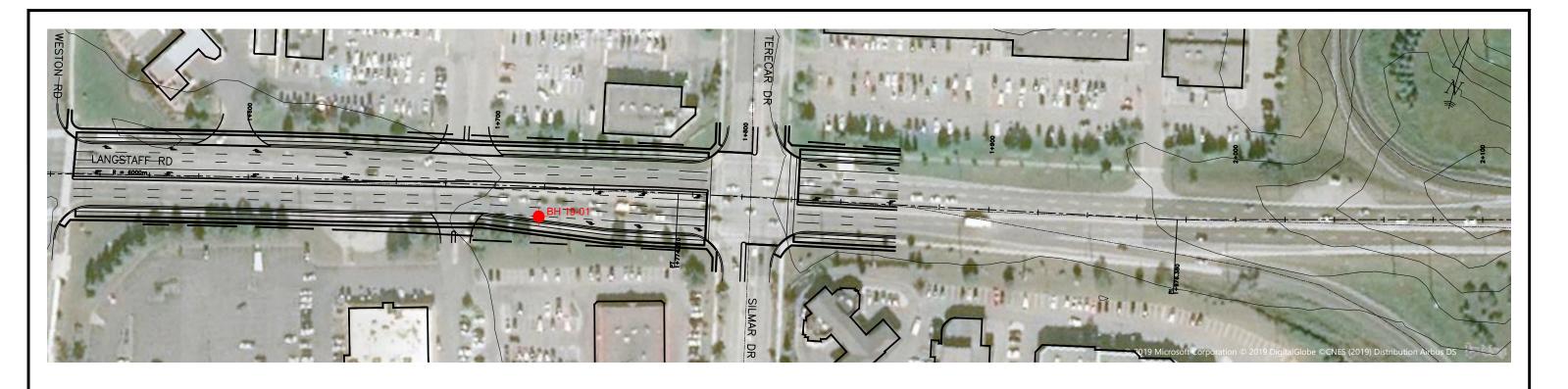
LO		Ū	ΞA												
			an. C	Ontario									Project	No. 13659	
	ARTE	ED : April 22, 2019	, .										SHEET		
CC	MPL	ETED : April 23, 2019						853 032.0 E 620 993.0			DENCTU		DATUM	Geodetic	
JLE ■	DOH-	SOIL PROFILE			SA	MPL		COMMENTS	лан г	em V -		: Cu, KPa Q - X Cpen ▲	RGA	PIEZOME	TED
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 	TER CC	0 120 NTENT, I	0 160 PERCENT	ADDITIONAL LAB. TESTING	OR STANDP INSTALLA	IPE
_		GROUND SURFACE	0	203.65											
-		SAND and GRAVEL, trace silt and clay, compact, brown, moist to wet: (FILL)		0.00	1	ss	17		0					Flushmount Well Protector Set in Concrete	
- - 1 -	vugers	CLAY, silty, trace sand, trace gravel, trace organics, firm, grey, wet: (FILL)		202.76 0.89		ss	4			0	0				
-2	Hollow Stem Augers	CLAY, silty, trace to some sand, trace gravel, very stiff, brownish grey, moist to wet: (TILL)		201.97 1.68	3	ss	20			0	0				
					4	ss	20	Grain Size Analysis: Gr 0%/ Sa 11%/ Si 52%/ Cl 37%		0				¥	
- 3	-				5	ss	22			0				- <u>-</u> Bentonite	
-4 -		becoming firm.		199.53 4.11											
- 5 -					6	ss	7			0					
-6		SAND, trace to some silt, trace clay, compact to very dense, grey, wet		198.01 5.64										Filter Sand	
- - -	HW Casing Advancer				7	SS	22			0					
- 7	HW Casi													Slotted	
-8					8	SS	78			0				Screen	
- 9		with occasional layers of silt													
- 9 - - -					9	ss	84				0				
		GROUNDWATER ELE									I	I	•		
		$\overline{\mathcal{Y}}$ water level upon co	OMPL	ETION		Ţ		/ATER LEVEL IN WELL/PIEZC ay 3, 2019	METER		LOGGED CHECKEI			ТН	JRBER

			R	ECO	DR	2D	0	F BOREHOLE 1	9-12			
	ROJE	0									Project N	lo. 13659
	ocati Farte	• •	ian, Ont	ario							SHEET 2	2 OF 3
		ETED : April 23, 2019				Ν	48	53 032.0 E 620 993.0				Geodetic
ш	8	SOIL PROFILE			SAN	IPLE	S	COMMENTS	SHEAR S nat V -	TRENGTH: Cu, KPa	. (7)	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	D	ELEV. EPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 WATER C wp	Creen ▲ 120 160 10 1 0NTENT, PERCENT 0 0 0 0 0 0 1 0 0 0 1 0	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 11 - 11 - 12 - 12	Casing Advance	with occasional layers of silty clay			10 ::	SS 6			0			
- - - 13 -					11	SS 9 0.2	250	Grain Size Analysis:	0			
-14 - - - 15		with occasional layers of silt			12 :	SS 9 0.2	97/	Gr 0%/ Sa 6%/ Si 84%/ Cl 10%	0			
- 16 - 16 		CLAY, silty, trace sand, trace gravel, hard, grey, wet: (TILL)		188.08 15.57	13 \$	SS 5	59		0			
THURBER2S TEL-13659.GPJ 8/29/19 61		grading to clayey silt and sand		183.65	14 :	SS 4	47	Grain Size Analysis: Gr 2%/ Sa 49%/ Si 34%/ Cl 15%	0			Bentonite
THURBER2S TE		GROUNDWATER ELE	EVATIO	ONS				ATER LEVEL IN WELL/PIEZC y 3, 2019	. ' DMETER	LOGGED : BRI CHECKED : KF	Л	THURBER

			R	ECC)F	RD	C	F BOREHOLE 19	9-12		
		v		Itaric						Project N	lo. 13659
)CATIO FARTE		an, UN	nano						SHEET 3	OF 3
C					_	53 032.0 E 620 993.0		DATUM	Geodetic		
γre	DOH.	SOIL PROFILE			SAN	MPLE	-	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	NGAL	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION		ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 WATER CONTENT, PERCENT wp - O ^W - I wl 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-		CLAY, silty, trace sand, trace gravel, hard, grey, wet: (TILL)		19.99 183.05 20.60							
- 21 - 22 - 22 - 23	Casing Advance	SAND, some clay, some silt, trace gravel, very dense, grey, wet			15	SS 1 0:	00/		0		
-24			о 0	179.27_ 24.38	16	SS	17		Φ		
-26 -26 -			0 0 0								
-		END OF BOREHOLE AT 27.71m UPON	0	175.94 27.71	17	ss	70/ .275		ρ		
-28		PRACTICAL REFUSAL TO ADVANCE. Monitoring well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.04m slotted screen.									
THURBERZS TEL-13659.GPJ 8/29/19		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) May 03/19 2.90 200.75									
, TEL		GROUNDWATER ELE		IONS							
THURBER2S						Ţ		ATER LEVEL IN WELL/PIEZON y 3, 2019	METER LOGGED : BRI CHECKED : KF	М	THURBER

RECORD OF BOREHOLE 19-13												
	ROJE	0									Project N	lo. 13659
	DCATI Farte	6 6	nan, (Ontario							SHEET 1	OF 1
STARTED : April 22, 2019 COMPLETED : April 22, 2019							N 4	853 116.0 E 621 277.0		SHEET 1 OF 1 DATUM Geodetic		
ш	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGT⊢ nat V - ● rem V - ●	l: Cu, KPa Q - 🗶	. (7)	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● 40 80 12 I I I WATER CONTENT, wp I -> 10 20 30	0 160 PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE	ەن ا	205.10	\vdash		ш				+	
F		ASPHALT: (125mm) SAND, gravelly, trace silt and clay.		× 0.13				Grain Size Analysis: Gr 25%/Sa 61%/ Si & Cl 14%				
-		SAND, gravelly, trace silt and clay, compact to dense, brown, moist: (FILL)			1	SS	57	Gr 25%/Sa 61%/ Si & Cl 14%	0			
ŀ												
-1		CLAY, silty, trace sand and gravel, stiff to		204.16 0.94	1				0			
-		CLAY, silty, trace sand and gravel, stiff to very stiff, grey to dark grey, moist to wet: (TILL)			2	55	11		0			
ŀ	rders											
	Hollow Stem Augers				3	ss	18		0			
-2	ow St											
t	오											
-					4	ss	8		0			
•												
- 3												
-					5	ss	15		o			
ŀ		END OF BOREHOLE AT 3.66m.	- 12	201.44 3.66								
-4		END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE										
-												
Į.												
-												
- 5												
Į.												
ŀ												
-6												
-												
ŀ												
Į.												
- 7												
ł												
-												
-8												
-												
ŀ												
£-9												
8/29												
9.GPJ												
-1365												
		GROUNDWATER ELE	EVA	TIONS	ــــــ ک	I		I				
		$\overline{\mathcal{Y}}$ water level upon C				7	<u>v</u>	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED CHECKE			THURBER
- L	THURBER											

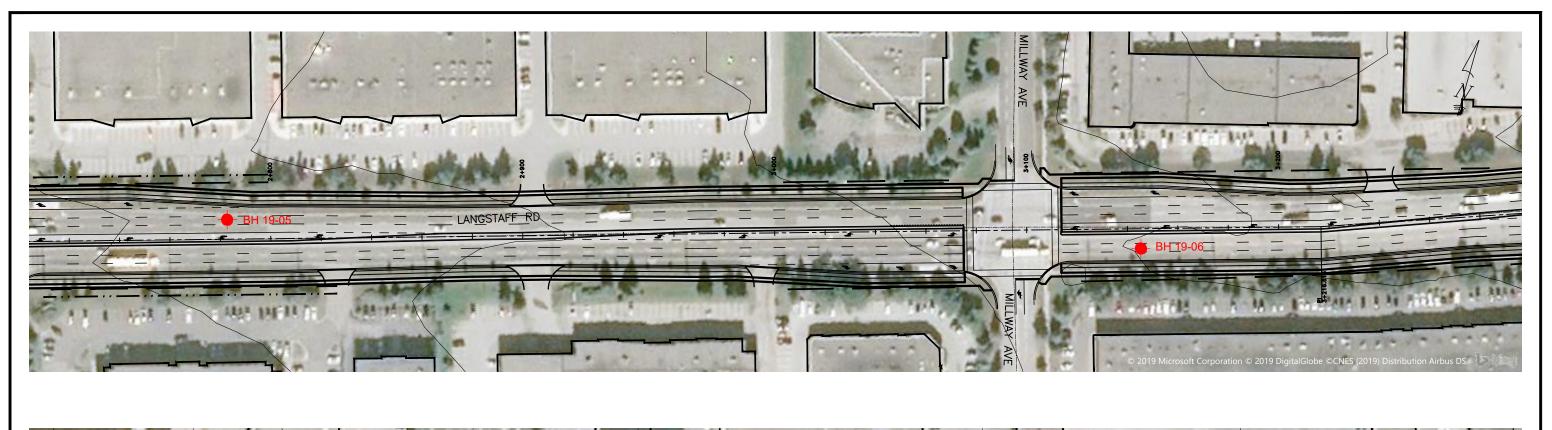
					REC	O	RC) (OF BOREHOLE 1	9-14		
		JEC	0								Project N	lo. 13659
		ATIC RTEI		an, C	Ontario						SHEET 1	OF 1
			TED : April 18, 2019				I	N 4	853 217.0 E 621 612.0			Geodetic
ш		QO	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	. 0	
DEPTH SCALE (metres)	~	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 ↓ ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ─ ─ ↓ wl 10 20 30 40 ↓ ↓	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-			GROUND SURFACE SAND, gravelly, trace silt and clay,		204.76 0.00							
			compact, brown, moist: (FILL)		204.00	1	ss	10	Grain Size Analysis: Gr 22%/Sa 65%/ Si & Cl 13%	0		
- - 1 -			CLAY, silty, some sand to sandy, trace gravel, stiff to very stiff, brown to brownish grey, moist: (TILL)		0.76		ss	10		0		
-2	Hollow Stem Auders	CME-75				3	ss	21		0		
	Hollon					4	ss	27	Grain Size Analysis: Gr 1%/ Sa 34%/ Si 37%/ Cl 28%	0		
- 3										0		
ł					201.10	5	SS	24		0		
-4			END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE		3.66							
- 5												
- -6												
- 7												
- - 8												
- 9												
.L-13659.GPJ												
			GROUNDWATER ELE					Ľν	/ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : BRI CHECKED : KF	I	
÷ L												THURBER


				REC	O	RC) (OF BOREHOLE 1	9-15		
	ROJE	5		D						Project N	No. 13659
)cati Farte	0 / 0	ian, C	Intario						SHEET	1 OF 1
		ETED : April 22, 2019				1	۷4	853 338.0 E 621 951.0			Geodetic
Щ	дон	SOIL PROFILE			SA	MPL	ES.	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	L IG	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ 0 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		204.86							
		SAND, gravelly, trace silt and clay, compact, brown, moist: (FILL)		0.00	1	ss	12		0		
- 1	ers	CLAY, silty to SILT, clayey, some sand to sandy, trace gravel, stiff to hard, grey, moist: (TILL)		203.97 0.89	1	ss	10		° 0		
- -2	Hollow Stem Augers	with pockets of sand			3	ss	23	Grain Size Analysis: Gr 0%/ Sa 44%/ Si 37%/ Cl 19%	0		
- 3					4	ss	38				
		END OF BOREHOLE AT 3.66m.		201.20		ss	21		0		
- -4 - - - - 5		BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE									
- 6											
- 7											
- 8 -											
THURBERZS TEL-13659.GPJ 8/29/19											
					Ĺ						
THURBERZS		GROUNDWATER ELE					<u>v</u>	/ATER LEVEL IN WELL/PIEZC	DMETER LOGGED : BRI CHECKED : KF	Λ	THURBER

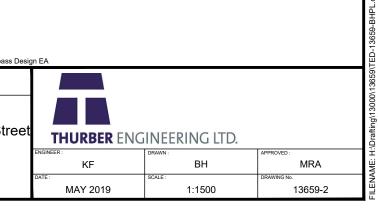
					REC	Ο	RĽ) (OF BOREHOLE 1	19-16		
		JEC	0								Project N	lo. 13659
			u	nan, C	Ontario							
			D : April 16, 2019 TED : April 16, 2019					N 4	853 438.0 E 622 277.0		SHEET '	Geodetic
	-									SHEAR STRENGTH: Cu. KPa	DATOM	Geodelic
ALE -		ГНОГ	SOIL PROFILE			SA	MPL	1	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	NG AL	PIEZOMETER
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	┢		GROUND SURFACE	0	206.06			-				
			ASPHALT: (150mm)		0.00							
-			SAND, trace gravel, dense, brown, moist: (FILL)		8	1		50/		0		
-			ASPHALT: (50mm)	/ 🗰	205.53 0.53			0.12		0		
ŀ			SAND , trace gravel silt and clay, compact, brown, moist: (FILL)		0.59				Grain Size Analysis: Gr 2%/ Sa 86%/ Si & Cl 12%	0		
- 1			CLAY, silty, some sand to sandy, trace		204.97		ss	20	GI 270/ Sa 6070/ SI & CI 1270			
1	۵ ۵		gravel, trace organics, orange oxide staining, firm to stiff, grey, wet (FILL)		1.09							
	nder	,	Staining, inn to stin, grey, wet (FiLL)		8		-	-				
-	Hollow Stem Augers	CME-75			8	3	ss	5		0		
-2	ow S!	CN			Š.							
-	토				Š.							
-					Š.	4	ss	9	Grain Size Analysis: Gr 0%/ Sa 34%/ Si 34%/ Cl 32%			
[8	4	33	9	GI 076/ 3a 3476/ 3I 3476/ CI 3276			
- 3					203.01							
ŀ			CLAY , silty, some sand, trace gravel, very stiff, brown, moist: (TILL)		3.05							
-						5	SS	21		0		
Ţ.	\vdash		END OF BOREHOLE AT 3.66m.	- 1678/	202.40 3.66							
4			BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE									-
·												
-												
- 5												
-												
-												
·												
-6												•
[
-												
- 7												
[
-8												
-												
-												
-												
<u>6</u> -9												
8/29/												
GPJ												
3659.1												
-13												
THURBER2S TEL-13659.GPJ 8/29/19			GROUNDWATER ELE									
BER2			abla water level upon CG	OMPI	LETION	I	7	Ľγ	VATER LEVEL IN WELL/PIEZO	OMETER LOGGED : BR	м	
HUR										CHECKED : KF		THURBER
- L												

Appendix C

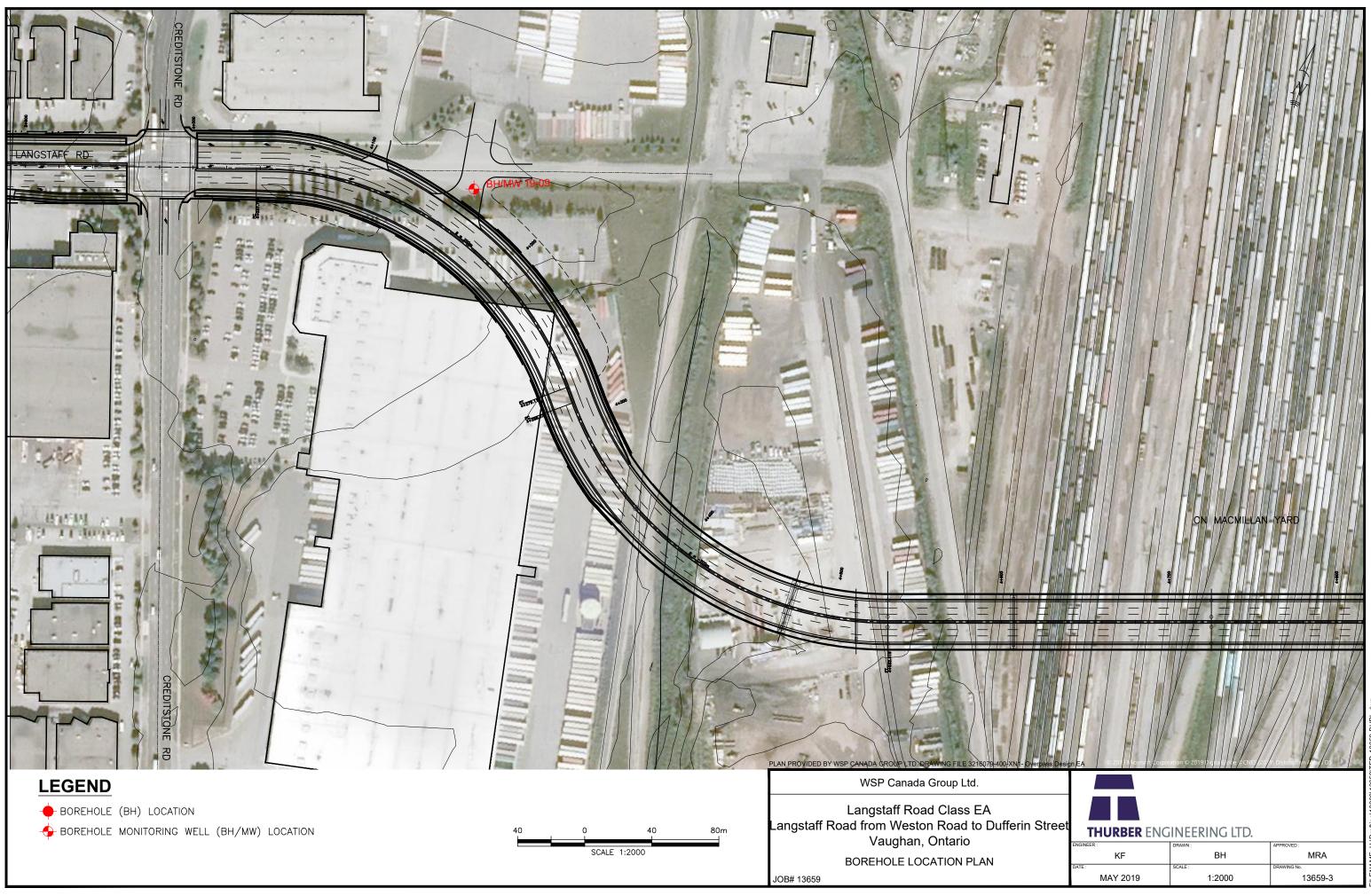
Borehole Location Plans

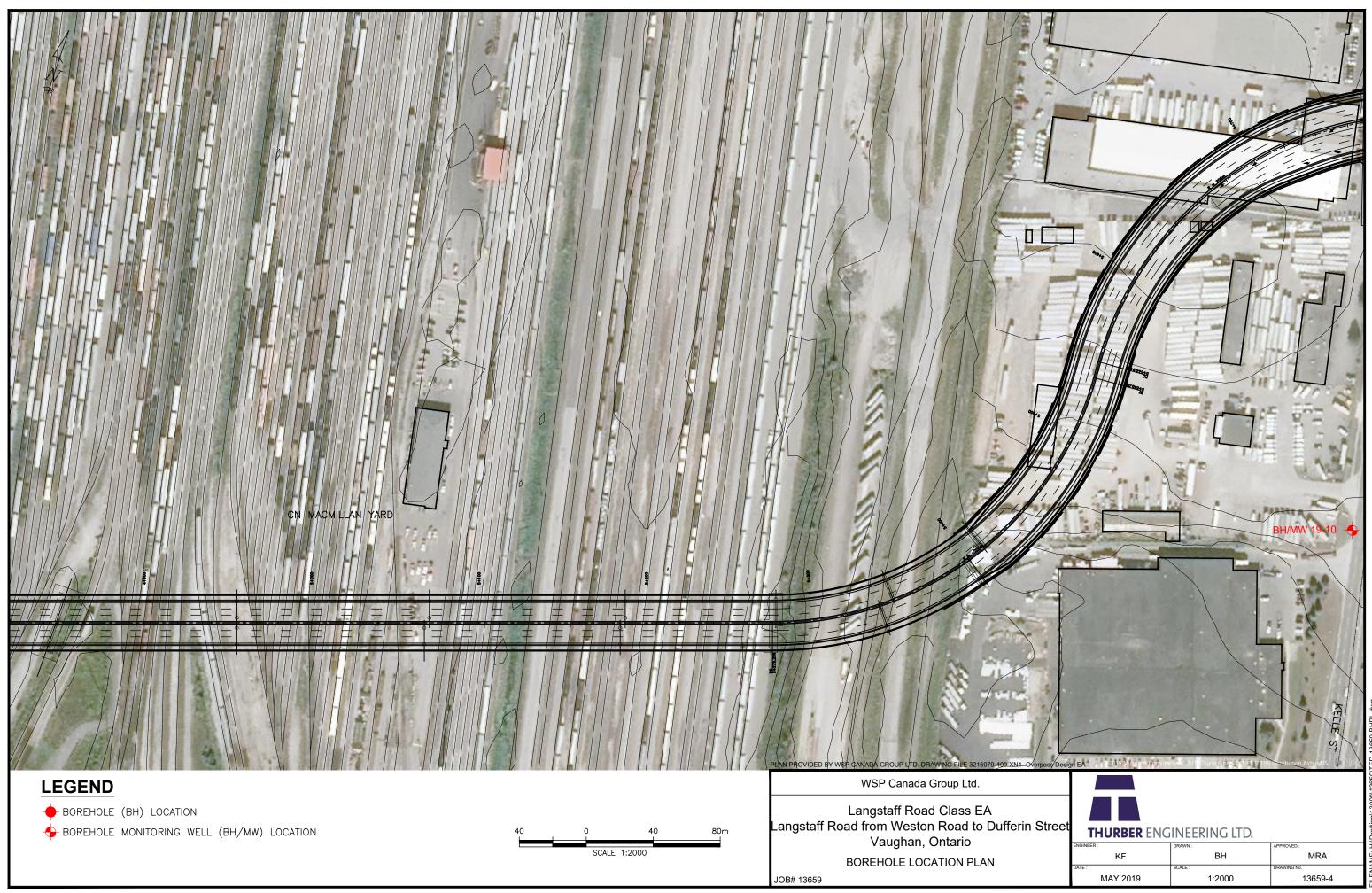


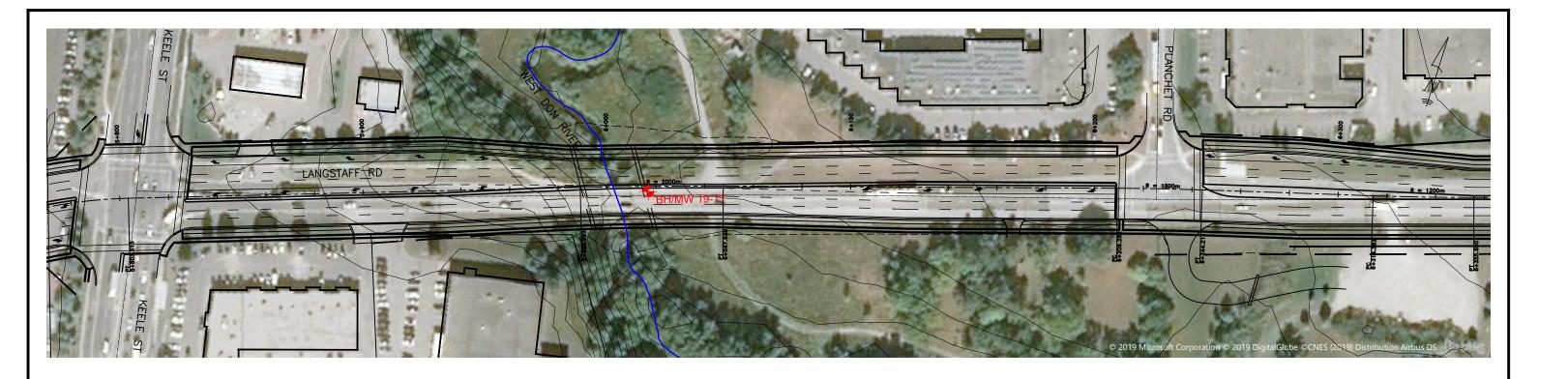
					PLAN PROVIDED BY WSP CANADA GROUP LTD. DRAWING FILE 3216079-400-XN1- Overpass
LEGEND					WSP Canada Group Ltd.
BOREHOLE (BH) LOCATION					Langstaff Road Class EA
Φ borehole monitoring well (bh/mw) location	30	0	30	60m	Langstaff Road from Weston Road to Dufferin Stre Vaughan, Ontario
		SCALE	1:1500		BOREHOLE LOCATION PLAN
					JOB# 13659

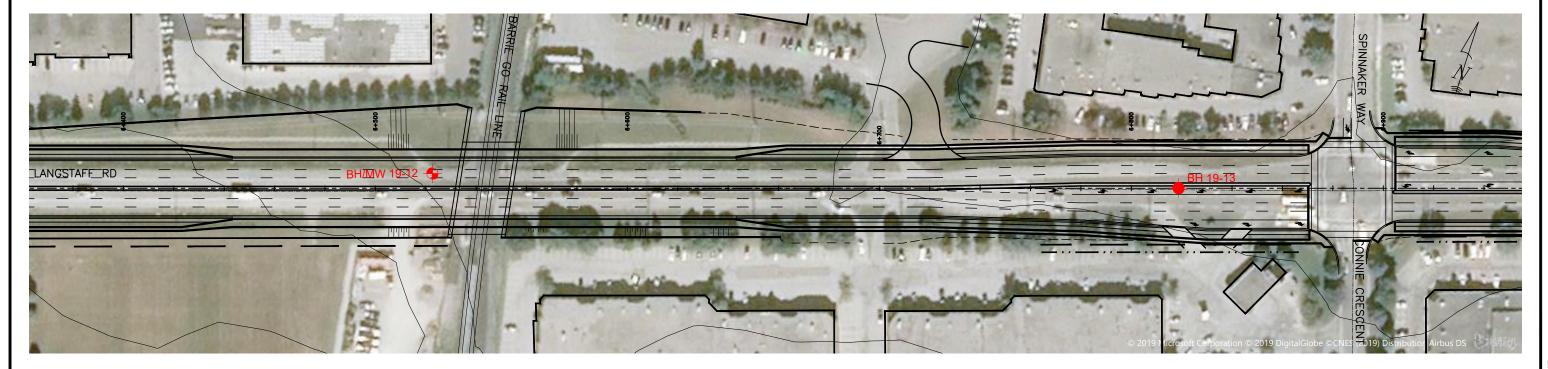


FILENAME: H:\Drafting\13000\13659\TED-13659-BHPL.dwg PLOTDATE: Jun 26, 2019 - 2:09 PM

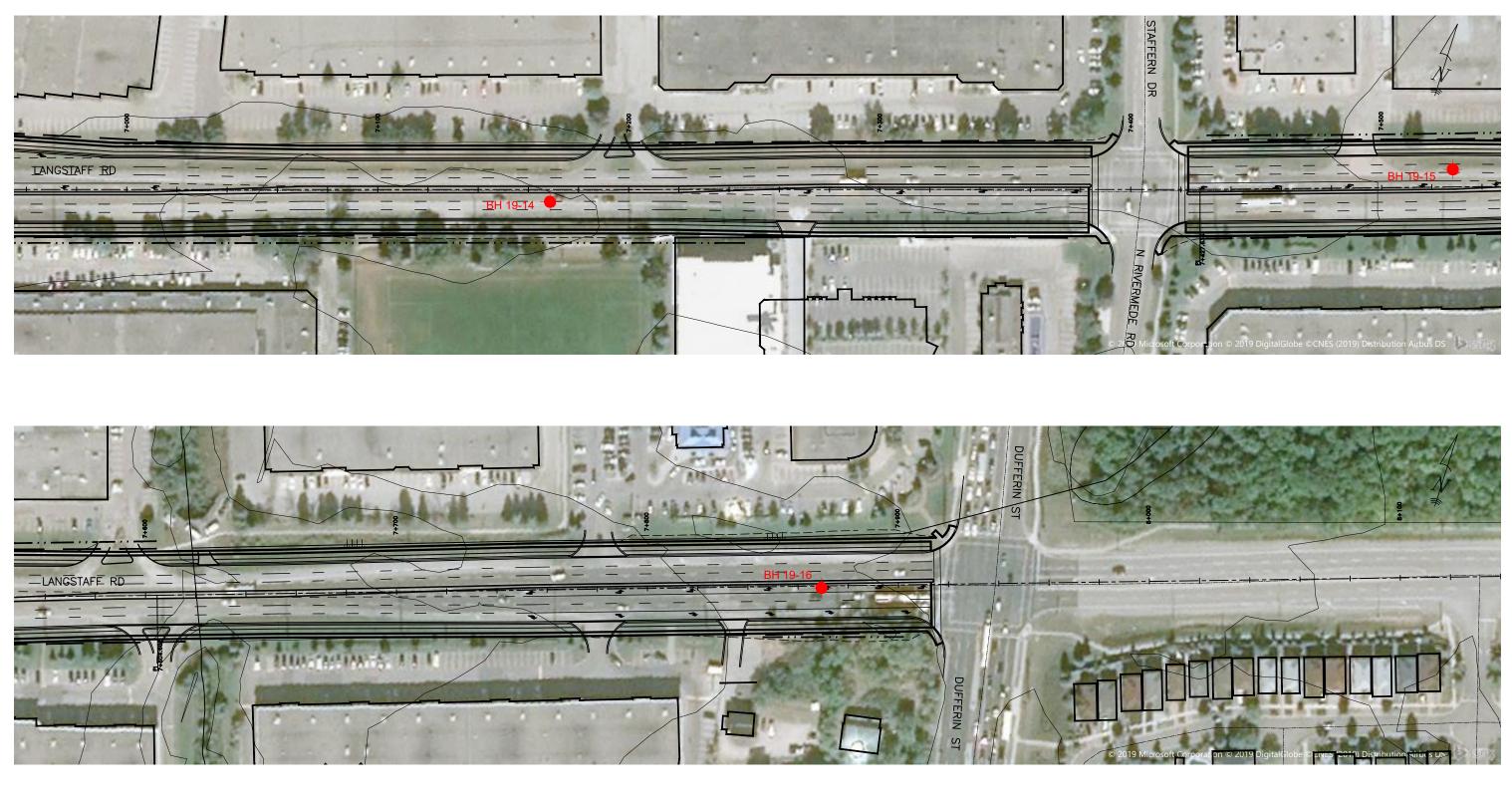


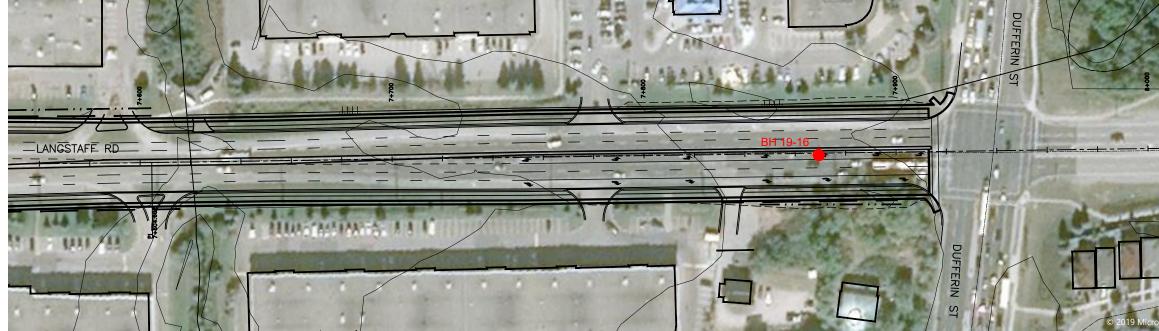

		PLAN PROVIDED BY WSP CANADA GROUP LTD. DRAWING FILE 3216079-400-XN1- Overpass Dr
LEGEND		WSP Canada Group Ltd.
 BOREHOLE (BH) LOCATION BOREHOLE MONITORING WELL (BH/MW) LOCATION 	30 0 30 60 SCALE 1:1500	Langstaff Road Class EA Langstaff Road from Weston Road to Dufferin Stree Vaughan, Ontario BOREHOLE LOCATION PLAN
		JOB# 13659

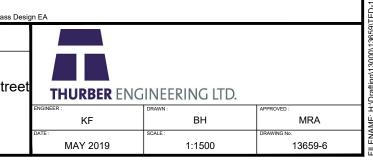

FILENAME: H.\Drafting\13000\13659\TED-13659-BHPL.dwg PLOTDATE: Jun 26, 2019 - 2:09 PM



FILENAME: H:\Drafting\13000\13659\TED-13659-BHPI PLOTDATE: Jun 26, 2019 - 2:09 PM

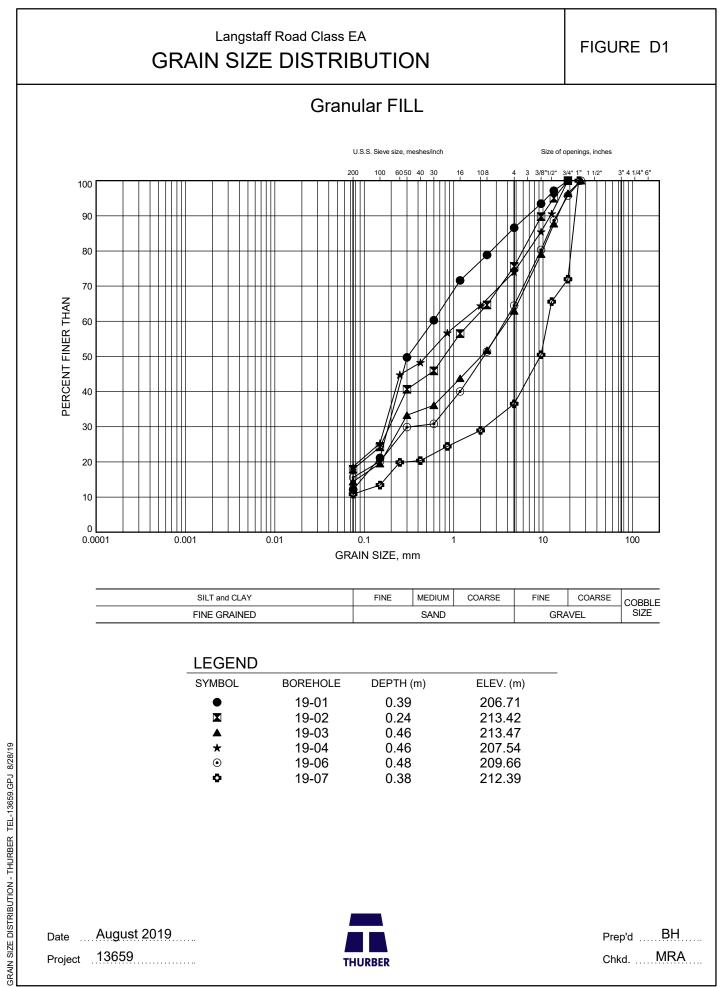

FILENAME: H:\Drafting\13000\13659\TED-13659-BHPL.c PLOTDATE: Jun 26, 2019 - 2:09 PM



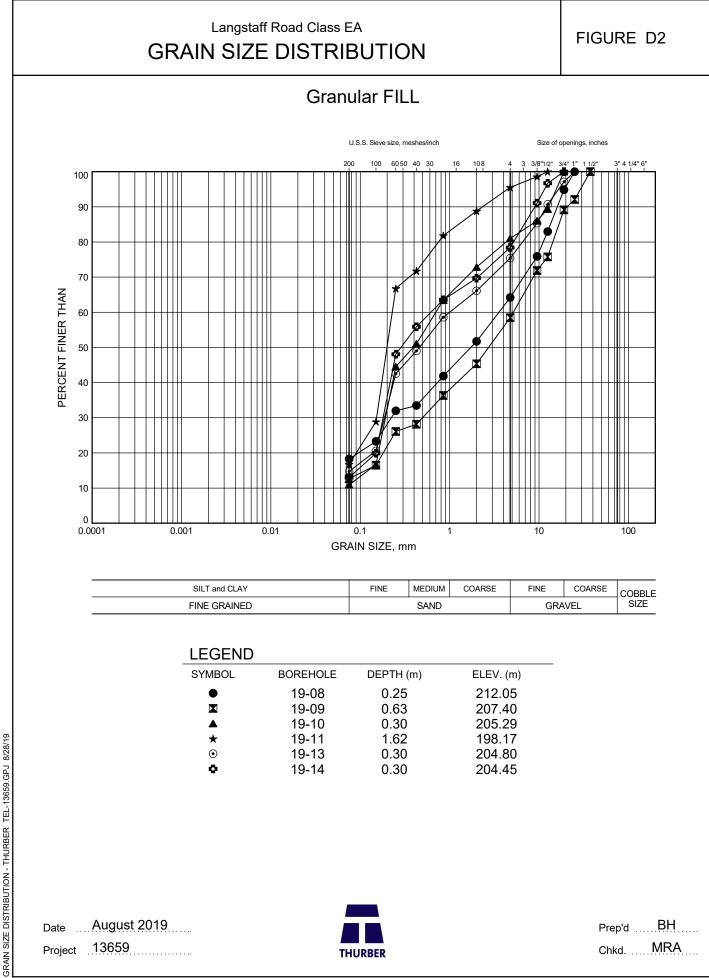

				PLAN PROVIDED BY WSP CANADA GROUP LTD. DRAWING FILE 3216079-400-XN1- Overpass Des	ign EA		
LEGEND				WSP Canada Group Ltd.			
BOREHOLE (BH) LOCATION BOREHOLE MONITORING WELL (BH/MW) LOCATION	30	0 30	60m	Langstaff Road Class EA Langstaff Road from Weston Road to Dufferin Stree	THURBER EN	GINEERING LTD.	
		SCALE 1:1500		Vaughan, Ontario BOREHOLE LOCATION PLAN	ENGINEER : KF DATE :	BH SCALE :	APPROVED : MRA DRAWING No.
				JOB# 13659	MAY 2019	1:1500	13659-5

dwb

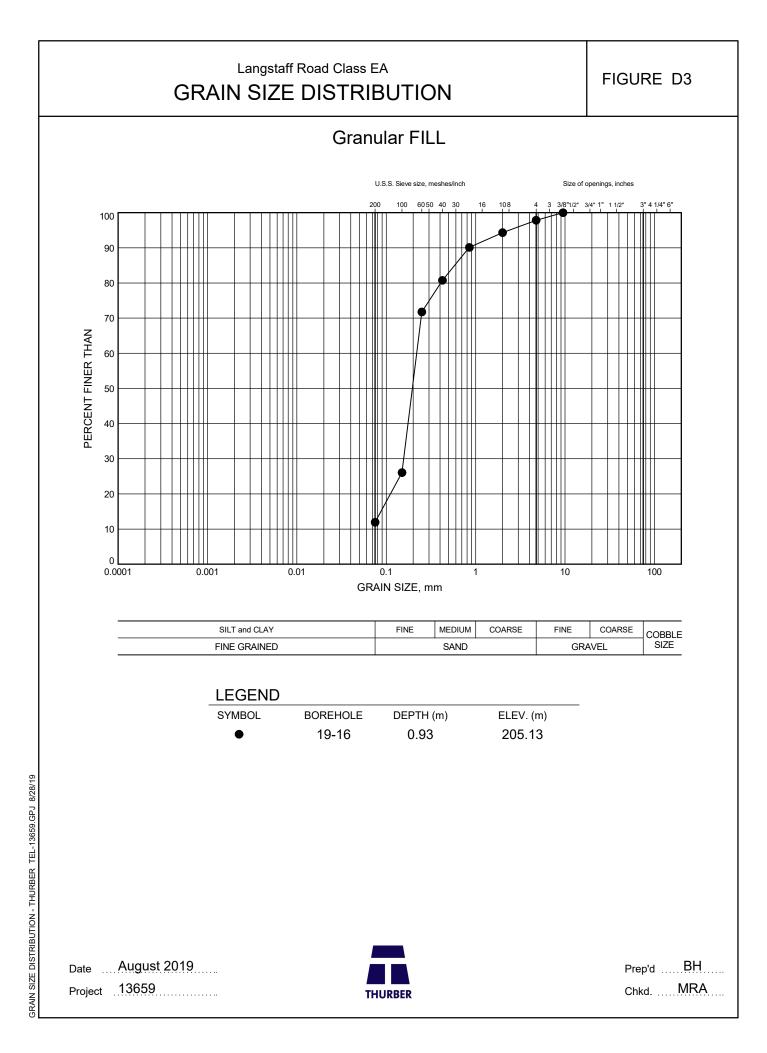
		PLAN	N PROVIDED BY WSP CANADA GROUP LTD. DRAWING FILE 3216079-400-XN1- Overpass
LEGEND			WSP Canada Group Ltd.
BOREHOLE (BH) LOCATION BOREHOLE MONITORING WELL (BH/MW) LOCATION	30 0 30 SCALE 1:1500		Langstaff Road Class EA ngstaff Road from Weston Road to Dufferin Str Vaughan, Ontario BOREHOLE LOCATION PLAN
		JO	B# 13659

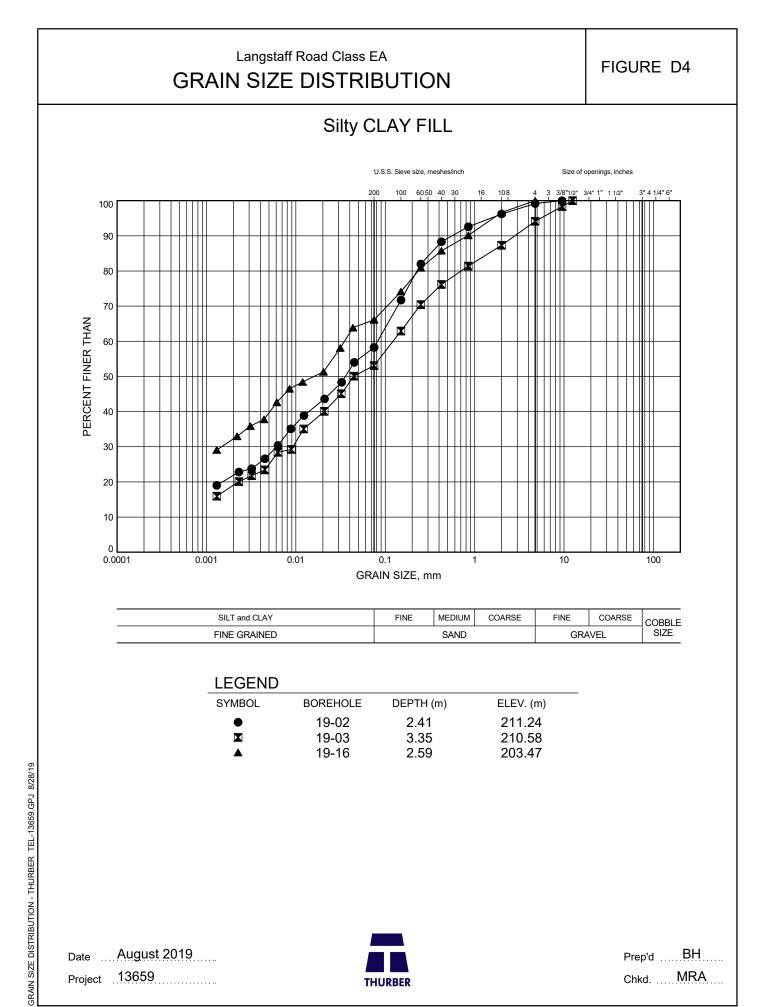


FILENAME: H:\Drafting\13000\13659\ PLOTDATE: Jun 26, 2019 - 2:09 PM

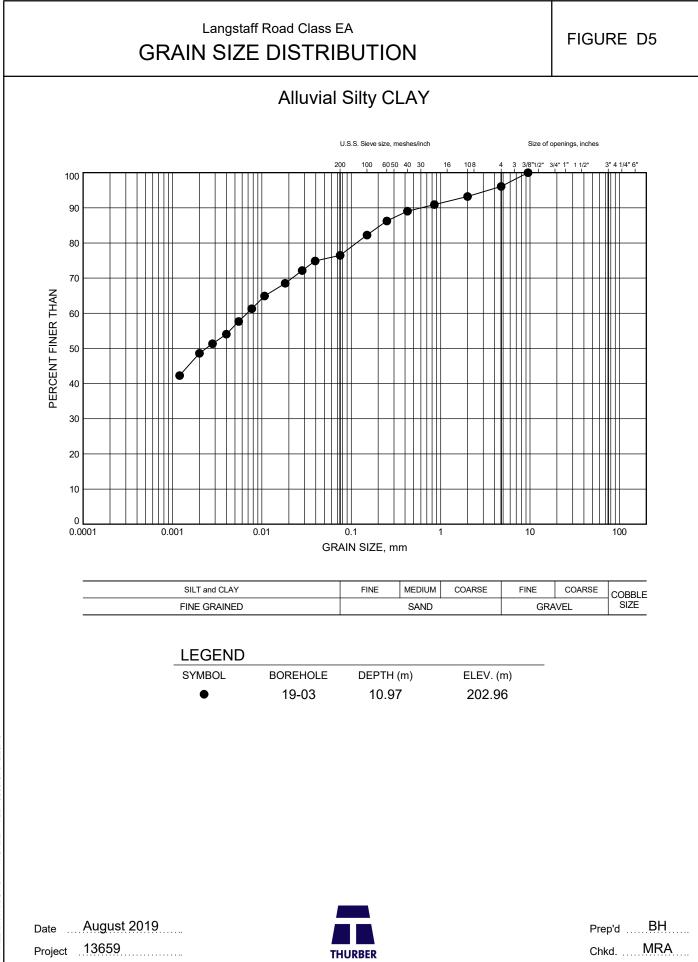

Appendix D

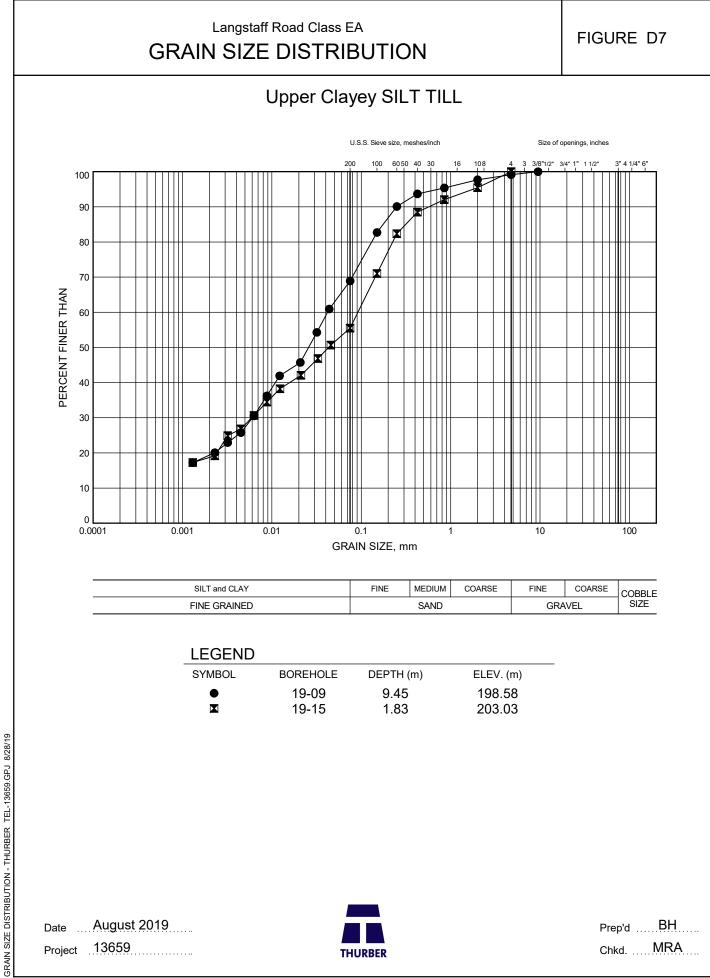
Geotechnical Laboratory Soil Test Results

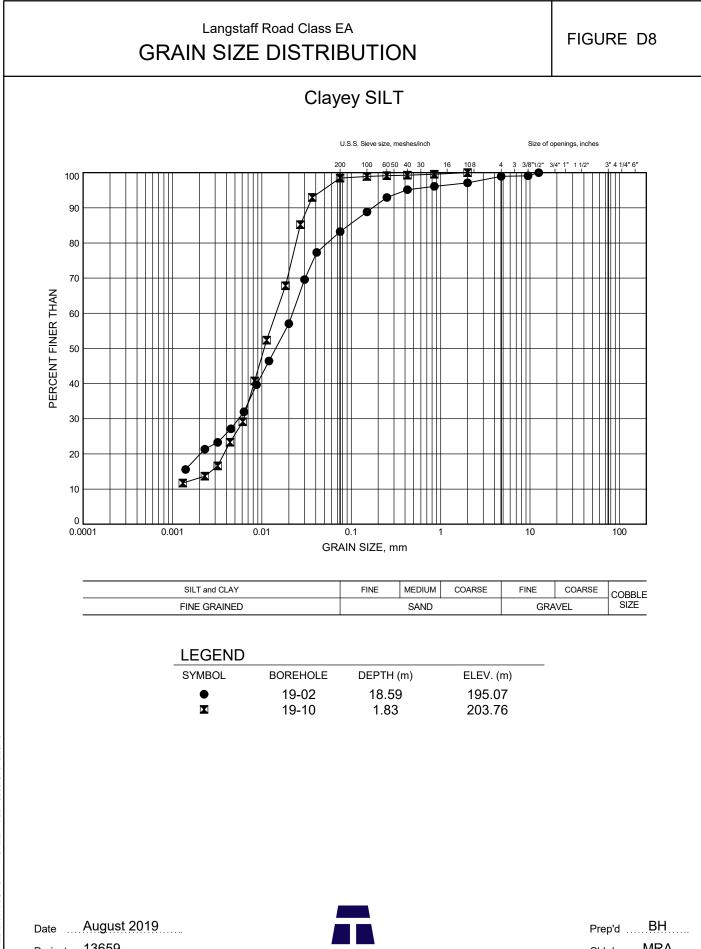



Date August 2019 Project 13659 THURBER

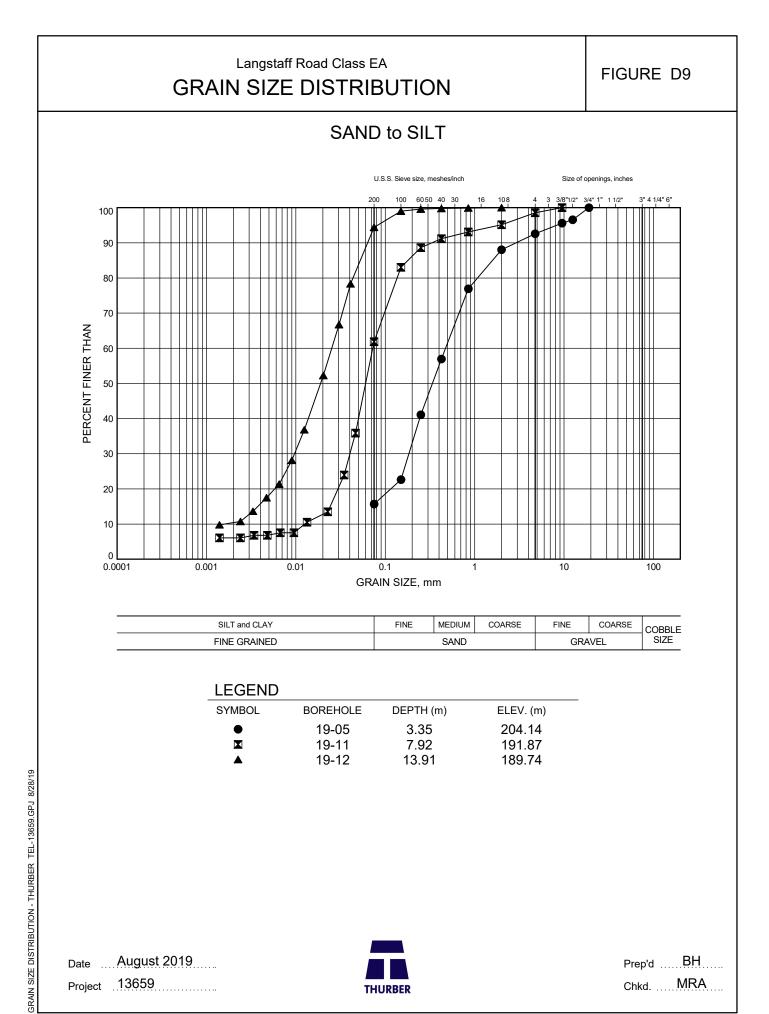
Prep'd BH Chkd. MRA

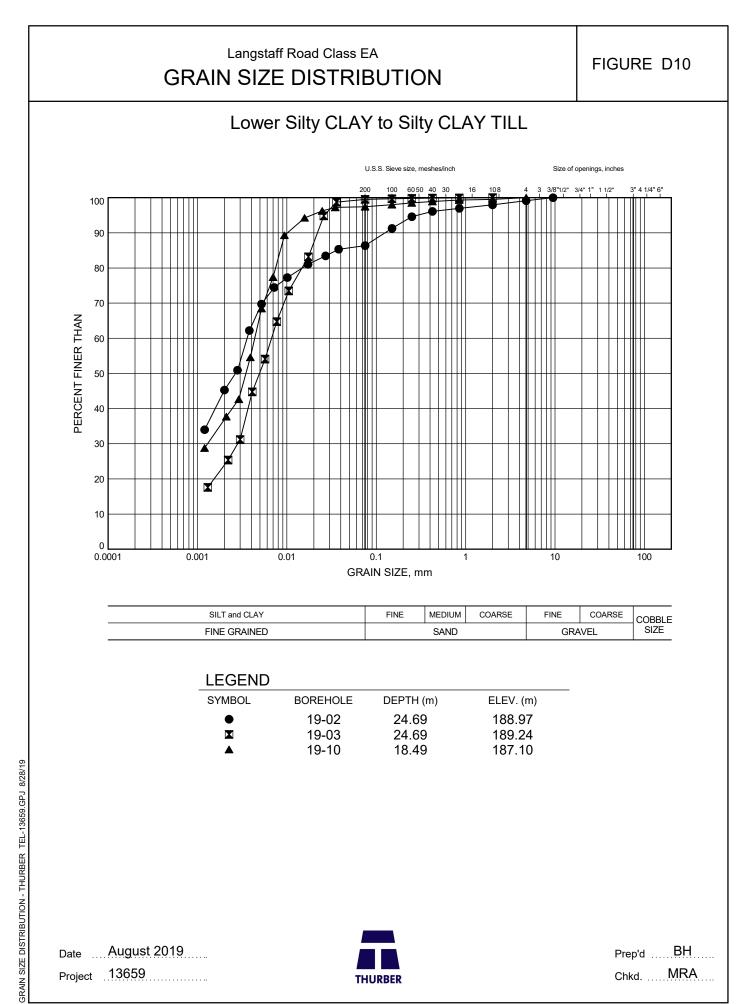




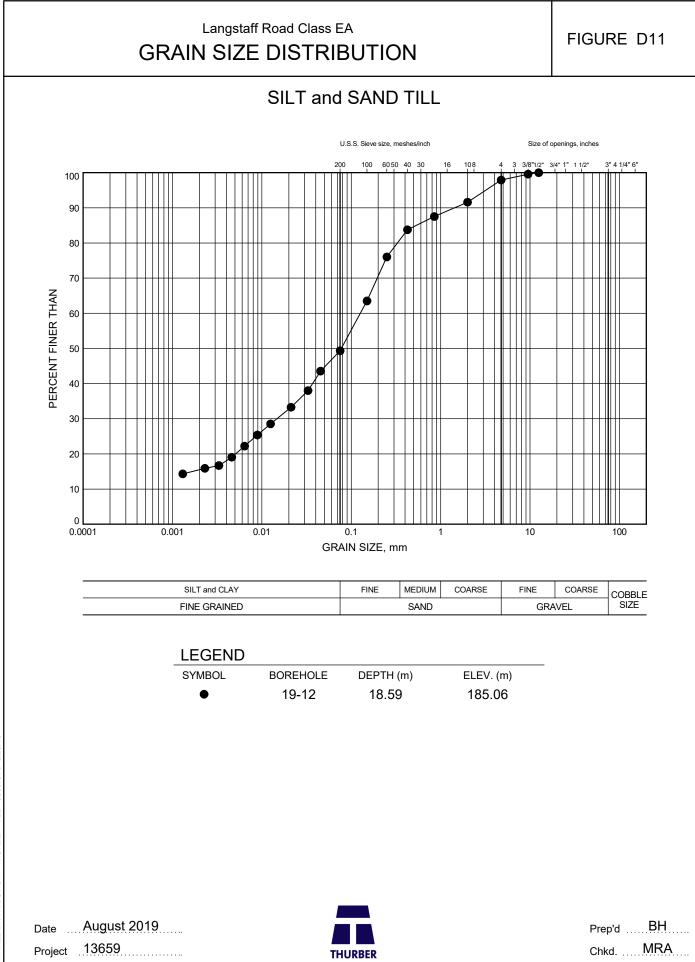


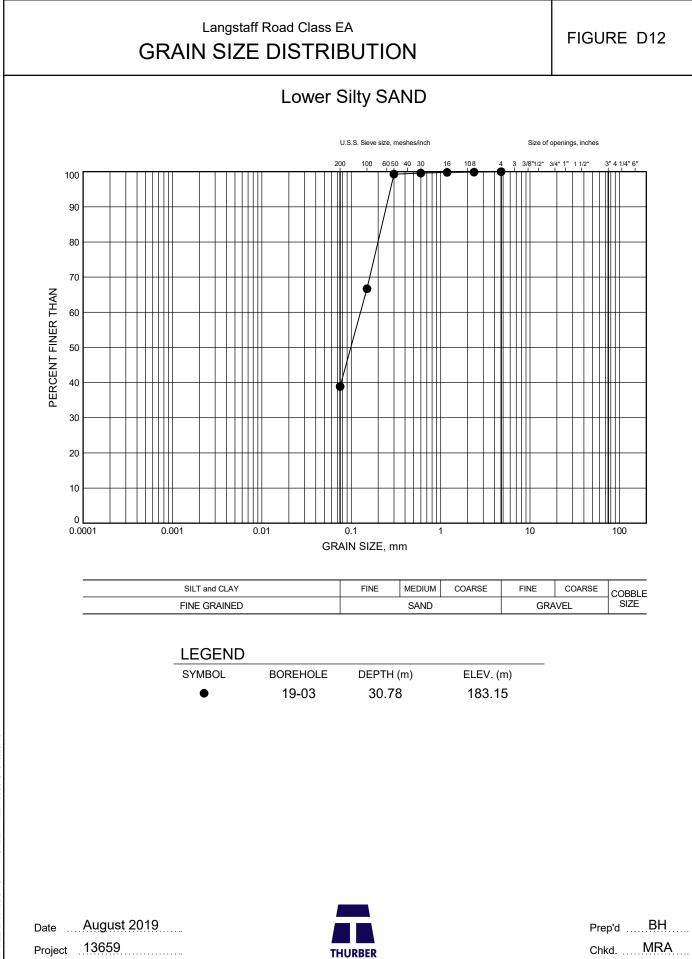
Project 13659

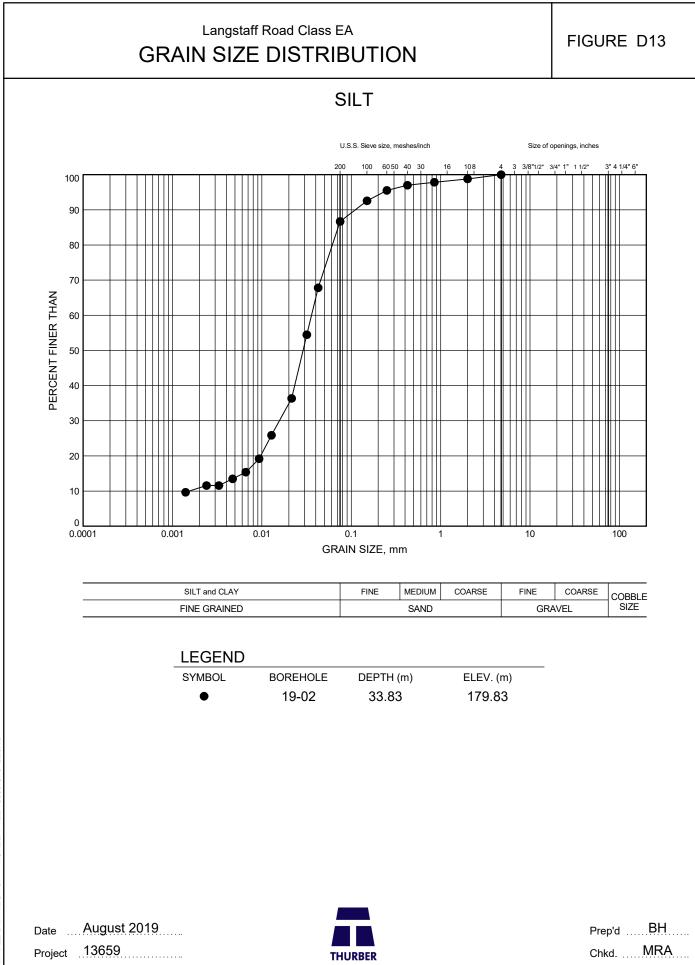


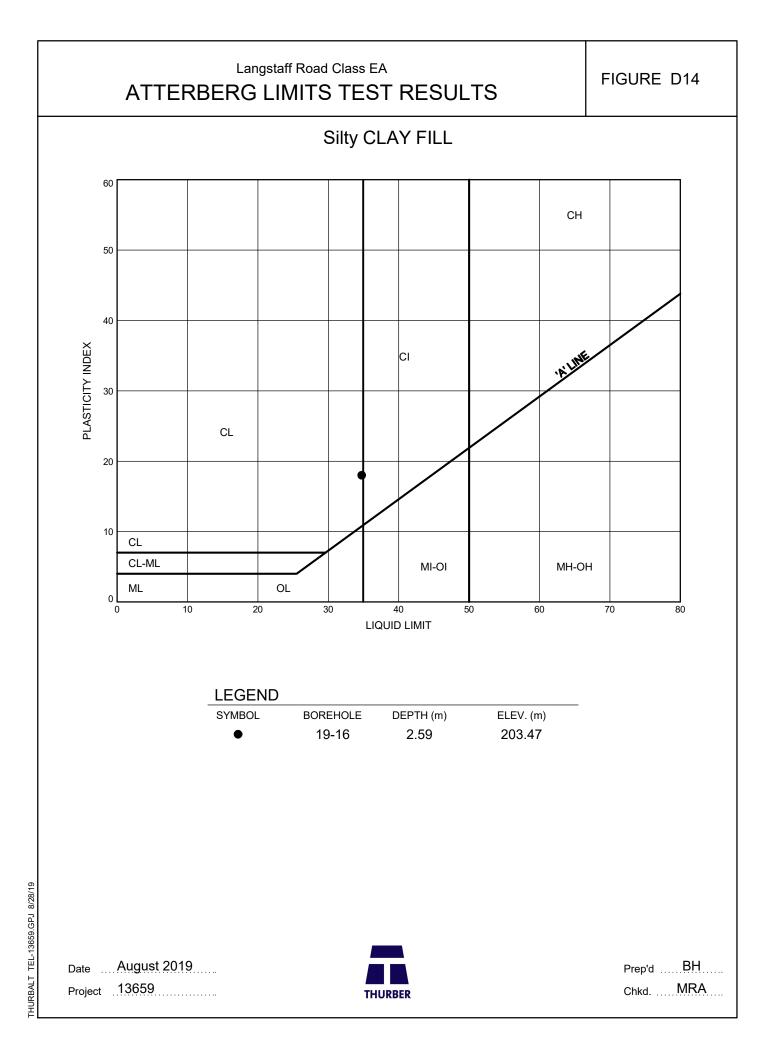

Project 13659

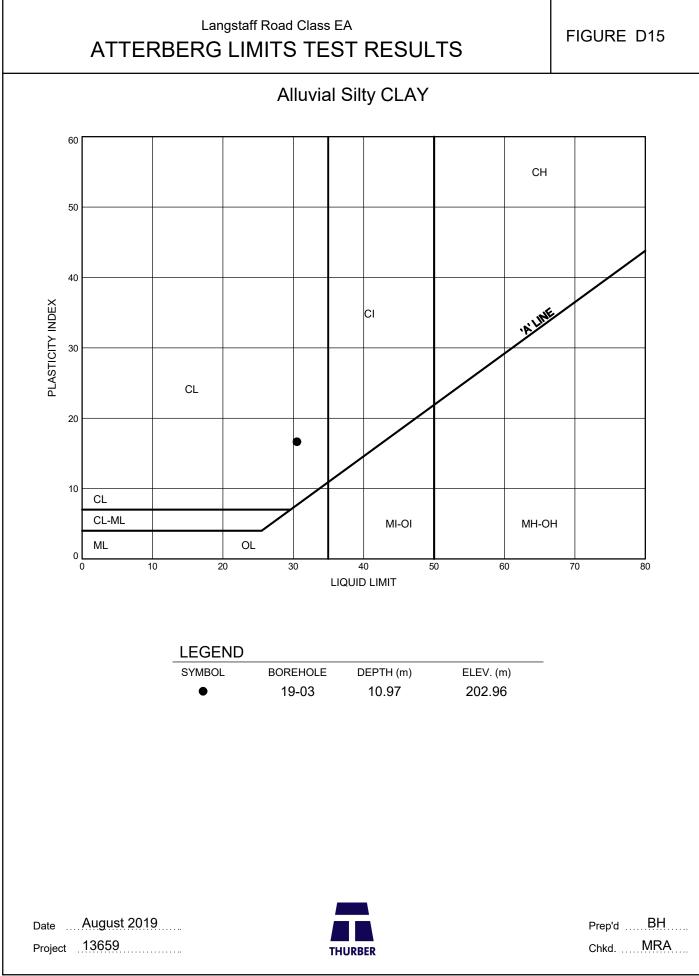
THURBER

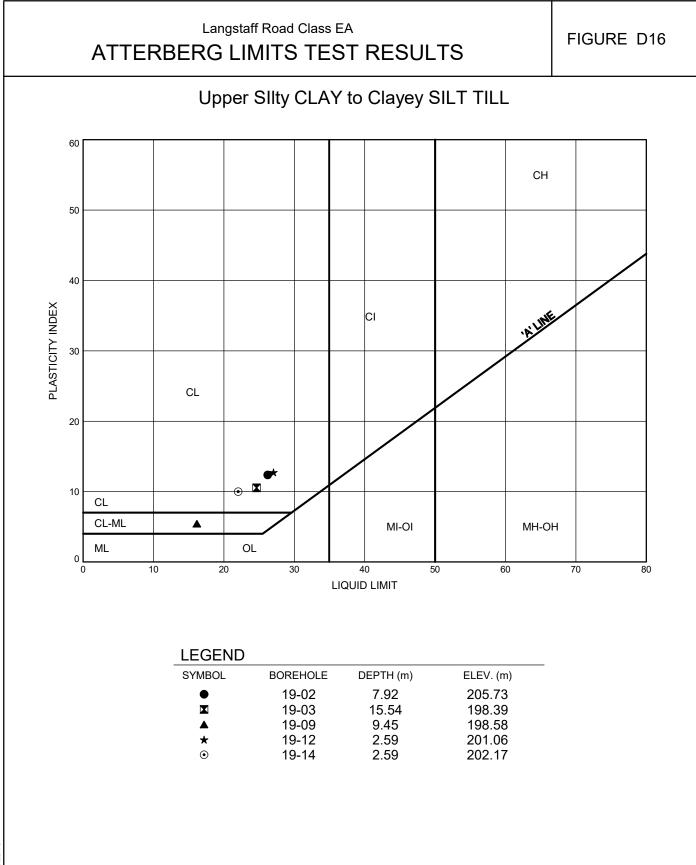

Chkd. MRA

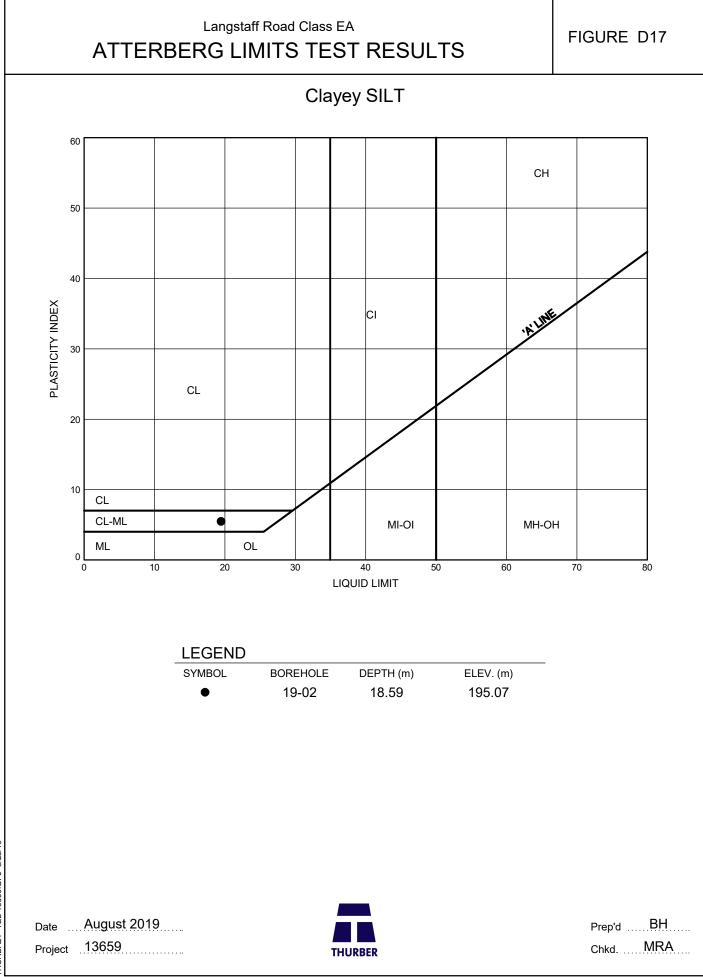


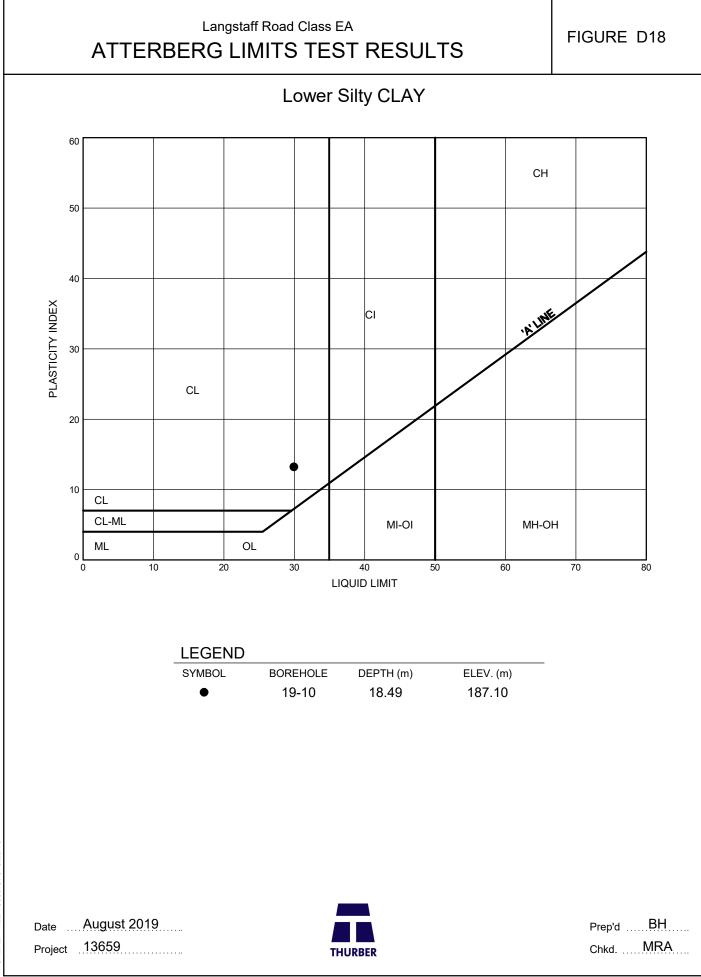












Date August 2019 Project 13659

Prep'd BH Chkd. MRA

Appendix E

Laboratory Certificates of Analysis – Soil Management

CA14541-APR19 R

13659 Langstaff Road

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2000
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	
Email	kfurbacher@thurber.ca	SGS Reference	CA14541-APR19
Project	13659 Langstaff Road	Received	04/15/2019
Order Number		Approved	04/23/2019
Samples	Soil (2)	Report Number	CA14541-APR19 R
		Date Reported	04/23/2019

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 7 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	
Exceedance Summary	9
QC Summary	10-17
Legend	
Annexes	19

CA14541-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

				Por	nnia Number	10	11
PACKAGE: REC	6153 - BTEX (SOIL)				nple Number		
					ample Name	BH19-03 SS8	BH19-02 SS7
L1 = REG153 / SOIL / CO	ARSE - TABLE 1 - Residential/Parkland/In	dustrial - UNDEFI	NED		ample Matrix	Soil	Soil
L2 = REG153 / SOIL / CO	ARSE - TABLE 3 - Industrial/Commercial -	UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter		Units	RL	L1	L2	Result	Result
BTEX							
Benzene		µg/g	0.02	0.02	0.32	< 0.02	< 0.02
Ethylbenzene		µg/g	0.05	0.05	9.5	< 0.05	< 0.05
Toluene		µg/g	0.05	0.2	68	< 0.05	< 0.05
Xylene (total)		µg/g	0.05	0.05	26	< 0.05	< 0.05
m/p-xylene		µg/g	0.05			< 0.05	< 0.05
o-xylene		µg/g	0.05			< 0.05	< 0.05
				Sar	nple Number	10	11
PACKAGE: REC	6153 - Hydrides (SOIL)						
					ample Name	BH19-03 SS8	BH19-02 SS7
L1 = REG153 / SOIL / CO	ARSE - TABLE 1 - Residential/Parkland/In	dustrial - UNDEFI	NED		ample Matrix	Soil	Soil
L2 = REG153 / SOIL / CO	ARSE - TABLE 3 - Industrial/Commercial -	UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter		Units	RL	L1	L2	Result	Result
Hydrides							
Antimony		µg/g	0.8	1.3	40	< 0.8	< 0.8
Arsenic		µg/g	0.5	18	18	2.7	3.3
Selenium		µg/g	0.7	1.5	5.5	< 0.7	< 0.7

CA14541-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG153 - Metals and Inorg	ianics (SOIL)		Sar	nple Number	10	11
			s	ample Name	BH19-03 SS8	BH19-02 SS7
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Park	land/Industrial - UNDEFIN	NED	s	ample Matrix	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comm	ercial - UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics						
Moisture Content	%	-			14.4	12.5
Barium	µg/g	0.1	220	670	66	56
Beryllium	µg/g	0.02	2.5	8	0.34	0.40
Boron	µg/g	1	36	120	2	7
Cadmium	hð/ð	0.02	1.2	1.9	0.11	0.10
Chromium	hð/ð	0.5	70	160	13	18
Cobalt	µg/g	0.01	21	80	5.6	8.8
Copper	µg/g	0.1	92	230	16	30
Lead	hð/ð	0.1	120	120	17	12
Molybdenum	µg/g	0.1	2	40	0.2	0.4
Nickel	hð\ð	0.5	82	270	13	19
Silver	hð\ð	0.05	0.5	40	< 0.05	< 0.05
Thallium	hð\ð	0.02	1	3.3	0.10	0.17
Uranium	hð\ð	0.002	2.5	33	0.42	0.52
Vanadium	hð\ð	3	86	86	21	23
Zinc	hð\ð	0.7	290	340	49	80
Water Soluble Boron	hð\ð	0.5		2	< 0.5	< 0.5

CA14541-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

			0.0	mula Numban	10	4.4
PACKAGE: REG153 - Other (ORP)	') (SOIL)		Sa	mple Number	10	11
			s	ample Name	BH19-03 SS8	BH19-02 SS7
1 = REG153 / SOIL / COARSE - TABLE 1 - Residenti	tial/Parkland/Industrial - UNDEFIN	NED	s	ample Matrix	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial	I/Commercial - UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
Other (ORP)						
Mercury	hā/ā	0.05	0.27	3.9	0.05	< 0.05
Sodium Adsorption Ratio		0.2	2.4	12	5.2	2.4
SAR Calcium	mg/L	0.09			20.1	21.4
SAR Magnesium	mg/L	0.02			2.9	2.2
SAR Sodium	mg/L	0.15			84.3	44.1
Conductivity	mS/cm	0.002	0.57	1.4	0.60	0.34
рН	pH Units	0.05			7.76	7.98
Chromium VI	hð\ð	0.2	0.66	8	0.3	0.2
Free Cyanide	μg/g	0.05	0.051	0.051	< 0.05	< 0.05

CA14541-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

PACKAGE: REG153 - PHCs (SOIL)			Sa	mple Number	10	11
TANAGE. NECTOD - THOS (OUIE)				Sample Name	BH19-03 SS8	BH19-02 SS7
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland	l/Industrial - UNDEFI	NED		Sample Matrix	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commercia				Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
PHCs						
F1 (C6-C10)	µg/g	10	25	55	< 10	< 10
F1-BTEX (C6-C10)	µg/g	10			< 10	< 10
F2 (C10-C16)	µg/g	10	10	230	< 10	< 10
F3 (C16-C34)	µg/g	50	240	1700	< 50	114
F4 (C34-C50)	µg/g	50	120	3300	< 50	276
F4G-sg (GHH)	µg/g	200	120	3300		927
Chromatogram returned to baseline at nC50	Yes / No	-			YES	NO
PACKAGE: REG153 - THMs (VOC) (SOIL)		Sa	mple Number	10	11
	-)		s	ample Name	BH19-03 SS8	BH19-02 SS7
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland	/Industrial - UNDEFI	NED	s	ample Matrix	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commercia	al - UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
THMs (VOC)						
Bromodichloromethane	µg/g	0.05	0.05	18	< 0.05	< 0.05
Bromoform	µg/g	0.05	0.05	0.61	< 0.05	< 0.05
Dibromochloromethane	µg/g	0.05	0.05	13	< 0.05	< 0.05

CA14541-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

			-		10	
PACKAGE: REG153 - VOC Surrogates ((SOIL)			mple Number	10	11
				Sample Name	BH19-03 SS8	BH19-02 SS7
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkla	and/Industrial - UNDEFINI	ED	s	Sample Matrix	Soil	Soil
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commer	rcial - UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
/OC Surrogates						
Surr 1,2-Dichloroethane-d4	Surr Rec %	-			106	106
Surr 4-Bromofluorobenzene	Surr Rec %	-			96	93
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-			92	93
ACKAGE: REG153 - VOCs (SOIL)			Sa	mple Number	10	11
			s	Sample Name	BH19-03 SS8	BH19-02 SS7
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkla	and/Industrial - UNDEFINI	ED	s	Sample Matrix	Soil	Soil
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commer	rcial - UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
/OCs						
Acetone	hð\ð	0.5	0.5	16	< 0.5	< 0.5
Bromomethane	hð\ð	0.05	0.05	0.05	< 0.05	< 0.05
Carbon tetrachloride	hð\ð	0.05	0.05	0.21	< 0.05	< 0.05
Chlorobenzene	μg/g	0.05	0.05	2.4	< 0.05	< 0.05
Chloroform	μg/g	0.05	0.05	0.47	< 0.05	< 0.05
1.2-Dichlorobenzene	μg/g	0.05	0.05	6.8	< 0.05	< 0.05
1.3-Dichlorobenzene		0.05	0.05	9.6	< 0.05	< 0.05
1,3-Dichlorobenzene	µg/g		0.05		< 0.05	< 0.05
,	µg/g	0.05		0.2	< 0.05	< 0.05
Dichlorodifluoromethane	µg/g	0.05	0.05	16		
1,1-Dichloroethane	µg/g	0.05	0.05	17	< 0.05	< 0.05
1,2-Dichloroethane	µg/g	0.05	0.05	0.05	< 0.05	< 0.05
1,1-Dichloroethylene	µg/g	0.05	0.05	0.064	< 0.05	< 0.05
			0.05		< 0.05	< 0.05

CA14541-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

PACKAGE: REG153 - VOCs (SOIL)			Sar	nple Number	10	11
			s	ample Name	BH19-03 SS8	BH19-02 SS7
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkl	land/Industrial - UNDEFIN	IED	s	ample Matrix	Soil	Soil
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comme	ercial - UNDEFINED			Sample Date	02/04/2019	05/04/2019
Parameter	Units	RL	L1	L2	Result	Result
VOCs (continued)						
cis-1,2-Dichloroethylene	µg/g	0.05	0.05	55	< 0.05	< 0.05
1,2-Dichloropropane	µg/g	0.05	0.05	0.16	< 0.05	< 0.05
cis-1,3-dichloropropene	µg/g	0.03			< 0.03	< 0.03
trans-1,3-dichloropropene	µg/g	0.03			< 0.03	< 0.03
1,3-dichloropropene (total)	µg/g	0.05	0.05	0.18	< 0.05	< 0.05
Ethylenedibromide	µg/g	0.05	0.05	0.05	< 0.05	< 0.05
n-Hexane	µg/g	0.05	0.05	46	< 0.05	< 0.05
Methyl ethyl ketone	µg/g	0.5	0.5	70	< 0.5	< 0.5
Methyl isobutyl ketone	µg/g	0.5	0.5	31	< 0.5	< 0.5
Methyl-t-butyl Ether	µg/g	0.05	0.05	11	< 0.05	< 0.05
Methylene Chloride	µg/g	0.05	0.05	1.6	< 0.05	< 0.05
Styrene	µg/g	0.05	0.05	34	< 0.05	< 0.05
Tetrachloroethylene	µg/g	0.05	0.05	4.5	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	µg/g	0.05	0.05	0.087	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	µg/g	0.05	0.05	0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	µg/g	0.05	0.05	6.1	< 0.05	< 0.05
1,1,2-Trichloroethane	hð\ð	0.05	0.05	0.05	< 0.05	< 0.05
Trichloroethylene	hð\ð	0.05	0.05	0.91	< 0.05	< 0.05
Trichlorofluoromethane	hð\ð	0.05	0.25	4	< 0.05	< 0.05
Vinyl Chloride	hð/ð	0.02	0.02	0.032	< 0.02	< 0.02

EXCEEDANCE SUMMARY

				REG153 / SOIL /	REG153 / SOIL /
				COARSE - TABLE	COARSE - TABLE
				1 -	3 -
				Residential/Parklan	Industrial/Commer
				d/Industrial -	cial - UNDEFINED
				UNDEFINED	
Parameter	Method	Units	Result	L1	L2
H19-03 SS8 Conductivity	EPA 6010/SM 2510	hð\ð	0.60	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	µg/g	5.2	2.4	
·		100		_	
H19-02 SS7					
F4 (C34 to C50)	CCME Tier 1	hð\ð	276	120	
Gravimetric Heavy Hydrocarbons	CCME Tier 1	µg/g	927	120	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / R		əf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0329-APR19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Free Cyanide	SKA5044-APR19	µg/g	0.05	<0.05	ND	20	97	80	120	97	75	125

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC	Spike (%) Recovery		Spike Recovery		ery Limits %)	
						(%)	(%)	Low	High	(%)	Low	High
Chromium VI	DIO0308-APR19	hð/ð	0.2	<0.2	ND	20	97	80	120	96	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank	S/Spike Blank		Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0102-APR19	hð\ð	0.05	<0.05	ND	20	90	80	120	104	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch			Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recover (%	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0059-APR19	mg/L	0.09	<0.09	2	20	107	80	120	112	70	130
SAR Magnesium	ESG0059-APR19	mg/L	0.02	<0.02	ND	20	106	80	120	114	70	130
SAR Sodium	ESG0059-APR19	mg/L	0.15	<0.15	6	20	103	80	120	107	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	ıtrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%		Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0102-APR19	ug/g	0.05	<0.05	ND	20	94	70	130	103	70	130
Arsenic	EMS0102-APR19	µg/g	0.5	<0.5	4	20	94	70	130	102	70	130
Barium	EMS0102-APR19	ug/g	0.1	<0.1	2	20	101	70	130	108	70	130
Beryllium	EMS0102-APR19	µg/g	0.02	<0.02	4	20	100	70	130	99	70	130
Boron	EMS0102-APR19	µg/g	1	<1	9	20	106	70	130	98	70	130
Cadmium	EMS0102-APR19	µg/g	0.02	<0.02	ND	20	97	70	130	108	70	130
Cobalt	EMS0102-APR19	µg/g	0.01	<0.01	0	20	104	70	130	118	70	130
Chromium	EMS0102-APR19	µg/g	0.5	<0.5	1	20	105	70	130	117	70	130
Copper	EMS0102-APR19	µg/g	0.1	<0.1	11	20	104	70	130	111	70	130
Molybdenum	EMS0102-APR19	µg/g	0.1	<0.1	0	20	107	70	130	103	70	130
Nickel	EMS0102-APR19	ug/g	0.5	<0.5	3	20	106	70	130	117	70	130
Lead	EMS0102-APR19	ug/g	0.1	<0.1	1	20	97	70	130	106	70	130
Antimony	EMS0102-APR19	µg/g	0.8	<0.8	ND	20	104	70	130	111	70	130
Selenium	EMS0102-APR19	µg/g	0.7	<0.7	ND	20	99	70	130	103	70	130
Thallium	EMS0102-APR19	µg/g	0.02	<0.02	ND	20	96	70	130	105	70	130
Uranium	EMS0102-APR19	µg/g	0.002	<0.002	5	20	93	70	130	107	70	130
Vanadium	EMS0102-APR19	µg/g	3	<3	2	20	105	70	130	114	70	130
Zinc	EMS0102-APR19	µg/g	0.7	<0.7	7	20	100	70	130	109	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		F.
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0266-APR19	hð\ð	10	<10	ND	30	103	80	120	107	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	uplicate I		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0303-APR19	hð\ð	10	<10	ND	30	112	80	120	110	60	140
F3 (C16-C34)	GCM0303-APR19	µg/g	50	<50	ND	30	112	80	120	110	60	140
F4 (C34-C50)	GCM0303-APR19	µg/g	50	<50	ND	30	112	80	120	110	60	140

Petroleum Hydrocarbons (F4G)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F4G-sg (GHH)	GCM0357-APR19	µg/g	200	<200	NA	30	99	80	120	NA	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits (%)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0070-APR19	pH Units	0.05		1	20	100	80	120			

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ery Limits %)
						(10)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0265-APR19	μg/g	0.05	< 0.05	ND	50	79	60	130	86	50	140
1,1,1-Trichloroethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	79	60	130	86	50	140
1,1,2,2-Tetrachloroethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	88	50	140
1,1,2-Trichloroethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	88	50	140
1,1-Dichloroethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	79	60	130	85	50	140
1,1-Dichloroethylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	82	60	130	105	50	140
1,2-Dichlorobenzene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	88	50	140
1,2-Dichloroethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	78	60	130	87	50	140
1,2-Dichloropropane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	79	60	130	86	50	140
1,3-Dichlorobenzene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	87	50	140
1,4-Dichlorobenzene	GCM0265-APR19	hð/ð	0.05	< 0.05	ND	50	80	60	130	87	50	140
Acetone	GCM0265-APR19	µg/g	0.5	< 0.5	ND	50	80	50	140	108	50	140
Benzene	GCM0265-APR19	hð/ð	0.02	< 0.02	ND	50	79	60	130	87	50	140
Bromodichloromethane	GCM0265-APR19	hð/ð	0.05	< 0.05	ND	50	79	60	130	85	50	140
Bromoform	GCM0265-APR19	hð/ð	0.05	< 0.05	ND	50	78	60	130	81	50	140
Bromomethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	84	50	140	88	50	140
Carbon tetrachloride	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	87	50	140
Chlorobenzene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	88	50	140
Chloroform	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	89	50	140
cis-1,2-Dichloroethylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	79	60	130	84	50	140

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>!</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0265-APR19	hð\ð	0.03	< 0.03	ND	50	80	60	130	84	50	140
Dibromochloromethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	85	50	140
Dichlorodifluoromethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	82	50	140	67	50	140
Ethylbenzene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	90	50	140
Ethylenedibromide	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	87	50	140
n-Hexane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	79	60	130	78	50	140
m/p-xylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	88	50	140
Methyl ethyl ketone	GCM0265-APR19	µg/g	0.5	< 0.5	ND	50	82	50	140	88	50	140
Methyl isobutyl ketone	GCM0265-APR19	µg/g	0.5	< 0.5	ND	50	84	50	140	93	50	140
Methyl-t-butyl Ether	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	82	60	130	87	50	140
Methylene Chloride	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	89	50	140
o-xylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	87	50	140
Styrene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	88	50	140
Tetrachloroethylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	86	50	140
Toluene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	79	60	130	87	50	140
trans-1,2-Dichloroethylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	81	60	130	85	50	140
trans-1,3-dichloropropene	GCM0265-APR19	µg/g	0.03	< 0.03	ND	50	79	60	130	81	50	140
Trichloroethylene	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	80	60	130	89	50	140
Trichlorofluoromethane	GCM0265-APR19	µg/g	0.05	< 0.05	ND	50	82	50	140	101	50	140
Vinyl Chloride	GCM0265-APR19	µg/g	0.02	< 0.02	ND	50	80	50	140	89	50	140

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike		ry Limits	Spike	Recov	ery Limits
						(%)	Recovery	(9	%)	Recovery		(%)
							(%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0052-APR19	hð\ð	0.5	<0.5	ND	20	98	80	120	103	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

200	ž	equest fo	or Labor	Request for Laboratory Services and CHAIN OF CUSTODY	rvices	and	CHAI	NOF	SUS	TOD	≿						No:	
Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-3006 Fax: 705-652-3565 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	 Lakefield: 185 Concession St., Lakefield, London: 657 Consortium Court, London, 	incession St., I sortium Court,	akefield, ON H London, ON, I	ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/envi ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-948-8060 Fax: 519-672-0361	705-652-	2000 Fax 4500 Tol	: 705-652 Free: 87	-6365 Wi 7-848-80	eb: www. 60 Fax: {	sgs.com 519-672-	Nenviron 0361	ment					Page of	
Received By: Cleg NOZAIN		Labc Received By (signature):	Labora (signature):	Laboratory Information Section - Lab use only ature):	ation S	ection	- Lab u	ise onl		100	Ice appli		pa	les	dh	by driver		
Received Date (mm/dd/wy): 04/15/26/9 Received Time: 1/45	, ,	Custody Seal Present: Custody Seal Intact:	l Present: I Intact:	200	Real of	Cooli Temp	Cooling Agent Present: 7	Present: Ipon Rec	eipt (°C)	8	80808075	Low		LABL	V LAB LIMS #	10	DON-INSHIDO	5
REPORT INFORMATION	4	INVOICE INFORMATION	RMATION	The Mary State		The second	の一般の	日本に	IN RIGHT	F	PROJECT INFORMATION	CTINF	ORMA.	TION	HIC TH	The second second second second second second second second second second second second second second second se		1
Company. Thurber Engineering Ltd.	✓ (same as Report Information)	teport Inform	ation)		Quotation #:	;# u					P.O.#:							
Contact: Karel Furbacher	Company:				Project #:		13659			0,	Site Location/ID: Langstaff Road	ation/I	D: Lan	igstaff	Road		Solar Strategy	
Address: 103-2010 Winston Park Drive	Contact:			Ĩ	1000			TON PAR	-	URNA	TURNAROUND TIME (TAT) REQUIRED	D TIME	(TAT)	REQU	IRED			3
	Address:				>	Regula	Regular TAT (5-7days)	i-7days)		- 03	CAT's are Samples	e quoted receive	l in busi d after 6	ness da spm or o	ys (exclu in weeke	ude statu ends: TA	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	
Phone: 289-455-7296 Email: kfurbacher@thurber.ca	Phone.		v		RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	AT (Add	ditional IRM RUS	Charges SH FEA	May A	(yidd):		☐ 1 Day [GS REPRE	2 Days		3 Days		RUSH TAT (Additional Charges May Apply): U 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	27.00
	Email:	A.			Specify Due Date:	Due Dat	ë				Rush Confirmation ID:	onfirma	tion ID					
REG	REGULATIONS			NHI SULLA		.ON	re: Dri	NKING	(POTAE	MTH S	ATER S	SAMPL	ES FO	R HUN	AIN CC	KING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC SUBMITTED WITH SGS DRINKING WATER CHAIN OF CLISTODY	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUISTODY	
the state of the s			_		Contraction of the local division of the loc	and the south	ALC: NO		Nov I A		ANALYCIC PLOTICOC DIVIN						12	Τ
Table 1 R/P/I Soil Texture: Table 2 V/C/C Coarse V Table 3 A/O Table Table Fine	Other Regulations: Reg 347/558 (3 PWQO CCME MISA	r Regulations: Reg 347/558 (3 Day min TAT) PVVQO MMER CCME Other: MISA		Sewer By-Law:		100						10						70.200 160
RECORD OF SITE CONDITION (RSC)	VES	ON			-	-					.nəć	98\	-				COMMENTS:	
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME	# OF BOTTLES	MATRIX	Field Filtered Metals & Inorg	ива Пнач			Pesticides O		Sewer Sewer	Use: Corrosivity,						1000
1 BH19-03 SS8	4/2/19	12:00 p.m.	2	SOIL		1			F							F		Γ
2 BH19-02 SS7	4/5/19	12:00 p.m.	2	SOIL														Г
3																		
4		-16																Г
5																		Γ
9																		Г
2																		Γ
8	14																	Г
6					0,00													
10																		T
11																		
12				1.													A ST NAME AND AND AND AND AND AND AND AND AND AND	T
Observations/Comments/Special Instructions																	A State State	Γ
Sampled By (NAME): Ryan McCourt		Signature:		3				Date: 04	04/12/19	6		1	(mm)	(wm/dd/yy)		Pin	Pink Conv - Client	Т
Relinquished by (NAME): Karel Furbacher		Signature:	1	1					04/12/19	0			um)	(vv)pp/mm)				Т
			1	-		Contraction of the second	ñ	Date: O	J	0				111.000		Yei	Yellow & White Copy - SGS	٦

Date of Issue: 04 April, 2018

Request for Laboratory Services and CHAIN OF CUSTODY

CA14705-APR19 R

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Rob Irwin B.Sc., C.Chem
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	2361
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	rob.irwin@sgs.com
Email	kfurbacher@thurber.ca	SGS Reference	CA14705-APR19
Project		Received	04/18/2019
Order Number		Approved	04/26/2019
Samples	Soil (2)	Report Number	CA14705-APR19 R
		Date Reported	04/26/2019

COMMENTS

Temperature of Sample upon Receipt: 3 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

SIGNATORIES

Rob Irwin B.Sc., C.Chem R.bash.

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 2361 f 705-652-6365

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-4
Exceedance Summary	5
QC Summary	6-10
Legend	11
Annexes	12

CA14705-APR19 R

Client: Thurber Engineering Ltd.

Project:

Project Manager: Karel Furbacher

ACKAGE: REG153 - Hydrides (SOIL	.)		Sa	mple Number	10	11
			5	Sample Name	BH19-07 SS2	BH19-09 SS2B
I = REG153 / SOIL / FINE - TABLE 1 - Residential/Parklar	nd/Industrial - UNDEFINED		S	Sample Matrix	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commerce	cial - UNDEFINED			Sample Date	12/04/2019	10/04/2019
Parameter	Units	RL	L1	L2	Result	Result
lydrides						
Antimony	µg/g	0.8	1.3	50	< 0.8	< 0.8
Arsenic	hð â	0.5	18	18	2.4	2.6
Selenium	hð\ð	0.7	1.5	5.5	< 0.7	< 0.7
	ניטיי			0.0		
ACKAGE: REG153 - Metals and Inor	rganics (SOIL)		Sa	mple Number	10	11
			5	Sample Name	BH19-07 SS2	BH19-09 SS2B
I = REG153 / SOIL / FINE - TABLE 1 - Residential/Parklar	nd/Industrial - UNDEFINED		s	Sample Matrix	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commerce				Sample Date	12/04/2019	10/04/2019
Parameter	RL	L1	L2	Result	Result	
	Units				Robult	Robalt
letals and Inorganics						
Moisture Content	%	-			16.8	17.0
Barium	µg/g	0.1	220	670	100	68
Beryllium	µg/g	0.02	2.5	10	0.49	0.40
Boron	µg/g	1	36	120	7	6
Cadmium	µg/g	0.02	1.2	1.9	0.10	0.26
Chromium	μg/g	0.5	70	160	20	17
Cobalt	hð/ð	0.01	21	100	9.3	6.4
Copper	µg/g	0.1	92	300	17	19
Lead	μg/g	0.1	120	120	7.7	36
Molybdenum	μg/g	0.1	2	40	0.3	0.4
Nickel	μg/g	0.1	82	340	20	15
INICAEI	hð\ð	0.0			< 0.05	< 0.05
O'h e e		0.05	0.5			
Silver Thallium	hā\ā hā\ā	0.05	0.5	50 3.3	0.18	0.13

CA14705-APR19 R

Client: Thurber Engineering Ltd.

Project:

Project Manager: Karel Furbacher

			-			
PACKAGE: REG153 - Metals and Inc	organics (SOIL)			mple Number	10	11
			8	Sample Name	BH19-07 SS2	BH19-09 SS2B
1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl	and/Industrial - UNDEFINED		s	Sample Matrix	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme	ercial - UNDEFINED			Sample Date	12/04/2019	10/04/2019
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Uranium	μg/g	0.002	2.5	33	0.54	0.49
Vanadium	μg/g	3	86	86	29	23
Zinc	μg/g	0.7	290	340	45	140
Water Soluble Boron	µg/g	0.5		2	< 0.5	< 0.5
			0-		10	11
PACKAGE: REG153 - Other (ORP) ((SOIL)		58	mple Number	10	11
PACKAGE: REG153 - Other (ORP) ((SOIL)			mple Number Sample Name		BH19-09 SS2B
PACKAGE: REG153 - Other (ORP) (8	•	BH19-07 SS2	
	land/Industrial - UNDEFINED		s	Sample Name	BH19-07 SS2 Soil	BH19-09 SS2B
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl	land/Industrial - UNDEFINED	RL	s	Sample Name Sample Matrix	BH19-07 SS2 Soil	BH19-09 SS2B Soil
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter	dand/Industrial - UNDEFINED	RL	s	Sample Name Sample Matrix Sample Date	BH19-07 SS2 Soil 12/04/2019	BH19-09 SS2B Soil 10/04/2019
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP)	dand/Industrial - UNDEFINED nercial - UNDEFINED Units		s s L1	Sample Name Sample Matrix Sample Date L2	BH19-07 SS2 Soil 12/04/2019	BH19-09 SS2B Soil 10/04/2019
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury	dand/Industrial - UNDEFINED	0.05	L1 0.27	Sample Name Sample Matrix Sample Date L2	BH19-07 SS2 Soil 12/04/2019 Result	BH19-09 SS2B Soil 10/04/2019 Result
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio	iland/Industrial - UNDEFINED hercial - UNDEFINED Units µg/g 	0.05	s s L1	Sample Name Sample Matrix Sample Date L2	BH19-07 SS2 Soil 12/04/2019 Result < 0.05	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio SAR Calcium	land/Industrial - UNDEFINED nercial - UNDEFINED Units μg/g mg/L	0.05 0.2 0.09	L1 0.27	Sample Name Sample Matrix Sample Date L2	BH19-07 SS2 Soil 12/04/2019 Result < 0.05 7.1 51.7	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8 33.9
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio SAR Calcium SAR Magnesium	land/Industrial - UNDEFINED eercial - UNDEFINED Units μg/g mg/L mg/L	0.05 0.2 0.09 0.02	L1 0.27	Sample Name Sample Matrix Sample Date L2	BH19-07 SS2 Soil 12/04/2019 Result < 0.05 7.1 51.7 4.0	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8 33.9 57.4
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio SAR Calcium SAR Magnesium SAR Sodium	iland/Industrial - UNDEFINED erercial - UNDEFINED Units μg/g mg/L mg/L	0.05 0.2 0.09 0.02 0.15	L1 0.27 2.4	Sample Name Sample Matrix Sample Date L2 20 12	BH19-07 SS2 Soil 12/04/2019 Result < 0.05 7.1 51.7 4.0 193	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8 33.9 57.4 385
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio SAR Calcium SAR Magnesium SAR Sodium Conductivity	land/Industrial - UNDEFINED errcial - UNDEFINED Units μg/g mg/L mg/L mg/L mg/L	0.05 0.2 0.09 0.02 0.15 0.002	L1 0.27	Sample Name Sample Matrix Sample Date L2	BH19-07 SS2 Soil 12/04/2019 Result < 0.05 7.1 51.7 4.0 193 1.4	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8 33.9 57.4 385 2.0
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio SAR Calcium SAR Magnesium SAR Sodium Conductivity pH	land/Industrial - UNDEFINED ercial - UNDEFINED Units µg/g mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 0.2 0.09 0.02 0.15 0.002 0.05	L1 0.27 2.4 0.57	Sample Name Sample Matrix Sample Date L2 20 12 12 1.4	BH19-07 SS2 Soil 12/04/2019 Result < 0.05 7.1 51.7 4.0 193 1.4 7.75	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8 33.9 57.4 385 2.0 NSS
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkl L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Comme Parameter Other (ORP) Mercury Sodium Adsorption Ratio SAR Calcium SAR Magnesium SAR Sodium Conductivity	land/Industrial - UNDEFINED errcial - UNDEFINED Units μg/g mg/L mg/L mg/L mg/L	0.05 0.2 0.09 0.02 0.15 0.002	L1 0.27 2.4	Sample Name Sample Matrix Sample Date L2 20 12	BH19-07 SS2 Soil 12/04/2019 Result < 0.05 7.1 51.7 4.0 193 1.4	BH19-09 SS2B Soil 10/04/2019 Result < 0.05 7.8 33.9 57.4 385 2.0

EXCEEDANCE SUMMARY

				REG153 / SOIL / FINE - TABLE 1 -	REG153 / SOIL / FINE - TABLE 3 -
				Residential/Parklan	Industrial/Commer
				d/Industrial - UNDEFINED	cial - UNDEFINED
Parameter	Method	Units	Result	L1	L2
119-07 SS2					
Conductivity	EPA 6010/SM 2510	µg/g	1.4	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hā\a	7.1	2.4	
119-09 SS2B					
Conductivity	EPA 6010/SM 2510	hð\ð	2.0	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	µg/g	7.8	2.4	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0380-APR19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA0147-APR19	hð\ð	0.05	<0.05	ND	20	89	80	120	99	75	125

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0338-APR19	hð\ð	0.2	<0.2	ND	20	96	80	120	87	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	latrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0130-APR19	hð\ð	0.05	<0.05	ND	20	NV	80	120	95	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	Matrix Spike / Ref. Recovery Ling (%) Low 70 70	
	Reference			Blank	RPD	AC	Spike	Recove (%	•	Spike Recovery		-
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0070-APR19	mg/L	0.09	<0.09	3	20	99	80	120	106	70	130
SAR Magnesium	ESG0070-APR19	mg/L	0.02	<0.02	1	20	99	80	120	109	70	130
SAR Sodium	ESG0070-APR19	mg/L	0.15	<0.15	ND	20	99	80	120	105	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0130-APR19	ug/g	0.05	<0.05	ND	20	96	70	130	98	70	130
Arsenic	EMS0130-APR19	µg/g	0.5	<0.5	3	20	101	70	130	104	70	130
Barium	EMS0130-APR19	ug/g	0.1	<0.1	3	20	106	70	130	103	70	130
Beryllium	EMS0130-APR19	µg/g	0.02	<0.02	8	20	103	70	130	94	70	130
Boron	EMS0130-APR19	µg/g	1	<1	6	20	108	70	130	100	70	130
Cadmium	EMS0130-APR19	µg/g	0.02	<0.02	17	20	100	70	130	108	70	130
Cobalt	EMS0130-APR19	µg/g	0.01	<0.01	2	20	104	70	130	119	70	130
Chromium	EMS0130-APR19	µg/g	0.5	<0.5	7	20	103	70	130	113	70	130
Copper	EMS0130-APR19	µg/g	0.1	<0.1	0	20	104	70	130	113	70	130
Molybdenum	EMS0130-APR19	µg/g	0.1	<0.1	2	20	101	70	130	107	70	130
Nickel	EMS0130-APR19	ug/g	0.5	<0.5	2	20	105	70	130	118	70	130
Lead	EMS0130-APR19	ug/g	0.1	<0.1	3	20	102	70	130	103	70	130
Antimony	EMS0130-APR19	µg/g	0.8	<0.8	ND	20	99	70	130	118	70	130
Selenium	EMS0130-APR19	µg/g	0.7	<0.7	ND	20	101	70	130	101	70	130
Thallium	EMS0130-APR19	hð\ð	0.02	<0.02	8	20	102	70	130	105	70	130
Uranium	EMS0130-APR19	µg/g	0.002	<0.002	4	20	97	70	130	104	70	130
Vanadium	EMS0130-APR19	µg/g	3	<3	3	20	105	70	130	116	70	130
Zinc	EMS0130-APR19	µg/g	0.7	<0.7	0	20	99	70	130	106	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0093-APR19	pH Units	0.05		0	20	100	80	120			

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	latrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0069-APR19	hð\ð	0.5	<0.5	ND	20	101	80	120	109	70	130

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety		Cequest for Laboratory Services and CHAIN OF CUSTODY Concession St., Lakefield, ON KOL 240 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sec.com/an	Cor Labo	KOL 2H0 Phon	BIVICE 8: 705-652	2000 Fax:	CHAIN 705-652-63	OF C 65 Web.		DY	homo				No:	
11.1.	- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	onsortium Court	t, London, ON,	N6E 2S8 Phor	le: 519-672	4500 Toll	⁻ ree: 877-8	48-8060 F	ax: 519-67	2-0361					Page (of	
Received By: Olog Mozhil		Received B	Labor Received Bv (signature):	Laboratory Information Section - Lab use only	mation	ection -	Lab use	only .	1	00	200	11001	le,	4 Q	daver	_
Received Date (mm/gd/m); 04/1 × 20/1 Received Time: 00/1 × 20/1	1	Custody Seal Present: Custody Seal Intact:	al Present: al Intact:	200		Coolin	Cooling Agent Present:	sent: n Receint	100	boh.	100	ć)	0	AINTORNA	0
REPORT INFORMATION		INVOICE INFORMATION	ORMATION						+	PRO.IF	PRO.IECT INFORMATION	RMATH		i i		-
	V (same as	V (same as Report Information)	nation)		Quotation #	;# u			e.	P.O.#				Ŀ		_
	Company:				Project #:	#: 13659	59			Site Lo	Site Location/ID: Langstaff Road	Lang	staff Ro	ad		
Address: 103-2010 Winston Park Drive Oakville, Ontario	Contact:				Ľ				TURN	AROUN	TURNAROUND TIME (TAT) REQUIRED	(TAT) R	GUIRE	-		_
Phone: 289-455-7296	Address:				2	Regular	Regular TAT (5-7days)	days)		Sample:	received	after 6pr	or on w	eekends	rivit s are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	
Email: kfurbacher@thurber.ca	Phone:				PLEAS	AT (Addi CONFIF	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	FEASIBI	y Apply) LITY WI	: L	☐ 1 Day [GS REPRES] 2 Days	s 3	3 Days	KUSH TAT (Additional Charges May Apply):	
Email: manderson@thurber.ca	Email:				Specify	Specify Due Date:				Rush C	Rush Confirmation ID:	on ID:				
REG	REGULATIONS					NOTE	: DRINK	ING (PO	IKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC	VATER SGS DE	SAMPLE	S FOR	HUMAN	CONS	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE	_
Regulation 153/04:	Other Regulations:	ions:	Source	or By Low			0	ANAL	ANAL VSIS PEOLIESTED		DNIVNI C	VALER	CHAIN	5	STODY	_
Table 1 R/P/I Soil Texture: Table 2 V//C/C Coarse Table 3 V/O Medium		PWQ0 Dther: PWQ0 Dther: MISA Other:		Sever by-Law:				and the summary of the					-			
RECORD OF SITE CONDITION (RSC)	L YES	NO			-	-			001] ·uə	Res				COMMENTS:	
SAMPLE IDENTIFICATION	DATE	TIME	# OF BOTTLES	MATRIX	benetii Filtered	noni & sisteň NBA □HA	PLEX DISIN		esticides O(CLP M&I 0 (a)P 1 ABN	later Pkg G	se: sorrosivity/					
1 BH19-07 SS2	4/12/19	10:30 a.m.	+	SOIL	-	1	aL	^		_	_ L_					
2 BH19-09 SS2B	4/10/19	10:00 a.m.		SOIL												
3																
4																
5																_
9																
7																
8																
6			-													
10																
11																
12																
Observations/Comments/Special Instructions					4											
ampled By (NAME): Ryan McCourt		Signature:	BNA	1			i	04/7/10	110			American Index Annual	A.A.			
(elinquished by (NAME): Karel Furbacher		Signature:	11	AL			Date:	11110	011			mmuuu)	16		Pink Copy - Client	
			N	4			Date:	04/1//19	AL/			(wm/dd/yy)	λ)		Yellow & White Copy - SGS	

04 April, 2018

CA14798-APR19 R

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Catharine Arnold, B.Sc., C.Chem
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2618
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	catharine.arnold@sgs.com
Email	kfurbacher@thurber.ca	SGS Reference	CA14798-APR19
Project		Received	04/23/2019
Order Number		Approved	04/30/2019
Samples	Soil (4)	Report Number	CA14798-APR19 R
		Date Reported	04/30/2019

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

Method deviation: VOC and/or F1 sample vials for all samples contained a ratio of ~1:1 sample wet weight:methanol, whereas the method requires a ratio of 1:2 sample wet weight:methanol.

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-14
Legend	15
Annexes	16-17

CA14798-APR19 R

Client: Thurber Engineering Ltd.

Project:

Project Manager: Karel Furbacher

PACKAGE: REG153 - BTEX (SOIL)			San	nple Number	10	11	12	13
			S	ample Name	BH19-09 SS4	BH19-10 SS6	BH19-11 SS3B	BH19-11 SS6
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parklar	nd/Industrial - UNDEFINED		S	ample Matrix	Soil	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commerce	cial - UNDEFINED		;	Sample Date	10/04/2019	12/04/2019	17/04/2019	17/04/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
BTEX								
Benzene	µg/g	0.02	0.02	0.4	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	µg/g	0.05	0.05	19	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	hð\ð	0.05	0.2	78	< 0.05	< 0.05	< 0.05	< 0.05
Xylene (total)	hð\ð	0.05	0.05	30	< 0.05	< 0.05	< 0.05	< 0.05
m/p-xylene	µg/g	0.05			< 0.05	< 0.05	< 0.05	< 0.05
o-xylene	hð\ð	0.05			< 0.05	< 0.05	< 0.05	< 0.05
			S	enie Number	44	10	12	
PACKAGE: REG153 - Hydrides (SOIL	-)			nple Number	11	12	13	
				ample Name	BH19-10 SS6	BH19-11 SS3B	BH19-11 SS6	
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parklar	nd/Industrial - UNDEFINED		S	ample Matrix	Soil	Soil	Soil	
L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commerce	cial - UNDEFINED		:	Sample Date	12/04/2019	17/04/2019	17/04/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	
Hydrides								
Antimony	hð\ð	0.8	1.3	50	< 0.8	< 0.8	< 0.8	
Arsenic	µg/g	0.5	18	18	0.7	2.1	0.6	
Selenium	µg/g	0.7	1.5	5.5	< 0.7	< 0.7	< 0.7	

CA14798-APR19 R

Client: Thurber Engineering Ltd.

Project:

Project Manager: Karel Furbacher

			0-	mala Number	10	11	12	12
PACKAGE: REG153 - Metals and Inorga	anics (SOIL)			mple Number	10			13
				ample Name	BH19-09 SS4	BH19-10 SS6	BH19-11 SS3B	BH19-11 SS6
1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkland/Ir	ndustrial - UNDEFINED		8	ample Matrix	Soil	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commercial	- UNDEFINED			Sample Date	10/04/2019	12/04/2019	17/04/2019	17/04/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics								
Moisture Content	%	-			11.2	13.6	13.5	25.0
Barium	µg/g	0.1	220	670		7.2	59	14
Beryllium	µg/g	0.02	2.5	10		0.09	0.39	0.10
Boron	µg/g	1	36	120		2	5	1
Cadmium	µg/g	0.02	1.2	1.9		0.05	0.10	0.07
Chromium	µg/g	0.5	70	160		5.1	16	5.0
Cobalt	hð\ð	0.01	21	100		2.4	6.9	2.0
Copper	hð\ð	0.1	92	300		3.8	14	3.6
Lead	µg/g	0.1	120	120		1.7	6.9	1.8
Molybdenum	hð\ð	0.1	2	40		0.2	0.2	0.1
Nickel	hð\ð	0.5	82	340		2.9	12	2.9
Silver	hð/ð	0.05	0.5	50		< 0.05	< 0.05	< 0.05
Thallium	hð/ð	0.02	1	3.3		0.03	0.12	0.03
Uranium	hð/ð	0.002	2.5	33		0.27	0.41	0.26
Vanadium	hð/ð	3	86	86		11	24	8
Zinc	hð\ð	0.7	290	340		8.8	35	11
Water Soluble Boron	hð/ð	0.5		2		< 0.5	< 0.5	< 0.5

CA14798-APR19 R

Client: Thurber Engineering Ltd.

Project:

Project Manager: Karel Furbacher

			0.	manla Niumhan	10	4.4	10	10
PACKAGE: REG153 - Other (ORP) (SOIL)			58	ample Number	10	11	12	13
			:	Sample Name	BH19-09 SS4	BH19-10 SS6	BH19-11 SS3B	BH19-11 SS6
= REG153 / SOIL / FINE - TABLE 1 - Residential/Parkland/Industrial - UNDEFINED			5	Sample Matrix	Soil	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Com	mercial - UNDEFINED			Sample Date	10/04/2019	12/04/2019	17/04/2019	17/04/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Other (ORP)								
Mercury	hð\ð	0.05	0.27	20		< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio		0.2	2.4	12		1.8	20.6	4.7
SAR Calcium	mg/L	0.09				12.2	16.6	68.2
SAR Magnesium	mg/L	0.02				1.4	14.1	5.1
SAR Sodium	mg/L	0.15				24.6	755	133
Conductivity	mS/cm	0.002	0.57	1.4	0.99	0.22	3.2	1.4
рН	pH Units	0.05				8.12	7.96	7.65
Chromium VI	µg/g	0.2	0.66	10		< 0.2	< 0.2	< 0.2
Free Cyanide	µg/g	0.05			< 0.05	< 0.05	< 0.05	< 0.05

CA14798-APR19 R

Client: Thurber Engineering Ltd.

Project:

Project Manager: Karel Furbacher

PACKAGE: REG153 - PHCs (SOIL)			Sar	nple Number	10	11	12	13
			s	ample Name	BH19-09 SS4	BH19-10 SS6	BH19-11 SS3B	BH19-11 SS6
1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkland/Ind	ustrial - UNDEFINED		s	ample Matrix	Soil	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commercial - UNDEFINED				Sample Date	10/04/2019	12/04/2019	17/04/2019	17/04/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
PHCs								
F1 (C6-C10)	µg/g	10	25	65	< 10	< 10	< 10	< 10
F1-BTEX (C6-C10)	µg/g	10			< 10	< 10	< 10	< 10
F2 (C10-C16)	µg/g	10	10	250	< 10	< 10	< 10	< 10
F3 (C16-C34)	µg/g	50	240	2500	< 50	< 50	< 50	< 50
F4 (C34-C50)	µg/g	50	120	6600	< 50	< 50	< 50	< 50
Chromatogram returned to baseline at nC50	Yes / No	-			YES	YES	YES	YES

EXCEEDANCE SUMMARY

Sodium Adsorption Ratio

				REG153 / SOIL /	REG153 / SOIL /
				FINE - TABLE 1 -	FINE - TABLE 3 -
				Residential/Parklan	Industrial/Commer
				d/Industrial -	cial - UNDEFINED
				UNDEFINED	
Parameter	Method	Units	Result	L1	L2
H19-09 SS4					
Conductivity	EPA 6010/SM 2510	mS/cm	0.99	0.57	
H19-11 SS3B					
Conductivity	EPA 6010/SM 2510	mS/cm	3.2	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010		20.6	2.4	12
H19-11 SS6					
Conductivity	EPA 6010/SM 2510	mS/cm	1.4	0.57	

4.7

MOE 4696e01/EPA 6010

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0467-APR19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		
Conductivity	EWL0515-APR19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5066-APR19	hð\ð	0.05	<0.05	ND	20	98	80	120	84	75	125
Free Cyanide	SKA5078-APR19	µg/g	0.05	<0.05	ND	20	100	80	120	90	75	125

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0398-APR19	µg/g	0.2	<0.2	ND	20	98	80	120	106	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0146-APR19	hð\ð	0.05	<0.05	ND	20	NV	80	120	100	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recover (9	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0080-APR19	mg/L	0.09	<0.09	0	20	100	80	120	93	70	130
SAR Magnesium	ESG0080-APR19	mg/L	0.02	<0.02	ND	20	100	80	120	95	70	130
SAR Sodium	ESG0080-APR19	mg/L	0.15	<0.15	ND	20	97	80	120	94	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0146-APR19	ug/g	0.05	<0.05	19	20	92	70	130	95	70	130
Arsenic	EMS0146-APR19	µg/g	0.5	<0.5	1	20	100	70	130	96	70	130
Barium	EMS0146-APR19	ug/g	0.1	<0.1	2	20	108	70	130	93	70	130
Beryllium	EMS0146-APR19	µg/g	0.02	<0.02	3	20	103	70	130	90	70	130
Boron	EMS0146-APR19	hð/ð	1	<1	2	20	98	70	130	107	70	130
Cadmium	EMS0146-APR19	hð/ð	0.02	<0.02	20	20	105	70	130	110	70	130
Cobalt	EMS0146-APR19	µg/g	0.01	<0.01	3	20	106	70	130	112	70	130
Chromium	EMS0146-APR19	µg/g	0.5	<0.5	0	20	107	70	130	112	70	130
Copper	EMS0146-APR19	µg/g	0.1	<0.1	0	20	107	70	130	106	70	130
Molybdenum	EMS0146-APR19	µg/g	0.1	<0.1	12	20	96	70	130	109	70	130
Nickel	EMS0146-APR19	ug/g	0.5	<0.5	0	20	109	70	130	95	70	130
Lead	EMS0146-APR19	ug/g	0.1	<0.1	2	20	103	70	130	97	70	130
Antimony	EMS0146-APR19	µg/g	0.8	<0.8	ND	20	105	70	130	117	70	130
Selenium	EMS0146-APR19	µg/g	0.7	<0.7	ND	20	103	70	130	102	70	130
Thallium	EMS0146-APR19	µg/g	0.02	<0.02	ND	20	104	70	130	99	70	130
Uranium	EMS0146-APR19	µg/g	0.002	<0.002	2	20	99	70	130	97	70	130
Vanadium	EMS0146-APR19	µg/g	3	<3	1	20	108	70	130	112	70	130
Zinc	EMS0146-APR19	µg/g	0.7	<0.7	5	20	102	70	130	98	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0403-APR19	hð\ð	10	<10	ND	30	111	80	120	111	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (۹	•	Spike Recovery	Recover (%	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0404-APR19	hð\ð	10	<10	7	30	117	80	120	116	60	140
F3 (C16-C34)	GCM0404-APR19	µg/g	50	<50	8	30	117	80	120	116	60	140
F4 (C34-C50)	GCM0404-APR19	µg/g	50	<50	ND	30	117	80	120	116	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Ma	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0093-APR19	pH Units	0.05		0	20	100	80	120			

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Benzene	GCM0402-APR19	µg/g	0.02	< 0.02	ND	50	94	60	130	108	50	140
Ethylbenzene	GCM0402-APR19	µg/g	0.05	< 0.05	ND	50	96	60	130	109	50	140
m/p-xylene	GCM0402-APR19	µg/g	0.05	< 0.05	ND	50	97	60	130	110	50	140
o-xylene	GCM0402-APR19	µg/g	0.05	< 0.05	ND	50	96	60	130	110	50	140
Toluene	GCM0402-APR19	µg/g	0.05	< 0.05	ND	50	94	60	130	107	50	140

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0076-APR19	hð\ð	0.5	<0.5	14	20	99	80	120	104	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-6365 Web: www.sgs.com/environment	R - Lakefield: 185 C	Request for Laboratory Services and CHAIN OF CUSTODY Concession St., Lakefield, ON KOL 240 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/er	or Labo	KOL 2H0 Phon	: 705-652	s and -2000 Fa	CHA	IN O	F CUS	STOC sgs.com	γ /environ	ment			No:	
	- London: 657 Consortium Court, London, ON, NGE 2S8 Phone; 519-672-4500 Toll Free: 877-848-8050 Fax: 519-672-0361	nsortium Court	London, ON,	N6E 2S8 Phon	e, 519-67	2-4500 To	Il Free: 8	77-848-8	060 Fax:	519-672-	0361				Page 1 of 1	1
Received By: Olog MOZA, W		Received B.	Labor Received By (signature): _	Laboratory Information Section - Lab use only ature):	Mation	Section	ı - Lab	use on	Ā	100	6	141	ce applied les applied	dh	hele	
Received Date (mm/dd/yy): 04/25/20/4 Received Time: 13:25	1	Custody Seal Present: Custody Seal Intact:	al Present: al Intact:	Die		Coo	Cooling Agent Present: Temperature Upon Rec	t Present Upon Re	Cooling Agent Present: T Temperature Upon Receipt (°C)		100	60	S LABLIN	As# C	go go go The Lab Laber OHIY7987AKIG	
REPORT INFORMATION		INVOICE INFORMATION	ORMATION					States	The second	1000	ROJEC	T INFO	PROJECT INFORMATION			1
Company: Thurber Engineering Ltd.	V (same as Report Information)	Report Inform	ation)		Quotation #:	;# uo				u	# 0 d					10
Contact: Karel Furbacher	Company:				Project #:		13659			"	ite Loca	ation/ID	Site Location/ID: Langstaff Road	Road		_
Address: 103-2010 Winston Park Drive	Contact:					1.40				IURNA	ROUND	TIME (TURNAROUND TIME (TAT) REQUIRED	ED	「「「「「「「「」」」」	T
Cakville, Untario	Address:					Regular TAT (5-7days)	ar TAT (5-7days		F 0	AT's are amples r	quoted	i business days after 6pm or on	(exclude	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT benins next business day	
Phone: 289-455-7296 Email: kfurbacher@thurber.ca	Phone:				RUSH	FAT (Ad	ditional IRM RU	Charge SH FE#	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	pply): Y WITH	SGS R	☐ 1 Day [GS REPRES	2 Days	3 Days [RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	
Email: manderson@thurber.ca	Email:				Specify	Specify Due Date:	te:			œ	Rush Confirmation ID:	nfirmati	in ID:			
REG	REGULATIONS					NO	TE: DR	SURM	(POTAE	MTH SI	VTER S	AMPLE	JKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC SURMITTED WITH SGS DRINKING WATED CHAIN OF CUERDON	N CONS	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SLIRMITTED WITH SES DRINKING WATED CHAIN OF CUSTONY	1
Doculation 152/04.					ALC: NO	Contraction of the local distribution of the	10101					DNIN			1001	-
Table 1 Rup.I Soil Texture: Table 2 NIC/C Coarse Table 3 A/O Filee	Other Regulations: Reg 347/558 (3.1 PWQ0 CCME MISA	r Regulations: Reg 347/558 (3 Day min TAT) PWQO MMER CCME Other: MISA		Sewer By-Law:												
RECORD OF SITE CONDITION (RSC)	VES V	ON		「見たいない」	-						.neč	aA\			COMMENTS:	_
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered	noni & sisteM NBA □HA9	PUS Total	VOC 4 BTB BTEX BTB PHC F1-F4	O sebioitee	ПСLP М&I [ВА □Ч(s)8	Sewer	Corrosivity		_		
1 BH19-09 SS4	4/10/19	10:00 a.m.	2	SOIL		-			-	-		1-				-
2 BH19-10 SS6	4/12/19	10:00 a.m.	2	SOIL												-
3 BH19-11 SS3B	4/17/19	11:00 a.m.	2	SOIL												-
4 BH19-11 SS6	4/17/19	1:00 p.m.	2	SOIL												-
5																-
9																-
7																-
8																_
6	1															_
10																
11																
12																
Observations/Comments/Special Instructions										4]				
Sampled By (NAME): Ryan McCourt		Signature:	800	2				Date: 04	04/23/19				(wm/dd/yy)		Dick Cont. Clines	
Relinquished by (NAME): Karel Furbacher		Signature:	Il A	~		1		1	04/23/19	0			(ww/pp/mm)			
Revision # 11 Date of issue: 04 April: 2018		4					1		10-11	,			17 Campany		Yellow & White Copy - SGS	

	Re	iquest fo	r Labor	Request for Laboratory Services and CHAIN OF CUSTODY	vices	and	CHA	NN O	L C	ISTO	ď						No:		
Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	 - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/envi - London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 	ncession St., La sortium Court, I	akefield, ON K ondon, ON, N	0L 2H0 Phone: J6E 2S8 Phone:	705-652-: 519-672-	2000 Fa) 4500 To	c: 705-65 Il Free: 8	2-6365	Veb: ww 3060 Fa;	w.sgs.c	om/envi 72-0361	ronmen	2				Page	1 of 1	
Parating Bur Olor Mor Mill		Labo	Labora	Laboratory Information Section - Lab use only	ation S	ection	- Lab	inse oi	۲	-	S	00	1 alla	00	De	0	per druck		<u> </u>
Received Date (mmbdy): 04/26/20/9 Received Time: 13.13.5	LI	Custody Seal Present: Custody Seal Intact:	Present: [22		Cool	Cooling Agent Present: Z	tt Preser Upon R	t: 🗌	- 21	8 8°	8.80	X	200	LAB LIMS #:			-ALLIQ.	
REPORT INFORMATION	Z	INVOICE INFORMATION	RMATION		9.11 (195					-	PRO.	JECT I	PROJECT INFORMATION	MATIO	z	201			
Company: Thurber Engineering Ltd.	V (same as Report Information)	eport Informa	tion)		Quotation #	;# U					P.O.#	#							
Contact Karel Furbacher	Company:			1	Project #:		13659			1	Site I	ocatio	n/ID: 1	-angs	Site Location/ID: Langstaff Road	bad			
Address: 103-2010 Winston Park Drive	Contact:							6	2	TURN	TURNAROUND TIME (TAT) REQUIRED	IL ON	ME (T/	VT) RE	QUIRE	Q			
Oakville, Ontario	Address:				5	Regul	Regular TAT (5-7days)	(5-7day	s)		TAT's Samp	are qui	oted in t	er 6pm	s days (or on w	exclude	statutory holida s: TAT begins n	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	
					RUSH TAT (Additional Charges May Apply):	AT (Ad	ditiona	I Charg	es May	Apply] 1 Day] 2 Days]3 Days	4 Days		
Email: klurbacher@thurber.ca	Phone:				PLEASE CONFIR Specify Due Date:			ISH FE	ASIBIL	M X II	Buch	S KEF	H SGS KEPRESENTA Bush Confirmation ID:		VE PR	IOK IC	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOK TO SUBMISSION Specify Due Date: Dueb Confirmation ID:	z	
	Email	A DECEMBER OF		Con Concession	choodo	NO	TE: Df	SINKIN	G (POT	ABLE)	WATE	R SAN	PLES	FORF	IUMAN	CONS	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE	UST BE	T
REGU	REGULATIONS			No. of Street, or Stre				SUB	MITTEI	D WITH	SGS I	DRINK	NG W	ATER	CHAIN	OF CL	SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY		_
Regulation 153/04:	Other Regulations:	us:	Sewe	Sewer Bv-Law:					ANALYSIS REQUESTED	SIS RE	GUES	TED					12 -		<u> </u>
Table 1 R/P/I Soil Texture: Table 2 V/C/C Coarse V Table 3 A/O Medium Table	Reg 347/556 PVVaO CCME MISA	Reg 347/558 (3 Day min TAT) PVVQO MMER CCME Other: MISA		Sanitary Storm Municipality:									sistivity	-	-				
RECORD OF SITE CONDIT	12	ON /		and a second sec	-	110.098	MA [01	uəg		əЯ∖		-	_	3	COMMEN IS:	-
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME	# OF BOTTLES	MATRIX	Field Filtered	noni & sisteM N8A □HA9	PCB Total		VOC B BT		a aver heavyage	Use: Sewer	Corrosivit)						
1 BH19-09 SS4	4/10/19	10:00 a.m.	-	SOIL										F			Supple	Supplemental Sample	<u> </u>
2																			<u> </u>
3																			
4																			
5																			-
6																			
7																			
8																			
6																			
10																			<u> </u>
11																			
12				3															-
Observations/Comments/Special Instructions																			-
Sampled By (NAME): Ryan McCourt		Signature:	BLM					Date:	04/26/19	/19				(wm/dd/yy)	(λλ		Pink Copy - Client	lient	<u> </u>
Relinquished by (NAME): Karel Furbacher		Signature:	R	Ç				Date:	04/26/19	3/19				(wm/dd/yy)	(٨٨)		Yellow & Whi	Yellow & White Copy - SGS	_
																			î.

Date of Issue: 04 April, 2018

AND OF CUSTODY ù Dogination for Lab

CA14077-MAY19 R

13659 Langstaff Road

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2000
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	
Email	kfurbacher@thurber.ca	SGS Reference	CA14077-MAY19
Project	13659 Langstaff Road	Received	05/02/2019
Order Number		Approved	05/08/2019
Samples	Soil (3)	Report Number	CA14077-MAY19 R
		Date Reported	05/08/2019

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-13
Legend	14
Annexes	15

CA14077-MAY19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

PACKAGE: REG153 - BTEX (SOIL)			San	nple Number	11				
				•	BH19-12 SS2B				
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkland/Industr	ial - UNDEFINED		S	ample Matrix	Soil				
L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commercial - UND	EFINED		8	Sample Date	22/04/2019				
Parameter	Units	RL	L1	L2	Result				
BTEX									
Benzene	µg/g	0.02	0.02	0.4	< 0.02				
Ethylbenzene	µg/g	0.05	0.05	19	< 0.05				
Toluene	µg/g	0.05	0.2	78	< 0.05				
Xylene (total)	µg/g	0.05	0.05	30	< 0.05				
m/p-xylene	µg/g	0.05			< 0.05				
o-xylene	µg/g	0.05			< 0.05				
			San	nple Number	10	11	12		
PACKAGE: REG153 - Hydrides (SOIL)				ample Name	BH19-05 SS2	BH19-12 SS2B	BH19-15 SS2B		
				ample Natrix	Soil	Soil	Soil		
1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkland/Industr				Sample Date	26/04/2019	22/04/2019	22/04/2019		
2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commercial - UNE Parameter	Units	RL	` L1	L2	Result	Result	Result		
Hydrides	Units	nL			Nooul	Nosul	Nooull		
Antimony	µg/g	0.8	1.3	50	< 0.8	< 0.8	< 0.8		
Arsenic	µg/g	0.5	1.3	18	2.5	2.9	2.2		
Selenium	µg/g	0.7	1.5	5.5	< 0.7	< 0.7	< 0.7		
Selenium	P9/9	0.7	1.5	5.5	- 0.1	- 0.1	- 0.1		

CA14077-MAY19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

PACKAGE: REG153 - Metals and Inor	oanics (SOIL)		Sa	nple Number	10	11	12
	3		s	ample Name	BH19-05 SS2	BH19-12 SS2B	BH19-15 SS2B
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parklan	nd/Industrial - UNDEFINED		s	ample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commerc	cial - UNDEFINED			Sample Date	26/04/2019	22/04/2019	22/04/2019
Parameter	Units	RL	L1	L2	Result	Result	Result
Metals and Inorganics							
Moisture Content	%	-			9.2	22.8	14.9
Barium	µg/g	0.1	220	670	46	92	74
Beryllium	µg/g	0.02	2.5	10	0.25	0.57	0.34
Boron	µg/g	1	36	120	4	5	4
Cadmium	µg/g	0.02	1.2	1.9	0.06	0.18	0.08
Chromium	µg/g	0.5	70	160	11	23	16
Cobalt	µg/g	0.01	21	100	4.9	8.8	7.9
Copper	µg/g	0.1	92	300	12	20	17
Lead	µg/g	0.1	120	120	5.0	9.9	8.6
Molybdenum	µg/g	0.1	2	40	0.3	0.3	0.2
Nickel	µg/g	0.5	82	340	10	20	16
Silver	µg/g	0.05	0.5	50	< 0.05	< 0.05	< 0.05
Thallium	µg/g	0.02	1	3.3	0.08	0.16	0.13
Uranium	µg/g	0.002	2.5	33	0.38	0.54	0.40
Vanadium	µg/g	3	86	86	19	32	24
Zinc	µg/g	0.7	290	340	26	45	32
Water Soluble Boron	µg/g	0.5		2	< 0.5	< 0.5	< 0.5

CA14077-MAY19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

DACKACE DEC152 Other (ODD)			Se	ample Number	10	11	12
PACKAGE: REG153 - Other (ORP)) (SUIL)			•			
				Sample Name	BH19-05 SS2	BH19-12 SS2B	BH19-15 SS2B
1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Pa	Parkland/Industrial - UNDEFINED		:	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Con	mmercial - UNDEFINED			Sample Date	26/04/2019	22/04/2019	22/04/2019
Parameter	Units	RL	L1	L2	Result	Result	Result
Other (ORP)							
Mercury	hā\a	0.05	0.27	20	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio		0.2	2.4	12	20.3	3.4	9.4
SAR Calcium	mg/L	0.09			18.9	49.5	13.4
SAR Magnesium	mg/L	0.02			3.7	93.4	4.9
SAR Sodium	mg/L	0.15			354	388	214
Conductivity	mS/cm	0.002	0.57	1.4	2.2	2.1	1.6
рН	pH Units	0.05			8.05	7.86	8.27
Chromium VI	hð\ð	0.2	0.66	10	< 0.2	0.3	< 0.2
Free Cyanide	hð\ð	0.05			< 0.05	< 0.05	< 0.05

CA14077-MAY19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

PACKAGE: REG153 - PHCs (SOIL)			Sar	mple Number	11
			s	ample Name	BH19-12 SS2B
L1 = REG153 / SOIL / FINE - TABLE 1 - Residential/Parkland/Inc	dustrial - UNDEFINED		s	ample Matrix	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Industrial/Commercial -	UNDEFINED			Sample Date	22/04/2019
Parameter	Units	RL	L1	L2	Result
PHCs					
F1 (C6-C10)	µg/g	10	25	65	< 10
F1-BTEX (C6-C10)	µg/g	10			< 10
F2 (C10-C16)	µg/g	10	10	250	< 10
F3 (C16-C34)	µg/g	50	240	2500	< 50
F4 (C34-C50)	µg/g	50	120	6600	< 50
Chromatogram returned to baseline at nC50	Yes / No	-			YES

EXCEEDANCE SUMMARY

Parameter	Method	Units	Result	REG153 / SOIL / FINE - TABLE 1 - Residential/Parklan d/Industrial - UNDEFINED L1	REG153 / SOIL / FINE - TABLE 3 - Industrial/Commer cial - UNDEFINED
BH19-05 SS2					
Conductivity	EPA 6010/SM 2510	hā\ð	2.2	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	20.3	2.4	12
BH19-12 SS2B					
Conductivity	EPA 6010/SM 2510	µg/g	2.1	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	3.4	2.4	
BH19-15 SS2B					
Conductivity	EPA 6010/SM 2510	hā\ð	1.6	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	9.4	2.4	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank	/Spike Blank		Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0114-MAY19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	ry Limits
						(%)	Recovery		%)	Recovery	(%	6)
						(76)	(%)	Low	High	(%)	Low	High
Free Cyanide	SKA5016-MAY19	hð\ð	0.05	<0.05	ND	20	100	80	120	95	75	125

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0058-MAY19	hð/ð	0.2	<0.2	ND	20	100	80	120	102	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD		Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury	EMS0020-MAY19	hð\ð	0.05	<0.05	ND	20	101	80	120	103	70	130	

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	•		olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover (%	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0017-MAY19	mg/L	0.09	<0.09	1	20	102	80	120	110	70	130
SAR Magnesium	ESG0017-MAY19	mg/L	0.02	<0.02	0	20	101	80	120	113	70	130
SAR Sodium	ESG0017-MAY19	mg/L	0.15	<0.15	0	20	99	80	120	108	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	3/Spike Blank		Ma	trix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%		Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0020-MAY19	ug/g	0.05	<0.05	ND	20	93	70	130	94	70	130
Arsenic	EMS0020-MAY19	µg/g	0.5	<0.5	2	20	106	70	130	103	70	130
Barium	EMS0020-MAY19	ug/g	0.1	<0.1	4	20	109	70	130	98	70	130
Beryllium	EMS0020-MAY19	µg/g	0.02	<0.02	3	20	100	70	130	91	70	130
Boron	EMS0020-MAY19	µg/g	1	<1	10	20	105	70	130	105	70	130
Cadmium	EMS0020-MAY19	µg/g	0.02	<0.02	3	20	106	70	130	110	70	130
Cobalt	EMS0020-MAY19	µg/g	0.01	<0.01	1	20	107	70	130	113	70	130
Chromium	EMS0020-MAY19	µg/g	0.5	<0.5	2	20	104	70	130	111	70	130
Copper	EMS0020-MAY19	µg/g	0.1	<0.1	0	20	107	70	130	106	70	130
Molybdenum	EMS0020-MAY19	µg/g	0.1	<0.1	ND	20	93	70	130	104	70	130
Nickel	EMS0020-MAY19	ug/g	0.5	<0.5	0	20	107	70	130	114	70	130
Lead	EMS0020-MAY19	ug/g	0.1	<0.1	5	20	109	70	130	104	70	130
Antimony	EMS0020-MAY19	µg/g	0.8	<0.8	ND	20	100	70	130	102	70	130
Selenium	EMS0020-MAY19	µg/g	0.7	<0.7	ND	20	107	70	130	100	70	130
Thallium	EMS0020-MAY19	hð\ð	0.02	<0.02	ND	20	106	70	130	102	70	130
Uranium	EMS0020-MAY19	µg/g	0.002	<0.002	7	20	104	70	130	103	70	130
Vanadium	EMS0020-MAY19	µg/g	3	<3	1	20	107	70	130	110	70	130
Zinc	EMS0020-MAY19	µg/g	0.7	<0.7	6	20	99	70	130	99	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Rei	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0060-MAY19	hð\ð	10	<10	ND	30	86	80	120	105	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover (%	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0064-MAY19	hð\ð	10	<10	ND	30	111	80	120	113	60	140
F3 (C16-C34)	GCM0064-MAY19	µg/g	50	<50	ND	30	111	80	120	113	60	140
F4 (C34-C50)	GCM0064-MAY19	µg/g	50	<50	ND	30	111	80	120	113	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0017-MAY19	pH Units	0.05		0	20	100	80	120			

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike	Recover (%	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Benzene	GCM0059-MAY19	µg/g	0.02	< 0.02	ND	50	89	60	130	91	50	140
Ethylbenzene	GCM0059-MAY19	µg/g	0.05	< 0.05	ND	50	89	60	130	92	50	140
m/p-xylene	GCM0059-MAY19	µg/g	0.05	< 0.05	ND	50	90	60	130	92	50	140
o-xylene	GCM0059-MAY19	µg/g	0.05	< 0.05	ND	50	90	60	130	92	50	140
Toluene	GCM0059-MAY19	µg/g	0.05	< 0.05	ND	50	88	60	130	91	50	140

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0014-MAY19	µg/g	0.5	<0.5	ND	20	97	80	120	107	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

252	æ	equest fo	or Labo	Request for Laboratory Services and CHAIN OF CUSTODY	rvice	s and	I CHA	IN OF	îC î	STOL	X					No:	
Environment, Health & Safety - Lakefield. 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2006 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, NEE 2S8 Phone: 519-672-4500 Toll Free; 877-848-8060 Fax: 519-672-0361	 Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/envi - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 	oncession St., L isortium Court,	.akefield, ON London, ON,	K0L 2H0 Phone N6E 2S8 Phone	: 705-652 : 519-672	2000 Fa	x: 705-65; oll Free; 87	2-6365 V 7-848-80	eb: www 60 Fax:	.sgs.con 519-672	n/envirol -0361	ment				Page 1 of 1	
Bereived By Older MOZAIN		Labo	Labor	Laboratory Information Section - Lab use only	adition :	ection	- Lab	no est	~	-		4	1				
Received Date (mm/d/yy): 05/2/2019 Received Time: 10: 45	LI	Custody Seal Present: Custody Seal Intact:	(signature): _ Present: Intact:	200		Coo	Cooling Agent Present:	Present: Jpon Rec	eipt (°C)	0	000	10	1×	LABIA) #S	PIGM-FT ONIA # SMILLER	
REPORT INFORMATION		INVOICE INFORMATION	DRMATION		and the second	1111	Total An			+	ROJE	CTINE	PROJECT INFORMATION	NOI	7		
Company. Thurber Engineering Ltd.	(same as Report Information)	Report Informs	ation)		Quotation #	:# u0					# 0 d				Ľ		
Contact_ Karel Furbacher	Company:				Project #		13659				Site Loc	ation/I[Elang	Site Location/ID: Langstaff Road	toad		
Address: 103-2010 Winston Park Drive	Contact:				Sur She	1200		C. Mark	100	LURNA	ROUNI	D TIME	(TAT)	TURNAROUND TIME (TAT) REQUIRED	ED	のないのであるのである	
Uakville, Untario	Address:				>	Regu	Regular TAT (5-7days)	5-7days		- 0.	FAT's an	e quoted	in busin	ess days	(exclude	TAT's are quoted in business days (exclude statutory holidays & weekends). Samilies received after form or on unochordo TAT holidays &	
Phone: 289-455-7296	5				RUSH 7	AT (Ac	RUSH TAT (Additional Charges May Apply):	Charge	s May A	(Vidd					B Days	The provided and opin of on weekends, LAI begins next business day	
Email: kfurbacher@thurber.ca	Phone:				PLEAS	E CONF	IRM RU	SH FEA	SIBILIT	Y WITH	1 SGS I	REPRE	SENTA	TIVE PI	RIOR TO	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	
Email: manderson@thurber.ca	Email:				Specify Due Date	Due Da	te:				Rush Confirmation ID:	nfirmat	ion ID:				
REG	REGULATIONS	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100				N	TE: DR	SUBM	(POTAE	MTH S	ATER S	MKING	ES FOR	HUMA	N CON	NOTE: DRINKING (POTABLE) VATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTORY	
Regulation 153/04:	Other Regulations:	:suo	Sew	Sewer Rv-I awr	Contraction of the second	1000	12	A	ANAL YSIS REQUESTED	S RFOI	IESTE				5	100180	
Table 1 R/P/I Soil Texture	Curel Negulativ	Regulations.		Tentani	-		-	10				-		-	-		
ANO	PWa0 CCME MISA	MMER Other:		Storm Municipality:			clor		ОРП	Ignit.		sistivity					
RECORD OF SITE CONDITION (RSC)	YES /	NO	ALCANE -	State of the second	-	-	oıA	X/F] ·uə	Seg			-	COMMENTS:	-
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME	# OF BOTTLES	MATRIX	ield Filtered	Netals & Inor	CB Total		o sebicides O	18A 0 9(s)	Vater Pkg G	Corrosivity/					
1 BH19-05 SS2	4/26/19	10:00 a.m.	-	SOIL	-							-	C	Ē			0
2 BH19-12 SS2B	4/22/19	10:00 a.m.	4	SOIL													T
3 BH19-15 SS2B	4/22/19	11:00 a.m.	-	SOIL													T
4																	-
5																	T
9																	T
2																	T
8																	-
6																	T
10																	1
11																	-
12																	-
Observations/Comments/Special Instructions														1]		-
Sampled By (NAME): Ryan McCourt		Signature:	Ben				ĉ	Date: 04	04/30/19				(vv/bb/mm)	(M)E		Dirk Com. Co.	-
Relinquished by (NAME): Karel Furbacher		Signature:	1010	1				1	01/30/10	0			(mm/dd/mm/	That I		Prink Lopy - Client	-
			20				n	Date: 04	1001	D			winnin ((KK)r		Yellow & White Copy - SGS	_

ssue 04 April, 2018

Date

CA14542-APR19 R

13659

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAIL	S
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2000
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	
Email	kfurbacher@thurber.ca	SGS Reference	CA14542-APR19
Project	13659	Received	04/15/2019
Order Number		Approved	04/22/2019
Samples	Leachate (1)	Report Number	CA14542-APR19 R
		Date Reported	04/22/2019

COMMENTS

Temperature of Sample upon Receipt: 7 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

Raise RL for NO2/NO3 due to matrix interference

SIGNATORIES

TABLE OF CONTENTS

First Page	1
ndex	2
Results	3-4
Exceedance Summary	5
QC Summary	6-9
.egend	10
Annexes	11

CA14542-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659

Project Manager: Karel Furbacher

PACKAGE: REG558 - Acid rock Drain	nage		Sample Number	6
(LEACHATE)				
,, ,			Sample Name	TCLP-1
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	05/04/2019
Parameter	Units	RL	L1	Result
Acid rock Drainage				
Final pH	no unit	0.01		6.00
· · ·				
PACKAGE: REG558 - Metals and Inc	organics		Sample Number	6
(LEACHATE)				
			Sample Name	TCLP-1
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	05/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics				
Sample weight	g	0.001		100
Ext Fluid	#1 or #2	0.01		2
^ Ext Volume	mL	0.01		2000
Nitrite (as N)	as N mg/L	0.03		< 0.3↑
Nitrate (as N)	as N mg/L	0.06		< 0.6↑
Nitrate + Nitrite (as N)	as N mg/L	0.06	1000	< 0.6↑
Fluoride	mg/L	0.06	150	0.22
Cyanide (total)	mg/L	0.01	20	< 0.01
Mercury	mg/L	0.00001	0.1	< 0.00001
Arsenic	mg/L	0.01	2.5	< 0.01
Silver	mg/L	0.08	5	< 0.08
Barium	mg/L	0.0009	100	0.499

CA14542-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659

Project Manager: Karel Furbacher

PACKAGE: REG558 - Metals and Inor (LEACHATE)	rganics		Sample Num	ber 6
			Sample Na	me TCLP-1
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Ma	
			Sample D	ate 05/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Cadmium	mg/L	0.001	0.5	0.004
Chromium	mg/L	0.001	5	0.004
Lead	mg/L	0.007	5	0.012
Selenium	mg/L	0.01	1	< 0.01
Uranium	mg/L	0.1	10	< 0.1

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0285-APR19	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0285-APR19	mg/L	0.03	<0.03	ND	20	97	80	120	95	75	125
Nitrate (as N)	DIO0285-APR19	mg/L	0.06	<0.06	1	20	100	80	120	102	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		-	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0129-APR19	mg/L	0.01	<0.01	ND	10	102		110	NV	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover (9	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0323-APR19	mg/L	0.06	<0.06	ND	10	97	90	110	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EHG0019-APR19	mg/L	0.00001	< 0.00001	ND	20	89	80	120	NV	70	130

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.7 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)	-	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Silver	ESG0060-APR19	mg/L	0.08	< 0.08	ND	20	98	90	110	90	70	130
Arsenic	ESG0060-APR19	mg/L	0.01	< 0.01	ND	20	91	90	110	85	70	130
Barium	ESG0060-APR19	mg/L	0.0009	< 0.0009	2	20	91	90	110	117	70	130
Boron	ESG0060-APR19	mg/L	0.005	< 0.005	1	20	93	90	110	90	70	130
Cadmium	ESG0060-APR19	mg/L	0.001	< 0.001	0	20	91	90	110	85	70	130
Chromium	ESG0060-APR19	mg/L	0.001	< 0.002	ND	20	92	90	110	87	70	130
Lead	ESG0060-APR19	mg/L	0.007	< 0.007	ND	20	93	90	110	84	70	130
Selenium	ESG0060-APR19	mg/L	0.01	< 0.01	ND	20	100	90	110	120	70	130
Uranium	ESG0060-APR19	mg/L	0.1	< 0.1	ND	20	92	90	110	91	70	130

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield. - London: 657 Consortium Court, London.	 Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/envi - London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 5<u>19</u>-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 	Concession St onsortium Cou	., Lakefield, C rt, London, C	ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	hone: 705-6	552-2000 672-4500	Fax: 705 Toll Free	-652-63(a: 877-84	35 Web: 48-8060	www.sg Fax: 519	s.com/e	nvironm 61	ent				Page of	_
Ward No 7/11			Lat	Laboratory Information Section - Lab use only	ormatio	n Sect	on - Lá	ab use	only		001	dh	14	D.	the applied by object	12K	1	
Received Date (mm/dd/m): 0/ 4/15/ 20/	4	Custody S Custody S Custody S	received by (signature): Custody Seal Present: Custody Seal Intact:	220			Cooling Agent Present:	gent Pre ure Upor	sent: 1 Receip	Ðŝ	80	1908	0	2	80808 72 LABLINS#	S#8	A-CH2HIM	010
REPORT INFORMATION	Harrison and	INVOICE INFORMATI	FORMATIC	ION		112 11	AL AVA	A Participant			PR	ÓJECT	INFO	PROJECT INFORMATION	NO			
Company: Thurber Engineering Ltd.	(same as Report Information)	Report Infor	mation)		Quo	Quotation #:					а. 	P.O.#:						
Contact Karel Furbacher	Company:	2			Proj	Project #:	13659				Sit	e Locat	tion/ID:	Lang	Site Location/ID: Langstaff Road	bad		
Address: 103-2010 Winston Park Drive Oakville, Ontario	Contact: Address					∠ Re	Regular TAT (5-7days)	AT (5-70	lays)	5	TAR	T's are o	TIME (tuoted i	rAT) R busine	TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days (exc Sambles received after form on use	ED (exclude	(ROUND TIME (TAT) REQUIRED TAT's are quoted in business days (exclude statutory holidays & weekends).	nds).
Phone: 289-455-7296				į.	RUS	CUSH TAT (Additional Charges May Apply):	Additio	nal Chi	arges N	lay Ap	iv):			2 Days	s la	3 Days		(pp. c
Email: kfurbacher@thurber.ca	Phone:					ASE CC	NFIRM	RUSH	FEASIE	SILITY	WITH	GS RI	EPRES	ENTAT	IVE PF	IOR TO	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	
Email: manderson@thurber.ca	Email:				Spe	Specify Due Date:	Date:				Ru	Rush Confirmation ID:	firmati	on ID:				
	REGULATIONS	CHINA STATE					NOTE:	DRINK	ING (P	TABL TED WI	E) WAT	ER SA	MPLE	S FOR	HUMAI CHAIN	N CON	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	
Regulation 153/04:	Other Regulations:	ions:		Sewer Bv-Law:			Milling	A Street	ANA	LYSIS	ANALYSIS REQUESTED	STED	State of			The state		×
Table 1 R/P/I Soil Texture: Table 2 PA/C/C Coarse Table 3 A/O Medium	PW00	Reg 347/558 (3 Day min TAT) PWQO MMER CCME Other: MISA		Sanitary Storm Municipality:		so			g		Ignit.				-	-		
RECORD OF SITE CONDIT	þ	N	100 Mar 100 Ma			inspi] X3.				9Я\ /			18-2-1 	COMIMEN IS:	
SAMPLE IDENTIFICATION	DATE	TIME	# OF BOTTLES	ES MATRIX	Field Filtered	oni & sisteM		PHC F1-F4	Sector Sector	Pesticides C	B(a)P D AE	Sewer Use:	Corrosivity				ANAL STREET	
1 TCLP-1	4/5/19	12:00 p.m.	щ. 2	SOIL														
2																		
3																		
4					ALC: NO												140	
5																		
9																		
2				-	1000													11. C
8					ALL .													
6																		
10					1													
11																		
12																		
Observations/Comments/Special Instructions			1													1.7	1000	
Sampled By (NAME): Ryan McCourt		Signature:	7				18	Date:		04/12/19				(mm/dd/yy)	(k/p		Pink Copy - Client	
Relinquished by (NAME): Karel Furbacher	C. C. C. C. C. C. C. C. C. C. C. C. C. C	Signature:	1.	VI		-		Date:		04/12/19	0	2		(mm/dd/yy)	(KK)p		Yellow & White Copy - SGS	SS
									Т									

Revision #: 1.1 Date of Issue: 04 April, 2018

CA14707-APR19 R1

13659 Langstaff Road

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAIL	S
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2143
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kfurbacher@thurber.ca	SGS Reference	CA14707-APR19
Project	13659 Langstaff Road	Received	04/18/2019
Order Number		Approved	04/25/2019
Samples	Leachate (1)	Report Number	CA14707-APR19 R1
		Date Reported	05/31/2019

COMMENTS

Temperature of Sample upon Receipt: 3 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

RL raised for Nitrates due to sample matrix

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-4
Exceedance Summary	5
QC Summary	6-9
Legend	10
Annexes	11

CA14707-APR19 R1

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG558 - Acid rock Drai	inage		Sample Number	6
(LEACHATE)				
			Sample Name	TCLP-2
			Sample Name	Leachate
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	10/04/2019
Parameter	Units	RL	L1	Result
	Offits	nL.	E1	Nosuli
Acid rock Drainage				
Final pH	no unit	0.01		6.08
DACKACE DECESS Metals and In			Sample Number	6
PACKAGE: REG558 - Metals and Inc	organics		Campie Number	0
(LEACHATE)				
			Sample Name	TCLP-2
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	10/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics				
Sample weight	g	0.001		100
Ext Fluid	#1 or #2	0.01		2
^ Ext Volume	mL	0.01		2000
Nitrite (as N)	as N mg/L	0.03		< 0.3↑
Nitrate (as N)	as N mg/L	0.06		< 0.6↑
Nitrate + Nitrite (as N)	as N mg/L	0.06	1000	< 0.6↑
Fluoride	mg/L	0.06	150	0.16
Cyanide (total)	mg/L	0.01	20	< 0.01
Mercury	mg/L	0.00001	0.1	0.00002
Arsenic	mg/L	0.01	2.5	0.02
Silver	mg/L	0.01	5	< 0.08
Silver		0.0009	100	0.557
Devices			100	0.007
Barium Boron	mg/L mg/L	0.005	500	0.065

CA14707-APR19 R1

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG558 - Metals and Inorg	ganics		Sample Numb	er 6
(LEACHATE)				
			Sample Nan	TCLP-2
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Mat	rix Leachate
			Sample Da	te 10/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Cadmium	mg/L	0.001	0.5	< 0.001
Chromium	mg/L	0.001	5	< 0.001
Lead	mg/L	0.007	5	< 0.007
Selenium	mg/L	0.01	1	< 0.01
Uranium	mg/L	0.1	10	< 0.1

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0379-APR19	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0379-APR19	mg/L	0.03	<0.03	ND	20	98	80	120	102	75	125
Nitrate (as N)	DIO0379-APR19	mg/L	0.06	<0.06	ND	20	98	80	120	102	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0170-APR19	mg/L	0.01	<0.01	ND	10	99	90	110	91	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	<i>i</i> .
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0401-APR19	mg/L	0.06	<0.06	ND	10	100	90	110	93	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EHG0024-APR19	mg/L	0.00001	< 0.00001	ND	20	95	80	120	98	70	130

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.7 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover (۹	-	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Silver	ESG0071-APR19	mg/L	0.08	< 0.08	ND	20	96	90	110	99	70	130
Arsenic	ESG0071-APR19	mg/L	0.01	< 0.01	ND	20	92	90	110	91	70	130
Barium	ESG0071-APR19	mg/L	0.0009	< 0.0009	5	20	95	90	110	100	70	130
Boron	ESG0071-APR19	mg/L	0.005	< 0.005	ND	20	94	90	110	101	70	130
Cadmium	ESG0071-APR19	mg/L	0.001	< 0.001	ND	20	94	90	110	100	70	130
Chromium	ESG0071-APR19	mg/L	0.001	< 0.002	ND	20	95	90	110	101	70	130
Lead	ESG0071-APR19	mg/L	0.007	< 0.007	ND	20	94	90	110	106	70	130
Selenium	ESG0071-APR19	mg/L	0.01	< 0.01	ND	20	93	90	110	85	70	130
Uranium	ESG0071-APR19	mg/L	0.1	< 0.1	ND	20	97	90	110	91	70	130

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield,	R - Lakefield: 185 C	equest f	or Labo	Request for Laboratory Services and CHAIN OF CUSTODY ^{5 Concession} SL. Lakefield, ON KOL 240 Phone: 705-652-2000 Fax: 705-652-6395 VVeb: vvvv.sos confervironment	: 705-652	s and	CHAII 705-652-6	N OF (onment				No:	
	- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	nsortium Court	London, ON,	N6E 2S8 Phon	a: 519-672	4500 Toll	Free: 877-	-848-8060	Fax: 519-	672-0361					Page of (
Received By: Olog MOZNIN	k	Received By	Labor Received By (signature): _	Laboratory Information Section - Lab use only ature):	nation	ection	- Lab us	se only	1	020	266	1160	of lay	R		
Received Date (mm/dd/yy): 04/10/2019 Received Time: 14.00		Custody Seal Present: Custody Seal Intact:	al Present: al Intact:	200		Coolir Temp	Cooling Agent Present: Temperature Upon Reci	Cooling Agent Present:	2	ono	101	2	0	C	on Tornia	2
REPORT INFORMATION	-	INVOICE INFORMATION	ORMATION							PRO.I	PRO.IECT INCOMPTION	() ADMAR	LAB LIMS #:			
Company: Thurber Engineering Ltd.	(same as Report Information)	Report Inform	ation)		Quotation #:	;# u				P.O. #		1 MINIO	N	Ľ		
	Company:				Project #:	#. 13659	59			Site L	ocation/II	D: Lang	Site Location/ID: Langstaff Road	ad		-
Dadress 103-2010 Winston Park Drive Oakville, Ontario	Contact:			1					TUR	NAROUI	ID TIME	(TAT) R	TURNAROUND TIME (TAT) REQUIRED	0		T
Dhana 289-455-7296	Address:				$\overline{\mathbf{N}}$	Regula	Regular TAT (5-7days)	7days)		TAT's	are quoted	d in busine d after 6p	ss days (e n or on we	xclude s ekends:	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT herrins have husinese days	
	Phone:				RUSH T	AT (Add	itional CI	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM PLICH FEASIBILITY WITH	ay Apply] 1 Day [2 Days	/s 3 1]3 Days	4 Days	
Email: manderson@thurber.ca	Email:				Specify	Specify Due Date:				Rich	Rush Confirmation ID:	SENTA	IIVE PRI	OR TO	Specify Due Date: Rush Confirmation ID:	
REG	REGULATIONS					NOT	E: DRIN	KING (PC	TABLE)	WATER	SAMPL	ES FOR	HUMAN	CONSL	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE	
Regulation 153/04:			-	5 1 1				SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	ED WTH	H SGS D	RINKING	WATEF	CHAIN	OF CUS	STODY	-
Table 1 R/P/I Soil Texture:	Other Regulations:	ons: 8 (3 Day min T,		Sewer By-Law:	-		-	ANAL	ANALYSIS REQUESTED	EQUEST	G -		-			1
Table 2 //C/C Coarse Table 3 //O Medium Table Fine	PWQ0 CCME MISA	MMER Other:	Municipality:	Storm pality:					OP OP OP		stivity					-
RECORD OF SITE CONDITION (RSC)	T VES	NO			-		1		201] ·uə	IS97				COMMENTS:	-
SAMPLE IDENTIFICATION	DATE	TIME	# OF BOTTLES	MATRIX	ield Filtered letals & Inorg	ияа Пна	CB Total C HC F1-F4	OC 🖸 BIE	(a)P 🖸 ABN	All Mark And	se: orrosivity/I					
1 TCLP-2	4/10/19	10:00 a.m.	2	SOIL	-	-		^ [1L	MC		E		C	- Castor -	-
2																-
3][][][-
4																-
5																-
9																-
7																-
8							기다									-
6][][
10																_
11																_
12																
Observations/Comments/Special Instructions																
Sampled By (NAME): Ryan McCourt		Signature: *	to	BRUN			-	0417140	140					t		
Relinquished by (NAME): Karel Furbacher		Signature:	1 Al	1			Date:		112			(mm/dd/yy)	(),()	-	Pink Copy - Client	
			Z	te	(Date:	04/17/19	1119			(KK/pp/uuu)	()	>	Yellow & White Copy - SGS	

C

CA14797-APR19 R

13659, Langstaff Road

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS	;	LABORATORY DETAILS	S
Client	Thurber Engineering Ltd.	Project Specialist	Rob Irwin B.Sc., C.Chem
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	2361
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	rob.irwin@sgs.com
Email	kfurbacher@thurber.ca	SGS Reference	CA14797-APR19
Project	13659, Langstaff Road	Received	04/23/2019
Order Number		Approved	04/30/2019
Samples	Leachate (1)	Report Number	CA14797-APR19 R
		Date Reported	04/30/2019

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

SIGNATORIES

Rob Irwin B.Sc., C.Chem R.bash.

TABLE OF CONTENTS

First Page	1
ndex	2
Results	3-4
Exceedance Summary	5
QC Summary	6-9
.egend	10
Annexes	11

CA14797-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659, Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG558 - Acid rock Draina	ige		Sample Number	6
LEACHATE)	-			
,			Sample Name	TCLP-3
1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	17/04/2019
Parameter	Units	RL	L1	Result
cid rock Drainage				
Final pH	no unit	0.01		4.62
PACKAGE: REG558 - Metals and Inorg	ganics		Sample Number	6
LEACHATE)				
			Sample Name	TCLP-3
1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	17/04/2019
Parameter	Units	RL	L1	Result
letals and Inorganics				
Sample weight	g	0.001		100
Ext Fluid	#1 or #2	0.01		2
^ Ext Volume	mL	0.01		2000
Nitrite (as N)	as N mg/L	0.03		< 0.3↑
Nitrate (as N)	as N mg/L	0.06		< 0.6↑
Nitrate + Nitrite (as N)	as N mg/L	0.06	1000	< 0.6↑
Fluoride	mg/L	0.06	150	0.26
Cyanide (total)	mg/L	0.01	20	< 0.01
	mg/L	0.00001	0.1	< 0.00001
Mercury				
Mercury Arsenic	mg/L	0.01	2.5	< 0.01
	mg/L	0.01	2.5 5	< 0.01
Arsenic				

CA14797-APR19 R

Client: Thurber Engineering Ltd.

Project: 13659, Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG558 - Metals and Inor (LEACHATE)	ganics		Sample Nur	nber 6
(LEACHATE)			Sample N	ame TCLP-3
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample M	
			Sample	Date 17/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Cadmium	mg/L	0.001	0.5	0.001
Chromium	mg/L	0.001	5	0.002
Lead	mg/L	0.007	5	0.008
Selenium	mg/L	0.01	1	0.02
Uranium	mg/L	0.1	10	< 0.1

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0426-APR19	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0426-APR19	mg/L	0.03	<0.03	ND	20	98	80	120	90	75	125
Nitrate (as N)	DIO0426-APR19	mg/L	0.06	<0.06	0	20	99	80	120	104	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0214-APR19	mg/L	0.01	<0.01	ND	10	97	90	110	97	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (9	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0481-APR19	mg/L	0.06	<0.06	2	10	97	90	110	91	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EHG0027-APR19	mg/L	0.00001	< 0.00001	ND	20	116	80	120	114	70	130

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.7 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover (%	-	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Silver	ESG0081-APR19	mg/L	0.08	< 0.08	ND	20	95	90	110	96	70	130
Arsenic	ESG0081-APR19	mg/L	0.01	< 0.01	ND	20	103	90	110	92	70	130
Barium	ESG0081-APR19	mg/L	0.0009	< 0.0009	5	20	105	90	110	NV	70	130
Boron	ESG0081-APR19	mg/L	0.005	< 0.005	5	20	104	90	110	112	70	130
Cadmium	ESG0081-APR19	mg/L	0.001	< 0.001	ND	20	105	90	110	105	70	130
Chromium	ESG0081-APR19	mg/L	0.001	< 0.002	ND	20	107	90	110	103	70	130
Lead	ESG0081-APR19	mg/L	0.007	< 0.007	2	20	104	90	110	109	70	130
Selenium	ESG0081-APR19	mg/L	0.01	< 0.01	ND	20	103	90	110	101	70	130
Uranium	ESG0081-APR19	mg/L	0.1	< 0.1	ND	20	107	90	110	118	70	130

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	sortium Court, L	ODDON, UN,	N6E 2S8 Phon	a: 519-672-4	500 Toll F	ree: 877-{	148-8060	Fax: 519	-672-03	5				Page / of /
Received By. Olece Mozhial		Labo Received By (signature):	Labor signature):	Laboratory Information Section - Lab use only ature):	nation Se	ction -	Lab us	e only	1	lee a	all	1/2	har ey drie	dh	101
teceived Date (mm/dd/jy); 04/83/20/9 teceived Time: 13:25		Custody Seal Present: Custody Seal Intact:	Present: Intact:	200	Sa Sa	Cooling	Cooling Agent Present:	esent: n Receip		600	10	dx	dog go o x 3 LABLINS #	AS #CU	1414797.14e19.
REPORT INFORMATION	4	INVOICE INFORMATION	RMATION	3				1000		PRC	JECTI	NFORM	PROJECT INFORMATION		
Company: Thurber Engineering Ltd.	 (same as Report Information) 	eport Informat	tion)	1	Quotation #:	#	i.	1		P.O.#:	#				
Contact: Karel Furbacher	Company:			100	Project #:	13659	6			Site	Locatio	n/ID: L	Site Location/ID: Langstaff Road	Road	
Address: 103-2010 Winston Park Drive Oakville, Ontario	Contact:					Recular	Regular TAT (5-7dave)	davel	Ē	TAT	UND TI	ME (TA oted in b	TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days (ex	RED s (exclude	(ROUND TIME (TAT) REQUIRED TATs are quoted in business days (exclude statutory holidays & weekends).
Phone: 289-455-7296	Address:				RUSH TAT (Additional Chardes May Apply):	T (Addit	ional Ch	arges N	lav Apr	San Iv): [1 Dav	eived aft	1 after 6pm or or 2 Davs	on weekend	Samples received after 6pm or on weekends: TAT begins next business day
kfurbacher@thurber.ca	Phone:				PLEASE	CONFIR	M RUSH	FEASI	SILITY /	NITHS	GS REF	RESE	ITATIVE F	RIOR TO	0
Email: manderson@thurber.ca	Email:				Specify Due Date:	ue Date:				Rus	Rush Confirmation ID:	mation	ö		
REGL	REGULATIONS					NOTE	DRINI S	VING (P	OTABLE FED WIT	E) WAT	ER SAN DRINK	ING W	IKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	AN CON:	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY
	Chen Develop		-	-	A MAN	THE STATE		ANA	VSIST	ANALYSIS PEOLESTED	STED				
tegulation 153/04: Table 1 R/P/I Soil Texture: Table 2 I/C/C Coarse Table 3 A/O Medium Table 3 Table Fine	Other Regulations: Reg 347/558 (3) PWQO CCME MISA	r Regulations: Reg 347/558 (3 Day min TAT) PVVQO MMER CCME Other: MISA		Sewer By-Law:				and a second second second second				sistivity			
RECORD OF SITE CONDIT	1.00	ON V			-							əЯ\		1	COMMENIS:
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME	# OF BOTTLES	MATRIX	Field Filtered	иаа 🛛 ная	PCB Total	with the state of	Pesticides O	B(a)P 🗖 AB	Sewer Use:	Corrosivity			
1 TCLP-3	4/17/19	10:00 a.m.	2	SOIL		-	1.								
2															
3															
4															
5															
6					7										
7															
8															
9					3										A VISI
10															
A															
12															
Observations/Comments/Special Instructions					1	12									
sampled By (NAME): Ryan McCourt		Signature:	Ben				Date:		04/23/19			-S	(mm/dd/yy)		Pink Copy - Client
Relinquished by (NAME): Karel Furbacher		Signature:	Z	Z	1		Date:		04/23/19			5	(wm/dd/yy)		Vellow & White Conv - SGS

Date of Issue: 04 April, 2018

CA14078-MAY19 R

13659 Langstaff Road

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2000
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	
Email	kfurbacher@thurber.ca	SGS Reference	CA14078-MAY19
Project	13659 Langstaff Road	Received	05/02/2019
Order Number		Approved	05/08/2019
Samples	Leachate (1)	Report Number	CA14078-MAY19 R
		Date Reported	05/08/2019

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:NA

RL raised for Nitrates due to sample matrix

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-4
Exceedance Summary	5
QC Summary	6-9
Legend	10
Annexes	11

CA14078-MAY19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG558 - Acid rock Draina	age		Sample Number	6
(LEACHATE)	-			
,			Sample Name	TCLP-4
1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	22/04/2019
Parameter	Units	RL	L1	Result
Acid rock Drainage				
Final pH	no unit	0.01		6.20
PACKAGE: REG558 - Metals and Inorg	ganics		Sample Number	6
(LEACHATE)				
			Sample Name	TCLP-4
1 = REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate
			Sample Date	22/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics				
Sample weight	g	0.001		100
Ext Fluid	#1 or #2	0.01		2
^ Ext Volume	mL	0.01		2000
Nitrite (as N)	as N mg/L	0.03		< 0.3↑
Nitrate (as N)	as N mg/L	0.06		< 0.6↑
Nitrate + Nitrite (as N)	as N mg/L	0.06	1000	< 0.6↑
Fluoride	mg/L	0.06	150	0.21
Cyanide (total)	mg/L	0.01	20	< 0.01
Mercury	mg/L	0.00001	0.1	< 0.00001
Arsenic	mg/L	0.01	2.5	0.02
Silver	mg/L	0.08	5	< 0.08
	~~/l	0.0009	100	0.546
Barium	mg/L	0.0003	100	

CA14078-MAY19 R

Client: Thurber Engineering Ltd.

Project: 13659 Langstaff Road

Project Manager: Karel Furbacher

Samplers: Ryan McCourt

PACKAGE: REG558 - Metals and Inorg	ganics		Sample Nu	mber 6
(LEACHATE)				
			Sample N	lame TCLP-4
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample M	latrix Leachate
			Sample	Date 22/04/2019
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Cadmium	mg/L	0.001	0.5	< 0.001
Chromium	mg/L	0.001	5	0.002
Lead	mg/L	0.007	5	< 0.007
Selenium	mg/L	0.01	1	0.02
Uranium	mg/L	0.1	10	< 0.1

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (۹	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0079-MAY19	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0079-MAY19	mg/L	0.03	<0.03	17	20	97	80	120	96	75	125
Nitrate (as N)	DIO0079-MAY19	mg/L	0.06	<0.06	0	20	99	80	120	99	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0046-MAY19	mg/L	0.01	<0.01	ND	10	100	90	110	83	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0109-MAY19	mg/L	0.06	<0.06	ND	10	94	90	110	101	75	125
Fluoride	EWL0118-MAY19	mg/L	0.06	<0.06	1	10	96	90	110	103	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		N	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EHG0005-MAY19	mg/L	0.00001	< 0.00001	ND	20	116	80	120	126	70	130

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.7 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover (۹	-	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Silver	ESG0015-MAY19	mg/L	0.08	< 0.08	ND	20	93	90	110	92	70	130
Arsenic	ESG0015-MAY19	mg/L	0.01	< 0.01	ND	20	94	90	110	97	70	130
Barium	ESG0015-MAY19	mg/L	0.0009	< 0.0009	3	20	95	90	110	99	70	130
Boron	ESG0015-MAY19	mg/L	0.005	< 0.005	1	20	98	90	110	98	70	130
Cadmium	ESG0015-MAY19	mg/L	0.001	< 0.001	ND	20	95	90	110	98	70	130
Chromium	ESG0015-MAY19	mg/L	0.001	< 0.002	ND	20	96	90	110	94	70	130
Lead	ESG0015-MAY19	mg/L	0.007	< 0.007	ND	20	95	90	110	94	70	130
Selenium	ESG0015-MAY19	mg/L	0.01	< 0.01	ND	20	95	90	110	102	70	130
Uranium	ESG0015-MAY19	mg/L	0.1	< 0.1	ND	20	97	90	110	120	70	130

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety		Request for Laboratory Services and CHAIN OF CUSTODY Concession St., Lakefield, ON K0L 240 Phone: 705-652-2000 Fax: 705-652-6365 WAH: WAM: Concession	for Lab	Oratory S	Servic	es anc 32-2000 Fa	I CHAI	N OF	CUST	Ydo'					No:	
1 al all March 10	- London: 657 Consortium Court, London, ON, NEE 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section -1 =h. uno -1-1.	onsortium Cou	rt, London, Ol Lab	on, ON, NEE 2S8 Phone: 519-672-4500 Toll Free: 877-848-806 Laboratory Information Sertion - 1 ab 1000 and	one: 519-6	72-4500 Tc	ll Free; 87	-848-806	0 Fax: 519	-672-036	ironment				Page 1 of 1	
Received Date (mm/dd/m): 05/2/2010 Received Time: 05/2/2010	L	Received Custody S	Received By (signature); Custody Seal Present:	202	D	Cool	Cooling Agent Present:	resent:	7	10	P	Sal	100		INM OF	0
REPORT INFORMATION	B. North Concernation	UUSION Seal Intact:	Pal Intact:	1		Tem	Temperature Upon Receipt (°C)	oon Recei	ot (°C) L	9.0	20		LAB LIMS #:		1-110401-L	
	(same as Report Information)	Report Infor	nation)							PRO	JECT IN	PROJECT INFORMATION	NOL		and the state of t	
Contact Karel Furbacher	Company:				Cuota	#	010			P.O.#:	#					
Address: 103-2010 Winston Park Drive Oakville, Ontario	Contact:				Project #:	- 198	13059		TUR	Site L	ocation/	Site Location/ID: Langstaff Road	Istaff Ro	bad		
Phone: 289-455-7296	Address:					Regula	Regular TAT (5-7days)	7days)		TAT's	are quote	d in busine	ess days (exclude st	TAT's are quoted in business days (exclude statutory holidays & weekende)	100
	Phone:				RUSH	RUSH TAT (Additional Charges May Apply):	litional C	harges A	lay Appl		es received	d after 6pm o 2 Davs [m or on w	on weekends:	amples received after 6pm or on weekends: TAT begins next business day	
Email: manderson@thurber.ca	Email:				PLEAS	E CONFI	RM RUSI	H FEASI	SILITY W	ITH SG	REPRE	SENTA	TIVE PR	OR TO S	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	-
REG	REGULATIONS		Contraction of	The All	linade	opecity Due Date: NOTE	E: DRIN	KING (P(TABLEY	Rush	Rush Confirmation ID:	tion ID:				
Regulation 153/04:	Other Regulations:	····						UBMITT	ED WITH	I SGS D	RINKINC	ES FOR	HUMAN	SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUISTONY	SUBMITTED WITH SGS DRINKING WATER CHAIN OF CURTON	-
R/P/I Soil Te	Reg 347/5	Reg 347/558 (3 Day min TAT)		Sewer By-Law:			_	ANA	ANALYSIS REQUESTED	GUEST	8				AUV	-
Table 2 InC/C Coarse Table 3 A/O Medium Table	PWQO	MMER Other:		Storm Municipality:		OC(all)				Ext.	vitv		-			
RECORD OF SITE CONDITION (RSC)		NO	1000	Mar Ban	-		λC	-		10 million (10	tsise				Comments of	_
					-			XETEX			y/R				COMMENTS:	_
SAMPLE IDENTIFICATION	DATE	TIME	# OF BOTTLES	MATRIX	ietiia ble	II & elete	B Total C F1-F4 B D X3	a 🖸 o	rticides	er Pkg						
1 TCLP-4	4/22/19	10:00 a.m.	~	IICo	_		Hall	01			əsU					
2			r	SUL												
3																
4																
0 4																
2																
8																
0																
10																
11																
12																
Observations/Comments/Special Instructions																
Sampled By (NAME): Ryan McCourt		Signature:	BRM				+									
hed by (NAME):		Signature:	N	K			Date:	04/30/19	19			(kk/pp/uuu)		Pink	Pink Copy - Client	
Newson # 11 Date of issue. 04 April 2018							Date:	04/30/19	/19			(wm/dd/yy)		Yellov	Yellow & White Copy - SGS	